CS675: Convex and Combinatorial Optimization Fall 2023 Combinatorial Problems as Linear and Convex

Programs

Instructor: Shaddin Dughmi

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

Combinatorial vs Convex Optimization

- In CS, discrete problems are traditionally viewed/analyzed using discrete mathematics and combinatorics
 - Algorithms are combinatorial in nature (greedy, dynamic programming, divide and conquor, etc)

Introduction 1/48

Combinatorial vs Convex Optimization

- In CS, discrete problems are traditionally viewed/analyzed using discrete mathematics and combinatorics
 - Algorithms are combinatorial in nature (greedy, dynamic programming, divide and conquor, etc)
- In OR and optimization community, these problems are often expressed as continuous optimization problems
 - Usually linear programs, but increasingly more general convex programs

Introduction 1/48

Combinatorial vs Convex Optimization

- In CS, discrete problems are traditionally viewed/analyzed using discrete mathematics and combinatorics
 - Algorithms are combinatorial in nature (greedy, dynamic programming, divide and conquor, etc)
- In OR and optimization community, these problems are often expressed as continuous optimization problems
 - Usually linear programs, but increasingly more general convex programs
- Increasingly in recent history, it is becoming clear that combining both viewpoints is the way to go
 - Better algorithms (runtime, approximation)
 - Structural insights (e.g. market clearing prices in matching markets)

 Unifying theories and general results (Matroids, submodular optimization, constraint satisfaction)

Introduction 1/48

- The oldest examples of linear programs were discrete problems
 - Dantzig's original application was the problem of matching 70 people to 70 jobs!

Introduction 2/48

- The oldest examples of linear programs were discrete problems
 - Dantzig's original application was the problem of matching 70 people to 70 jobs!
- This is not surprising, since almost any finite family of discrete objects can be encoded as a finite subset of Euclidean space
 - Convex hull of that set is a polytope
 - E.g. spanning trees, paths, cuts, TSP tours, assignments...

Introduction 2/48

- LP algorithms typically require representation as a "small" family of inequalities,
 - Not possible in general (Say when problem is NP-hard, assuming $(P \neq NP)$)
 - Shown unconditionally impossible in some cases (e.g. TSP)

Introduction 3/48

- LP algorithms typically require representation as a "small" family of inequalities,
 - Not possible in general (Say when problem is NP-hard, assuming $(P \neq NP)$)
 - Shown unconditionally impossible in some cases (e.g. TSP)
- But, in many cases, polyhedra in inequality form can be shown to encode a combinatorial problems at the vertices

Introduction 3/48

- LP algorithms typically require representation as a "small" family of inequalities,
 - Not possible in general (Say when problem is NP-hard, assuming $(P \neq NP)$)
 - Shown unconditionally impossible in some cases (e.g. TSP)
- But, in many cases, polyhedra in inequality form can be shown to encode a combinatorial problems at the vertices

Next

We examine some combinatorial problems through the lense of LP and convex optimization, starting with shortest path.

Introduction 3/48

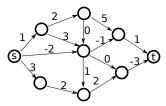
Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

The Shortest Path Problem

Given a directed graph G=(V,E) with cost $c_e\in\mathbb{R}$ on edge e, find the minimum cost path from s to t.

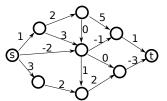
- We use n and m to denote |V| and |E|, respectively.
- We allow costs to be negative, but assume no negative cycles
- ullet We assume wlog that all nodes are reachable from s (use BFS)



The Shortest Path Problem

Given a directed graph G=(V,E) with cost $c_e\in\mathbb{R}$ on edge e, find the minimum cost path from s to t.

- We use n and m to denote |V| and |E|, respectively.
- We allow costs to be negative, but assume no negative cycles
- ullet We assume wlog that all nodes are reachable from s (use BFS)



When costs are nonnegative, Dijkstra's algorithm finds the shortest path from s to every other node in time $O(m + n \log n)$.

Using primal/dual paradigm, we will design a polynomial-time algorithm that works when graph has negative edges but no negative cycles

Note: Negative Edges and Complexity

- When the graph has no negative cycles, there is a shortest path which is simple
- When the graph has negative cycles, there may not be a shortest path from s to t.
- In these cases, the algorithm we design can be modified to "fail gracefully" by detecting such a cycle
 - Can be used to detect arbitrage opportunities in currency exchange networks

Note: Negative Edges and Complexity

- When the graph has no negative cycles, there is a shortest path which is simple
- When the graph has negative cycles, there may not be a shortest path from s to t.
- In these cases, the algorithm we design can be modified to "fail gracefully" by detecting such a cycle
 - Can be used to detect arbitrage opportunities in currency exchange networks
- In the presence of negative cycles, finding the shortest simple path is NP-hard (by reduction from Hamiltonian cycle)

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP

$$\begin{aligned} &\min \sum_{e \in E} c_e x_e \\ &\text{s.t.} \\ &\sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ &x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP

$$\begin{aligned} &\min \sum_{e \in E} c_e x_e \\ &\text{s.t.} \\ &\sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ &x_e \geq 0, \qquad \qquad \forall e \in E. \end{aligned}$$

where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.

- This is a relaxation of the shortest path problem
 - Indicator vector x_P of s-t path P is a feasible solution, with cost as given by the objective
 - LP is feasible
 - Fractional feasible solutions may not correspond to paths

An LP Relaxation of Shortest Path

Consider the following LP

Primal Shortest Path LP

$$\begin{aligned} &\min \sum_{e \in E} c_e x_e \\ &\text{s.t.} \\ &\sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ &x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

- where $\delta_v = -1$ if v = s, 1 if v = t, and 0 otherwise.
 - This is a relaxation of the shortest path problem
 - Indicator vector x_P of s-t path P is a feasible solution, with cost as given by the objective
 - LP is feasible
 - Fractional feasible solutions may not correspond to paths
 - A-priori, it is conceivable that optimal value of LP is less than length of shortest path.

Integrality of the Shortest Path Polyhedron

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

We will show that above LP encodes the shortest path problem exactly

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Dual LP

We will use the following LP dual

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

```
\begin{aligned} & \max y_t - y_s \\ & \text{s.t.} \\ & y_v - y_u \leq c_e, & \forall (u,v) \in E. \end{aligned}
```

- Interpretation of dual variables y_v : "height" or "potential"
- Relative potential of vertices constrained by length of edge between them (triangle inequality)
- Dual is trying to maximize relative potential of s and t,

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

 $\begin{aligned} & \max y_t - y_s \\ & \text{s.t.} \\ & y_v - y_u \leq c_e, \quad \forall (u,v) \in E. \end{aligned}$

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

 $\begin{aligned} & \max y_t - y_s \\ & \text{s.t.} \\ & y_v - y_u \leq c_e, \quad \forall (u,v) \in E. \end{aligned}$

- Let x^* be indicator vector of shortest s-t path
 - Feasible for primal

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

 $\begin{aligned} &\max \, y_t - y_s \\ &\text{s.t.} \\ &y_v - y_u \leq c_e, \quad \forall (u,v) \in E. \end{aligned}$

- Let x^* be indicator vector of shortest s-t path
 - Feasible for primal
- Let y_v^* be shortest path distance from s to v
 - Feasible for dual (by triangle inequality)

Claim

When c satisfies the no-negative-cycles property, the indicator vector of the shortest s-t path is an optimal solution to the LP.

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

 $\begin{aligned} &\max y_t - y_s\\ &\text{s.t.}\\ &y_v - y_u \leq c_e, \quad \forall (u,v) \in E. \end{aligned}$

- Let x^* be indicator vector of shortest s-t path
 - Feasible for primal
- \bullet Let y_v^{\ast} be shortest path distance from s to v
 - Feasible for dual (by triangle inequality)
- $\sum_e c_e x_e^* = y_t^* y_s^*$, so both x^* and y^* optimal.

A stronger statement is true:

Integrality of Shortest Path LP

The vertices of the polyhedral feasible region are precisely the indicator vectors of simple paths in G.

- Implies that there always exists a vertex optimal solution which is a path whenever LP is bounded
 - ullet We will also show that LP is bounded precisely when c has no negative cycles.
- Reduces computing shortest path in graphs with no negative cycles to finding optimal vertex of LP

A stronger statement is true:

Integrality of Shortest Path LP

The vertices of the polyhedral feasible region are precisely the indicator vectors of simple paths in G.

Proof

- LP is bounded iff c satisfies no-negative-cycles
 - ←: previous proof
 - →: If c has a negative cycle, there are arbitrarily cheap "flows" along that cycle

A stronger statement is true:

Integrality of Shortest Path LP

The vertices of the polyhedral feasible region are precisely the indicator vectors of simple paths in G.

Proof

- LP is bounded iff c satisfies no-negative-cycles
 - ←: previous proof
 - →: If c has a negative cycle, there are arbitrarily cheap "flows" along that cycle
- 2 Fact: For every LP vertex x there is objective c such that x is unique optimal. (Prove it!)

A stronger statement is true:

Integrality of Shortest Path LP

The vertices of the polyhedral feasible region are precisely the indicator vectors of simple paths in G.

Proof

- LP is bounded iff c satisfies no-negative-cycles
 - ←: previous proof
 - →: If c has a negative cycle, there are arbitrarily cheap "flows" along that cycle
- 2 Fact: For every LP vertex x there is objective c such that x is unique optimal. (Prove it!)
- Since such a c satisfies no-negative-cycles property, claim on previous slide shows that x is integral.

A stronger statement is true:

Integrality of Shortest Path LP

The vertices of the polyhedral feasible region are precisely the indicator vectors of simple paths in G.

More generally

To show a polyhedron's vertices integral, it suffices to show that there is an integral optimal for any objective which admits an optimal solution.

Outline

- Introduction
- Shortest Path
- 3 Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

Ford's Algorithm

Primal LP

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \\ & \sum_{e \to v} x_e - \sum_{v \to e} x_e = \delta_v, \quad \forall v \in V. \\ & x_e \ge 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Dual LP

 $\begin{aligned} &\max \, y_t - y_s \\ &\text{s.t.} \\ &y_v - y_u \leq c_e, \quad \forall e = (u,v) \in E. \end{aligned}$

For convenience, add (s, v) of length ∞ when one doesn't exist.

Ford's Algorithm

- **1** Initialize $y_s = 0$, and $y_v = c_{(s,v)}$ for $v \neq s$
- 2 Initialize tree rooted at s with parent(v) = s for $v \neq s$
- **3** While some dual constraint is violated, $y_v > y_u + c_e$ for e = (u, v)
 - Set parent(v) = u (To get from s to v, take shortcut through u)
 - Set $y_v = y_u + c_e$
- lacktriangle Output the path from s to t in the tree

Lemma (Loop Invariant 1)

Assuming no negative cycles, path P from s to t in our tree has length at most $y_t - y_s$. (Hence also $y_t - y_s \ge distance(s,t)$)

Easy proof by induction (exercise)

Lemma (Loop Invariant 1)

Assuming no negative cycles, path P from s to t in our tree has length at most $y_t - y_s$. (Hence also $y_t - y_s \ge distance(s,t)$)

Interpretation

- \bullet Ford's algorithm maintains an (initially infeasible) dual y
- ullet Also maintains feasible primal P of length \leq dual objective y_t-y_s
- Iteratively "fixes" dual y, tending towards feasibility
- Once y is feasible, weak duality implies P optimal.

Lemma (Loop Invariant 1)

Assuming no negative cycles, path P from s to t in our tree has length at most $y_t - y_s$. (Hence also $y_t - y_s \ge distance(s,t)$)

Interpretation

- ullet Ford's algorithm maintains an (initially infeasible) dual y
- Also maintains feasible primal P of length \leq dual objective y_t-y_s
- ullet Iteratively "fixes" dual y, tending towards feasibility
- ullet Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)

If Ford's algorithm terminates, then it outputs a shortest path from \boldsymbol{s} to \boldsymbol{t}

Lemma (Loop Invariant 1)

Assuming no negative cycles, path P from s to t in our tree has length at most $y_t - y_s$. (Hence also $y_t - y_s \ge distance(s,t)$)

Interpretation

- ullet Ford's algorithm maintains an (initially infeasible) dual y
- \bullet Also maintains feasible primal P of length \leq dual objective y_t-y_s
- Iteratively "fixes" dual y, tending towards feasibility
- ullet Once y is feasible, weak duality implies P optimal.

Correctness follows from loop invariant 1 and termination condition.

Theorem (Correctness)

If Ford's algorithm terminates, then it outputs a shortest path from s to t

Algorithms of this form, that output a matching primal and dual solution, are called Primal-Dual Algorithms.

Termination

Lemma (Loop Invariant 2)

Assuming no negative cycles, y_v is the length of some simple path from s to v.

Easy proof by induction (omitted)

Termination

Lemma (Loop Invariant 2)

Assuming no negative cycles, y_v is the length of some simple path from s to v.

Theorem (Termination)

When the graph has no negative cycles, Ford's algorithm terminates in a finite number of steps.

Proof

- ullet The graph has a finite number N of simple paths
- By loop invariant 2, every dual variable y_v is the length of some simple path.
- Dual variables are nonincreasing throughout algorithm, and one decreases each iteration.
- There can be at most nN iterations.

Observation: Single source shortest paths

Ford's Algorithm

- Initialize $y_s = 0$, and $y_v = c_{(s,v)}$ for $v \neq s$
- 2 Initialize tree rooted at s with parent(v) = s for $v \neq s$
- **3** While some dual constraint is violated, $y_v > y_u + c_e$ for e = (u, v)
 - Set parent(v) = u (To get from s to v, take shortcut through u)
 - Set $y_v = y_u + c_e$
- Output the path from s to t in the tree

Observation

Algorithm does not depend on t till very last step. So essentially solves the single-source shortest path problem. i.e. finds shortest paths from s to all other vertices v.

Bellman-Ford Algorithm

The following algorithm fixes an (arbitrary) order on edges E

Bellman-Ford Algorithm

- Initialize $y_s = 0$, and $y_v = c_{(s,v)}$ for $v \neq s$
- 2 Initialize tree rooted at s with parent(v) = s for $v \neq s$
- $oldsymbol{3}$ While y is infeasible for the dual
 - ullet For e=(u,v) in order, if $y_v>y_u+c_e$ then
 - Set parent(v) = u (To get from s to v, take shortcut through u)
 - Set $y_v = y_u + c_e$
- Output the path from s to t in the tree.

Bellman-Ford Algorithm

The following algorithm fixes an (arbitrary) order on edges E

Bellman-Ford Algorithm

- **1** Initialize $y_s = 0$, and $y_v = c_{(s,v)}$ for $v \neq s$
- 2 Initialize tree rooted at s with parent(v) = s for $v \neq s$
- $oldsymbol{3}$ While y is infeasible for the dual
 - For e = (u, v) in order, if $y_v > y_u + c_e$ then
 - Set parent(v) = u (To get from s to v, take shortcut through u)
 - Set $y_v = y_u + c_e$
- Output the path from s to t in the tree.

Note

Correctness follows from the correctness of Ford's Algorithm.

Runtime

Theorem

Bellman-Ford terminates after n-1 scans through E, for a total runtime of O(nm).

Runtime

Theorem

Bellman-Ford terminates after n-1 scans through E, for a total runtime of O(nm).

Follows immediately from the following Lemma

Lemma

After k scans through E, vertices v with a shortest s-v path consisting of $\leq k$ edges are correctly labeled. (i.e., $y_v = distance(s,v)$)

Proof is by induction, and you can find it in any undergrad algorithms textbook (omitted)

A Note on Negative Cycles

Question

What if there are negative cycles? What does that say about LP? What about Ford's algorithm?

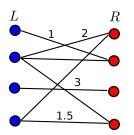
Outline

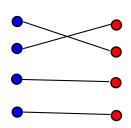
- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G=(V,E), with $V=L\bigcup R$, and weights w_e on edges e, find a maximum weight matching.

- Matching: a set of edges covering each node at most once
- ullet We use n and m to denote |V| and |E|, respectively.
- Equivalent to maximum weight / minimum cost perfect matching.

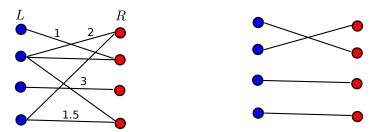




The Max-Weight Bipartite Matching Problem

Given a bipartite graph G=(V,E), with $V=L\bigcup R$, and weights w_e on edges e, find a maximum weight matching.

- Matching: a set of edges covering each node at most once
- We use n and m to denote |V| and |E|, respectively.
- Equivalent to maximum weight / minimum cost perfect matching.



Our focus will be less on algorithms, and more on using polyhedral interpretation to gain insights about a combinatorial problem.

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

$$\begin{aligned} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ & x_e \geq 0, & \forall e \in E. \end{aligned}$$

An LP Relaxation of Bipartite Matching

Bipartite Matching LP

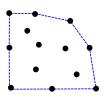
$$\begin{aligned} \max \sum_{e \in E} w_e x_e \\ \text{s.t.} \\ \sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ x_e \geq 0, & \forall e \in E. \end{aligned}$$

- Feasible region is a polytope \mathcal{P} (i.e. a bounded polyhedron)
- This is a relaxation of the bipartite matching problem
 - \bullet Integer points in ${\cal P}$ are the indicator vectors of matchings.

 $\mathcal{P} \cap \mathbb{Z}^m = \{x_M : M \text{ is a matching}\}$

Integrality of the Bipartite Matching Polytope

$$\begin{split} &\sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ &x_e \geq 0, & \forall e \in E. \end{split}$$

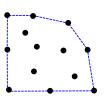


Theorem

The feasible region of the matching LP is the convex hull of indicator vectors of matchings.

 $\mathcal{P} = \mathsf{convexhull} \{x_M : M \text{ is a matching}\}$

Integrality of the Bipartite Matching Polytope



Theorem

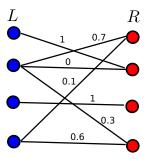
The feasible region of the matching LP is the convex hull of indicator vectors of matchings.

 $\mathcal{P} = \mathsf{convexhull} \{x_M : M \text{ is a matching}\}$

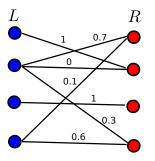
Note

- This is the strongest guarantee you could hope for of an LP relaxation of a combinatorial problem
- Solving LP is equivalent to solving the combinatorial problem

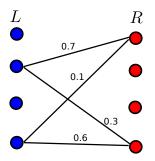
• Stronger guarantee than shortest path LP from last time



• Suffices to show that all vertices are integral (why?)

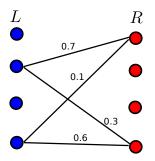


- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.

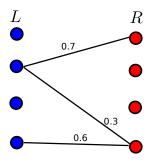


- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.

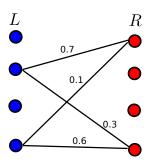
• Let H be the subgraph formed by edges with $x_e \in (0,1)$



- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.
- Let H be the subgraph formed by edges with $x_e \in (0,1)$
- *H* either contains a cycle, or else a maximal path which is simple.

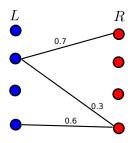


- Suffices to show that all vertices are integral (why?)
- Consider $x \in \mathcal{P}$ non-integral, we will show that x is not a vertex.
- Let H be the subgraph formed by edges with $x_e \in (0,1)$
- H either contains a cycle, or else a maximal path which is simple.



Case 1: Cycle C

- Let $C = (e_1, \ldots, e_k)$, with k even
- There is $\epsilon>0$ such that adding $\pm\epsilon(+1,-1,\dots,+1,-1)$ to x_C preserves feasibility
- x is the midpoint of $x + \epsilon(+1, -1, ..., +1, -1)_C$ and $x \epsilon(+1, -1, ..., +1, -1)_C$, so x is not a vertex.



Case 2: Maximal Path P

- Let $P = (e_1, \ldots, e_k)$, going through vertices v_0, v_1, \ldots, v_k
- By maximality, e_1 is the only edge of v_0 with non-zero x-weight Similarly for e_k and v_k .
- There is $\epsilon>0$ such that adding $\pm\epsilon(+1,-1,\dots,?1)$ to x_P preserves feasibility
- x is the midpoint of $x + \epsilon(+1, -1, ..., ?1)_P$ and $x \epsilon(+1, -1, ..., ?1)_P$, so x is not a vertex.

 The analogous statement holds for the perfect matching LP above, by an essentially identical proof.

$$\begin{split} \sum_{e \in \delta(v)} x_e &= 1, \quad \forall v \in V. \\ x_e &\geq 0, \qquad \quad \forall e \in E. \end{split}$$

- The analogous statement holds for the perfect matching LP above, by an essentially identical proof.
- When bipartite graph is complete and has the same # of nodes on either side, can be equivalently phrased as a property of matrices.

$$\sum_{e \in \delta(v)} x_e = 1, \quad \forall v \in V.$$
$$x_e \ge 0, \qquad \forall e \in E.$$

- The analogous statement holds for the perfect matching LP above, by an essentially identical proof.
- When bipartite graph is complete and has the same # of nodes on either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem

The set of $n \times n$ doubly stochastic matrices is the convex hull of $n \times n$ permutation matrices.

$$\left(\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right) = 0.5 \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 0.5 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$\begin{split} \sum_{e \in \delta(v)} x_e &= 1, \quad \forall v \in V. \\ x_e &\geq 0, \qquad \quad \forall e \in E. \end{split}$$

- The analogous statement holds for the perfect matching LP above, by an essentially identical proof.
- When bipartite graph is complete and has the same # of nodes on either side, can be equivalently phrased as a property of matrices.

Birkhoff Von-Neumann Theorem

The set of $n \times n$ doubly stochastic matrices is the convex hull of $n \times n$ permutation matrices.

$$\left(\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right) = 0.5 \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + 0.5 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

By Caratheodory's theorem, we can express every doubly stochastic matrix as a convex combination of n^2+1 permutation matrices.

We will see later: this decomposition can be computed efficiently!

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a more general tool

Definition

A matrix A is Totally Unimodular if every square submatrix has determinant 0, +1 or -1.

Theorem

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, and b is an integer vector, then $\{x : Ax \leq b, x \geq 0\}$ has integer vertices.

Total Unimodularity

We could have proved integrality of the bipartite matching LP using a more general tool

Definition

A matrix A is Totally Unimodular if every square submatrix has determinant 0, +1 or -1.

Theorem

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular, and b is an integer vector, then $\{x : Ax \leq b, x \geq 0\}$ has integer vertices.

Proof

- Non-zero entries of vertex x are solution of A'x' = b' for some nonsingular square submatrix A' and corresponding sub-vector b'
- Cramer's rule:

$$x_i' = \frac{\det(A_i'|b')}{\det A'}$$

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$
- If A' has column with single 1, then holds by induction.

$$\sum_{e \in \delta(v)} x_e \le 1, \quad \forall v \in V.$$

Claim

The constraint matrix of the bipartite matching LP is totally unimodular.

Proof

- $A_{ve} = 1$ if e incident on v, and 0 otherwise.
- By induction on size of submatrix A'. Trivial for base case k=1.
- If A' has all-zero column, then $\det A' = 0$
- If A' has column with single 1, then holds by induction.
- If all columns of A' have two 1's,
 - Partition rows (vertices) into L and R
 - Sum of rows L is $(1, 1, \ldots, 1)$, similarly for R

• A' is singular, so $\det A' = 0$.

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- 5 Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

Primal and Dual LPs

Primal LP

$$\begin{aligned} &\max \sum_{e \in E} w_e x_e \\ &\text{s.t.} \\ &\sum_{e \in \delta(v)} x_e \leq 1, & \forall v \in V. \\ &x_e \geq 0, & \forall e \in E. \end{aligned}$$

Dual LP

$$\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \ge w_e, \quad \forall e = (u, v) \in E. \\ & y_v \succeq 0, \qquad \forall v \in V. \end{aligned}$$

- Primal interpertation: Player 1 looking to build a set of projects
 - Each edge e is a project generating "profit" w_e
 - Each project e = (u, v) needs two resources, u and v
 - Each resource can be used by at most one project at a time
 - Must choose a profit-maximizing set of projects

Primal and Dual LPs

Primal LP

$$\begin{aligned} &\max \sum_{e \in E} w_e x_e \\ &\text{s.t.} \\ &\sum_{e \in \delta(v)} x_e \leq 1, \qquad \forall v \in V. \\ &x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

Dual LP

```
\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq w_e, \quad \forall e = (u, v) \in E. \\ & y_v \succeq 0, \qquad \forall v \in V. \end{aligned}
```

- Primal interpertation: Player 1 looking to build a set of projects
 - Each edge e is a project generating "profit" w_e
 - Each project e = (u, v) needs two resources, u and v
 - Each resource can be used by at most one project at a time
 - Must choose a profit-maximizing set of projects
- Dual interpertation: Player 2 looking to buy resources
 - Offer a price y_v for each resource.
 - Prices should incentivize player 1 to sell resources
 - Want to pay as little as possible.

Vertex Cover Interpretation

Primal LP

$$\begin{aligned} &\max \sum_{e \in E} x_e \\ &\text{s.t.} \\ &\sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ &x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

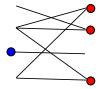
Dual LP

$$\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq 1, \quad \forall e = (u, v) \in E. \\ & y_v \succeq 0, \quad \forall v \in V. \end{aligned}$$

When edge weights are 1, binary solutions to dual are vertex covers

Definition

 $C \subseteq V$ is a vertex cover if every $e \in E$ has at least one endpoint in C



Vertex Cover Interpretation

Primal LP

$$\begin{aligned} \max & \sum_{e \in E} x_e \\ \text{s.t.} & \\ & \sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ & x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

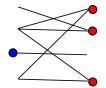
Dual LP

$$\begin{aligned} &\min \sum_{v \in V} y_v \\ &\text{s.t.} \\ &y_u + y_v \geq 1, \quad \forall e = (u, v) \in E. \\ &y_v \succeq 0, \quad \forall v \in V. \end{aligned}$$

When edge weights are 1, binary solutions to dual are vertex covers

Definition

 $C\subseteq V$ is a vertex cover if every $e\in E$ has at least one endpoint in C



- Dual is a relaxation of the minimum vertex cover problem for bipartite graphs.
- By weak duality: min-vertex-cover ≥ max-cardinality-matching

König's Theorem

Primal LP

 $\begin{aligned} \max & \sum_{e \in E} x_e \\ \text{s.t.} & & \\ & \sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V. \\ & x_e \geq 0, & \forall e \in E. \end{aligned}$

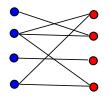
Dual LP

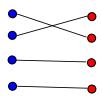
 $\begin{aligned} & \min \sum_{v \in V} y_v \\ & \text{s.t.} \\ & y_u + y_v \geq 1, \quad \forall e = (u,v) \in E. \\ & y_v \succeq 0, \quad \forall v \in V. \end{aligned}$

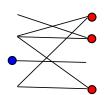
König's Theorem

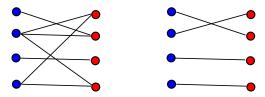
In a bipartite graph, the cardinality of the maximum matching is equal to the cardinality of the minimum vertex cover.

i.e. the dual LP has an integral optimal solution

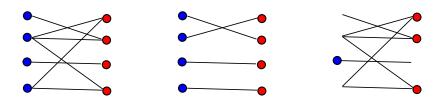




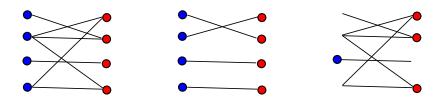




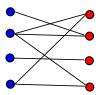
- Let M(G) be a max cardinality of a matching in G
- ullet Let C(G) be min cardinality of a vertex cover in G
- We already proved that $M(G) \leq C(G)$
- We will prove $C(G) \leq M(G)$ by induction on number of nodes in G.

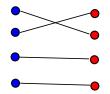


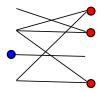
• Let y be an optimal dual, and v a vertex with $y_v > 0$



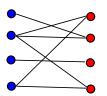
- Let y be an optimal dual, and v a vertex with $y_v > 0$
- By integrality of matching LP, and complementary slackness, every maximum cardinality matching must match v.

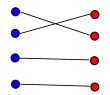


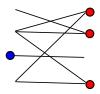




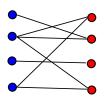
- Let y be an optimal dual, and v a vertex with $y_v > 0$
- By integrality of matching LP, and complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$

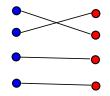


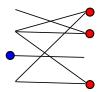




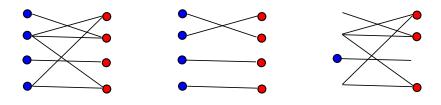
- Let y be an optimal dual, and v a vertex with $y_v > 0$
- By integrality of matching LP, and complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- By inductive hypothesis, $C(G \setminus v) = M(G \setminus v) = M(G) 1$







- Let y be an optimal dual, and v a vertex with $y_v > 0$
- ullet By integrality of matching LP, and complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- By inductive hypothesis, $C(G \setminus v) = M(G \setminus v) = M(G) 1$
- $C(G) \le C(G \setminus v) + 1 = M(G).$



- Let y be an optimal dual, and v a vertex with $y_v > 0$
- By integrality of matching LP, and complementary slackness, every maximum cardinality matching must match v.
 - $M(G \setminus v) = M(G) 1$
- By inductive hypothesis, $C(G \setminus v) = M(G \setminus v) = M(G) 1$
- $C(G) \le C(G \setminus v) + 1 = M(G).$

Note: Could have proved the same using total unimodularity

Consequences of König's Theorem

 Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa

Consequences of König's Theorem

- Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa
- Like maximum cardinality matching, minimum cardinality vertex cover in bipartite graphs can be formulated as an LP, and solved in polynomial time

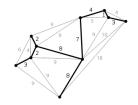
Consequences of König's Theorem

- Vertex covers can serve as a certificate of optimality for bipartite matchings, and vice versa
- Like maximum cardinality matching, minimum cardinality vertex cover in bipartite graphs can be formulated as an LP, and solved in polynomial time
- The same is true for the maximum independent set problem in bipartite graphs.
 - C is a vertex cover iff $V \setminus C$ is an independent set.

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut

The Minimum Cost Spanning Tree Problem



Given a connected undirected graph G = (V, E), and costs c_e on edges e, find a minimum cost spanning tree of G.

- Spanning Tree: an acyclic set of edges connecting every pair of nodes
- When graph is disconnected, can search for min-cost spanning forest instead

• We use n and m to denote |V| and |E|, respectively.

Kruskal's Algorithm

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm

- Sort edges in increasing order of cost
- $oldsymbol{3}$ For each edge e in order
 - if $T \bigcup e$ is acyclic, add e to T.

Kruskal's Algorithm

The minimum spanning tree problem can be solved efficiently by a simple greedy algorithm

Kruskal's algorithm

- Sort edges in increasing order of cost
- $oldsymbol{3}$ For each edge e in order
 - if $T \cup e$ is acyclic, add e to T.
 - Proof of correctness is via a simple exchange argument.
 - Generalizes to Matroids

MST LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for } X \subset V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

MST LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for } X \subset V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

MST LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for } X \subset V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

 Proof by finding a dual solution with cost matching the output of Kruskal's algorithm (See KV book)

MST LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for } X \subset V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

Theorem

The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm (See KV book)
- Generalizes to Matroids

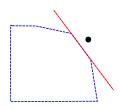
MST LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \in E} x_e = n-1 \\ & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for } X \subset V. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

Theorem

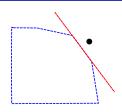
The feasible region of the above LP is the convex hull of spanning trees.

- Proof by finding a dual solution with cost matching the output of Kruskal's algorithm (See KV book)
- Generalizes to Matroids
- Note: this LP has an exponential (in n) number of constraints



Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^m$ is an algorithm which takes as input $x \in \mathbb{R}^m$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.



Definition

A separation oracle for a linear program with feasible set $\mathcal{P} \subseteq \mathbb{R}^m$ is an algorithm which takes as input $x \in \mathbb{R}^m$, and either certifies that $x \in \mathcal{P}$ or identifies a violated constraint.

Theorem

A linear program with a polynomial number of variables is solvable in polynomial time if and only if it admits a polynomial time separation oracle (modulo some technicalities)

Follows from the ellipsoid method, which we will see next week.

Primal LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for nonempty } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

• Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists

Primal LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for nonempty } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding nonempty $X\subset V$ with $\sum_{e\subseteq X}x_e>|X|-1$, if one exists
 - Equivalently $|X| \sum_{e \subset X} x_e < 1$

Primal LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for nonempty } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding nonempty $X \subset V$ with $\sum_{e \subseteq X} x_e > |X| 1$, if one exists
 - Equivalently $|X| \sum_{e \subseteq X} x_e < 1$
- \bullet In turn, this reduces to minimizing $|X| \sum_{e \subseteq X} x_e$ over $X \subset V$

Primal LP

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X|-1, \quad \text{for nonempty } X \subset V. \\ & \sum_{e \in E} x_e = n-1 \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

- Given $x \in \mathbb{R}^m$, separation oracle must find a violated constraint if one exists
- Reduces to finding nonempty $X \subset V$ with $\sum_{e \subseteq X} x_e > |X| 1$, if one exists
 - Equivalently $|X| \sum_{e \subset X} x_e < 1$
- In turn, this reduces to minimizing $|X| \sum_{e \subset X} x_e$ over $X \subset V$

We will see how to do this efficiently later in the class, using submodular minimization

Application of Fractional Spanning Trees

- The LP formulation of spanning trees has many applications
- We will look at one contrived yet simple application that shows the flexibility enabled by polyhedral formulation

Fault-Tolerant MST

- Your tree is an overlay network on the internet used to transmit data
- A hacker is looking to attack your tree, by knocking off one of the edges of the graph
- You can foil the hacker by choosing a random tree
- The hacker knows the algorithm you use, but not your random coins

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \leq p, \qquad \qquad \text{for } e \in E. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

- Above LP can be solved efficiently
- If feasible, can interpret resulting fractional spanning tree x as a recipe for a probability distribution over trees T
 - $e \in T$ with probability x_e
 - Since $x_e \leq p$, no edge is in the tree with probability more than p.

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \leq p, \qquad \qquad \text{for } e \in E. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

• Given feasible solution x, such a probability distribution exists!

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \leq p, \qquad \qquad \text{for } e \in E. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

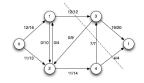
- Given feasible solution x, such a probability distribution exists!
 - x is in the (original) MST polytope
 - Caratheodory's theorem: x is a convex combination of m+1 vertices of MST polytope
 - By integrality of MST polytope: x is the "expectation" of a probability distribution over spanning trees.

```
\begin{array}{ll} \text{minimize} & \sum_{e \in E} c_e x_e \\ \text{subject to} & \sum_{e \subseteq X} x_e \leq |X| - 1, \quad \text{for } X \subset V. \\ & \sum_{e \in E} x_e = n - 1 \\ & x_e \leq p, \qquad \qquad \text{for } e \in E. \\ & x_e \geq 0, \qquad \qquad \text{for } e \in E. \end{array}
```

- Given feasible solution x, such a probability distribution exists!
 - x is in the (original) MST polytope
 - Caratheodory's theorem: x is a convex combination of m+1 vertices of MST polytope
 - By integrality of MST polytope: x is the "expectation" of a probability distribution over spanning trees.
- Consequence of Ellipsoid algorithm: can compute such a decomposition of x efficiently!

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- 8 Flows
- Max Cut



The Maximum Flow Problem

Given a directed graph G=(V,E) with capacities u_e on edges e, a source node s, and a sink node t, find a maximum flow from s to t respecting the capacities.

$$\begin{array}{ll} \text{maximize} & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ \text{subject to} & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \text{for } v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, & \text{for } e \in E. \\ & x_e \geq 0, & \text{for } e \in E. \end{array}$$

Can be computed either by solving the LP, or by a combinatorial algorithm such as Ford Fulkerson.

Flows 39

max $\sum x_e - \sum x_e$ $e \in \overline{\delta^+}(s)$ $e \in \overline{\delta^-}(s)$ s.t. $\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{vmatrix} y_v - y_u \le z_e, & \forall e = (u, v) \in E. \\ y_s = 0 \end{vmatrix}$ $\forall e \in E.$ $y_t = 1$ $x_e \leq u_e$ $\forall e \in E.$ $z_e \ge 0, \quad \forall e \in E.$ $x_e \geq 0$,

Dual LP (Simplified)

 $\min \sum_{e \in E} u_e z_e$ s.t.

ullet Dual solution describes fraction z_e of each edge to fractionally cut

Flows 40/48

```
max \sum x_e - \sum x_e
         e \in \overline{\delta^+}(s) e \in \overline{\delta^-}(s)
s.t.
\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{vmatrix} y_v - y_u \le z_e, & \forall e = (u, v) \in E. \\ y_s = 0 \\ y_t = 1 \end{vmatrix}
                                                        \forall e \in E. z_e \ge 0, \quad \forall e \in E.
x_e \geq 0,
```

Dual LP (Simplified)

```
\min \sum_{e \in E} u_e z_e
s.t.
```

- Dual solution describes fraction z_e of each edge to fractionally cut
- Dual constraints require that at least 1 edge is cut on every path from s to t.

•
$$\sum_{(u,v)\in P} z_{uv} \ge \sum_{(u,v)\in P} y_v - y_u = y_t - y_s = 1$$

Flows 40/48

max $\sum x_e - \sum x_e$ $e \in \delta^+(s)$ $e \in \overline{\delta^-}(s)$

S.I.
$$\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{cases} y_v - y_u \le z_e, & \forall e = (u, v) \in E. \\ y_s = 0 \end{cases}$$

$$x_e \le u_e,$$
 $\forall e \in E.$ $y_t = 1$ $z_e \ge 0,$ $\forall e \in E.$

Dual LP (Simplified)

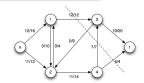
$$\begin{array}{l} \min \, \sum_{e \in E} u_e z_e \\ \text{s.t.} \end{array}$$

$$y_v - y_u \le z_e, \quad \forall e = (u, v) \in E$$

$$y_s - 0$$

 $y_t = 1$

$$z_e \ge 0, \qquad \forall e \in E.$$



• Every integral s-t cut is feasible.

Dual LP (Simplified)

max $\sum x_e - \sum x_e$ $e \in \delta^+(s)$ $e \in \overline{\delta^-}(s)$ s.t.

S.f.
$$\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{vmatrix} y_v - y_u \le z_e, \\ y_s = 0 \end{vmatrix}, \quad \forall e = (u, v) \in E.$$

$$x_e \le u_e,$$
 $\forall e \in E.$ $y_t = 1$ $z_e \ge 0,$ $\forall e \in E.$

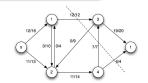
$$\min \sum_{e \in E} u_e z_e$$
 s.t.

 $z_e \geq 0$,

$$y_v - y_u \le z_e, \quad \forall e = (u, v) \in E$$

 $y_s = 0$

 $\forall e \in E$.



- Every integral s-t cut is feasible.
- By weak duality: max flow < minimum cut

40/48

$\max \quad \sum \quad x_e - \quad \sum \quad x_e$ $e \in \delta^+(s)$ $e \in \overline{\delta^-}(s)$

s.t.
$$\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{cases} y_v - y_s \\ y_s = 0 \end{cases}$$
$$x_e \leq u_e, \qquad \forall e \in E. \\ x_e \geq 0, \qquad \forall e \in E. \end{cases}$$

Dual LP (Simplified)

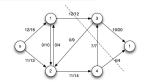
$$\min \sum_{e \in E} u_e z_e$$
 s.t.

s.t.
$$y_v - y_u \le z_e, \quad \forall e = (u, v) \in E.$$

$$y_s = 0$$

$$y_t = 1$$

$$z_e \ge 0, \quad \forall e \in E.$$



- Every integral s-t cut is feasible.
- By weak duality: max flow < minimum cut
- Ford-Fulkerson shows that max flow = min cut

i.e. dual has integer optimal

Flows 40/48

 $x_e \geq 0$,

Dual LP (Simplified)

 $z_e \geq 0$,

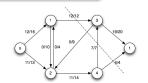
 $\max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e$ s.t.

$$\sum_{e \in \delta^{-}(v)} x_e = \sum_{e \in \delta^{+}(v)} x_e, \qquad \forall v \in V \setminus \{s, t\} \begin{cases} y_v - y \\ y_s = 0 \end{cases}$$

$$x_e \le u_e, \qquad \forall e \in E.$$

$$\begin{aligned} &\min \sum_{e \in E} u_e z_e \\ &\text{s.t.} \\ &y_v - y_u \leq z_e, \qquad \forall e = (u,v) \in E. \\ &y_s = 0 \end{aligned}$$

 $\forall e \in E$.



 $\forall e \in E$.

- Every integral s t cut is feasible.
- By weak duality: max flow < minimum cut
- Ford-Fulkerson shows that max flow = min cut
 - i.e. dual has integer optimal
- Ford-Fulkerson also shows that there is an integral optimal flow when capacities are integer.

Flows 40/48

$$\begin{aligned} & \max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \forall e \in E. \end{aligned}$$

Writing as an LP shows that many generalizations are also tractable

$$\begin{aligned} & \max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \forall v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, & \forall e \in E. \\ & x_e > 0. & \forall e \in E. \end{aligned}$$

Writing as an LP shows that many generalizations are also tractable

• Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$

$$\begin{aligned} & \max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, \qquad \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$
 - minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$
 - Additional constraint: $\sum_{e \in \delta^+(s)} x_e \sum_{e \in \delta^-(s)} x_e = r$

$$\begin{aligned} & \max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, \qquad \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \le x_e \le u_e$
 - minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$
 - Additional constraint: $\sum_{e \in \delta^+(s)} x_e \sum_{e \in \delta^-(s)} x_e = r$

Multiple commodities sharing the network

$$\begin{aligned} & \max \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, \qquad \forall v \in V \setminus \{s,t\} \,. \\ & x_e \leq u_e, \qquad \qquad \forall e \in E. \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{aligned}$$

Writing as an LP shows that many generalizations are also tractable

- Lower and upper bound constraints on flow: $\ell_e \leq x_e \leq u_e$
- minimum cost flow of a certain amount r
 - Objective $\min \sum_{e} c_e x_e$
 - Additional constraint: $\sum_{e \in \delta^+(s)} x_e \sum_{e \in \delta^-(s)} x_e = r$
- Multiple commodities sharing the network
- . . .

Minimum Congestion Flow

You are given a directed graph G=(V,E) with congestion functions $c_e(.)$ on edges e, a source node s, a sink node t, and a desired flow amount r. Find a minimum average congestion flow from s to t.

$$\begin{array}{ll} \text{minimize} & \sum_{e} x_e c_e(x_e) \\ \text{subject to} & \sum_{e \in \delta^+(s)} x_e - \sum_{e \in \delta^-(s)} x_e = r \\ & \sum_{e \in \delta^-(v)} x_e = \sum_{e \in \delta^+(v)} x_e, & \text{for } v \in V \setminus \{s,t\} \,. \\ & x_e \geq 0, & \text{for } e \in E. \end{array}$$

When $c_e(.)$ are polynomials with nonnegative co-efficients, e.g. $c_e(x) = a_e x^2 + b_e x + c_e$ with $a_e, b_e, c_e \geq 0$, this is a (non-linear) convex program.

Flows 42/4

Outline

- Introduction
- Shortest Path
- Algorithms for Single-Source Shortest Path
- Bipartite Matching
- Total Unimodularity
- Duality of Bipartite Matching and its Consequences
- Spanning Trees
- Flows
- Max Cut

The Max Cut Problem

Given an undirected graph G=(V,E), find a partition of V into $(S,V\setminus S)$ maximizing number of edges with exactly one end in S.

maximize $\sum_{(i,j)\in E} \frac{1-x_ix_j}{2}$ subject to $x_i\in\{-1,1\}$, for $i\in V$.

The Max Cut Problem

Given an undirected graph G=(V,E), find a partition of V into $(S,V\setminus S)$ maximizing number of edges with exactly one end in S.

maximize
$$\sum_{(i,j)\in E} \frac{1-x_ix_j}{2}$$
 subject to $x_i\in\{-1,1\}$, for $i\in V$.

Instead of requiring x_i to be on the 1 dimensional sphere, we relax and permit it to be in the n-dimensional sphere, where n = |V|.

Vector Program relaxation

maximize	$\sum_{(i,j)\in E} \frac{1-\langle \vec{v}_i, \vec{v}_j \rangle}{2}$	
subject to	$ \vec{v_i} _2 = 1,$	for $i \in V$.
	$\vec{v}_i \in \mathbb{R}^n$,	for $i \in V$.

SDP Relaxation

- \bullet Recall: A symmetric $n\times n$ matrix Y is PSD iff $Y=V^TV$ for $n\times n$ matrix V
- ullet Equivalently: PSD matrices encode pairwise dot products of columns of V
- When diagonal entries of Y are 1, V has unit length columns
- Recall: Y and V can be recovered from each other efficiently

SDP Relaxation

- \bullet Recall: A symmetric $n\times n$ matrix Y is PSD iff $Y=V^TV$ for $n\times n$ matrix V
- ullet Equivalently: PSD matrices encode pairwise dot products of columns of V
- When diagonal entries of Y are 1, V has unit length columns
- Recall: Y and V can be recovered from each other efficiently

Vector Program relaxation

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j) \in E} \frac{1 - \langle \vec{v}_i, \vec{v}_j \rangle}{2} \\ \text{subject to} & ||\vec{v}_i||_2 = 1, & \text{for } i \in V. \\ & \vec{v}_i \in \mathbb{R}^n, & \text{for } i \in V. \end{array}$$

SDP Relaxation

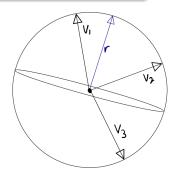
$$\begin{array}{ll} \text{maximize} & \sum_{(i,j) \in E} \frac{1 - Y_{ij}}{2} \\ \text{subject to} & Y_{ii} = 1, \\ & Y \in S^n_{\perp} \end{array} \quad \text{for } i \in V.$$

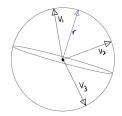
Goemans Williamson Algorithm for Max Cut

- Solve the SDP to get $Y \succeq 0$
- 2 Decompose Y to VV^T
- **3** Draw random vector r on unit sphere
- Place nodes i with $\langle v_i, r \rangle \geq 0$ on one side of cut, the rest on the other side

SDP Relaxation

 $\begin{array}{ll} \text{maximize} & \sum_{(i,j) \in E} \frac{1 - Y_{ij}}{2} \\ \text{subject to} & Y_{ii} = 1 \ \forall i \\ & Y \in S^n_+ \end{array}$



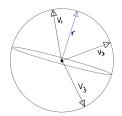


We will prove the following Lemma

Lemma

The random hyperplane cuts each edge (i, j) with probability at least $0.878 \frac{1-Y_{ij}}{2}$

46/48



We will prove the following Lemma

Lemma

The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$

Therefore, by linearity of expectations, and the fact that $OPT_{SDP} > OPT$ (i.e. relaxation).

Theorem

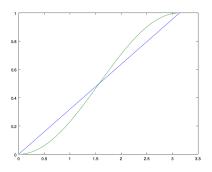
The Goemans Williamson algorithm outputs a random cut of expected size at least 0.878 *OPT*.

We use the following fact

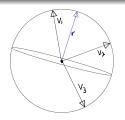
Fact

For all angles $\theta \in [0,\pi]$,

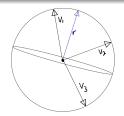
$$\frac{\theta}{\pi} \ge 0.878 \cdot \frac{1 - \cos(\theta)}{2}$$



The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$

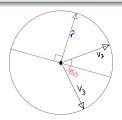


The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$



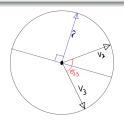
• (i,j) is cut iff $sign\langle r,v_i\rangle \neq sign\langle r,v_j\rangle$

The random hyperplane cuts each edge (i,j) with probability at least $0.878 \frac{1-Y_{ij}}{2}$



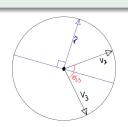
- (i,j) is cut iff $sign\langle r, v_i \rangle \neq sign\langle r, v_j \rangle$
- ullet Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving \widehat{r}
 - Direction of \hat{r} is uniform in the plane

The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$



- (i,j) is cut iff $sign\langle r, v_i \rangle \neq sign\langle r, v_j \rangle$
- Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving \widehat{r}
 - Direction of \hat{r} is uniform in the plane
- Let θ_{ij} be angle between v_i and v_j . Note $Y_{ij} = \langle v_i, v_j \rangle = \cos(\theta_{ij})$

The random hyperplane cuts each edge (i,j) with probability at least $0.878\frac{1-Y_{ij}}{2}$



- (i,j) is cut iff $sign\langle r, v_i \rangle \neq sign\langle r, v_j \rangle$
- ullet Can zoom in on the 2-d plane which includes v_i and v_j
 - Discard component r perpendicular to that plane, leaving r̂
 Direction of r̂ is uniform in the plane
- Let θ_{ij} be angle between v_i and v_j . Note $Y_{ij} = \langle v_i, v_j \rangle = \cos(\theta_{ij})$
- \widehat{r} cuts (i, j) w.p.

$$\frac{2\theta_{ij}}{2\pi} = \frac{\theta_{ij}}{\pi} \ge 0.878 \frac{1 - \cos\theta_{ij}}{2} = 0.878 \frac{1 - Y_{ij}}{2}$$