CS675: Convex and Combinatorial Optimization
Fall 2023

Duality of Convex Optimization Problems

Instructor: Shaddin Dughmi



0 The Lagrange Dual Problem



Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)
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Recall: Optimization Problem in Standard Form

minimize  fo(x)
subjectto  fi(x) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

@ For convex optimization problems in standard form, f; is convex
and h; is affine.

@ Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next
We will develop duality theory for convex optimization problems,
generalizing linear programming duality.
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx
subjectto Az <b
x>0

—minimize —cTz
subjectto Axr—-b6=<0
—x =<0
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize cTx
subjectto Az <b
x>0

—minimize —cTz
subjectto Axr—-b6=<0
—x =<0
Along the way, we will recover the following standard form dual
minimize  y7bh
subjectto ATy > ¢
y>=0
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The Lagrangian

minimize  fy(z)
subjectto fi(x) <0, fori=1,...,m.

Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective. J
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The Lagrangian

minimize  fo(z)
subjectto  fi(r) <
hi(z) =

0, fori=1,...,m.
0, fori=1,... k.
Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective.

v

The Lagrangian Function
k
L(z,\v) —l—Z)\ fi(z —i—Zl/ihi(at)
=1

@ )\, is Lagrange Multiplier for i’th inequality constraint
e Required to be nonnegative

@ y; is Lagrange Multiplier for i’th equality constraint
o Allowed to be of arbitrary sign
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The Lagrange Dual Function

minimize  fo(x)

subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.
The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J
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The Lagrange Dual Function

minimize  fy(z)
subjectto fi(z) <0, fori=1,...,m.
hi(x) =0, fori=1,... k.

The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints J

The Lagrange Dual Function
k
g\, v) :xing)L(:c,)\,V) = mf ( -I—Z)\ fi(z Z W Z(x))

=1

o

@ Observe: g is a concave function of the Lagrange multipliers

@ We will see: Its quite common for the Lagrange dual to be
unbounded (—oo) for some A and v

@ By convention, domain of g is (A, v) s.t. g(A\,v) > —c0

TheTagrange Dual Problem
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C— )\Q)Tl' - )\.{b
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—x =<0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C — )\Q)TCL' - )\.{b
And the Lagrange Dual
g(A\) =inf L(x, \)

. —0o0 ifAT)\l—C—)\Q%O
Tl =ATh AN —e— =0
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Langrange Dual of LP

minimize —cTz
subjectto Az —b=<0
—z =0
First, the Lagrangian function

L(z,\) = —cTz + A\ (Az — b) — Nz
== (AT)\l — C — )\Q)TCL' - )\.{b
And the Lagrange Dual
g(A\) =inf L(x, \)

. —0o0 ifAT)\l—C—)\Q%O
Tl =ATh AN —e— =0

So we restrict the domain of g to A satisfying ATA; —c— Xy =0
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ;E%L(:p A\ V) = 1nf ( ) + Z)\ fi(z) + ;%M(@)
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = ;E%L(w A\ V) = 1nf ( ) + Z)\ fi(z) + ;%M(@)

g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function

k
g\ v) = éggL(x A\ V) = 1nf ( ) + Z)\ fi(z) + ;%M(@)

g(\,v) is a lowerbound on OPT (primal) for every A = 0 and v € R¥.

@ Every primal feasible x incurs nonpositive penalty by L(z, A, v)
@ Therefore, L(x*, \,v) < fo(z*)
@ So g(\,v) < fo(z*) = OPT(Primal)
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Interpretation: “Soft” Lower Bound

min Jo(x)
subjectto fi(x) <0, fori=1,...,m.
hi(z) =0, fori=1,... k.

The Lagrange Dual Function
k
g\ v) = égf L(z,\,v) = 1nf ( ) + Z)\ fi(z) + ;%M(@)

v

Interpretation

@ A “hard” feasibility constraint can be thought of as imposing a
penalty of +cc if violated, and a penalty/reward of 0 if satisfied

@ Lagrangian imposes a “soft” linear penalty for violating a
constraint, and a reward for slack

@ Lagrange dual finds the optimal subject to these soft constraints
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo(z) é;f :

subjectto  fi(xz) <0 Nott=oy—— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an z such that f1(z) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}

@ g(\) =inf{du+t : (u,t) € G}
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize  fo(z) é 1

subjectto  fi(xz) <0 Nott=oy—— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an z such that f1(z) = v and fo(z) =t
@ p* =inf{t: (u,t) € G,u <0}
@ g(\) =inf{du+t : (u,t) € G}
@ \u+t = g()\)is a supporting hyperplane to G pointing northeast
@ Must intersect vertical axis below p*
@ Therefore g(\) < p*

The Lagrange Dual Problem 7/25



The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal)
implied by the Lagrange dual function

Mg+t = g A2) G

. Mau+t=g(A*)
maximize g(\,v) ' ”

i uti=glh d*
subjectto A >0 Akt = g(M)

@ Note: this is a convex optimization problem, regardless of whether
primal problem was convex

@ By convention, sometimes we add “dual feasibility” constraints to
impose “nontrivial” lowerbounds (i.e. g(\,v) > —o0)

@ (\*,v*) solving the above are referred to as the dual optimal

solution
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Langrange Dual Problem of LP

maximize cTx
subjectto Az <b
x>0

—minimize —c'z
subjectto Az —b=<0
-z =<0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA; — ¢ — Xy = 0.

g(A) = —AJb
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Langrange Dual Problem of LP

maximize cTx
subjectto Az <b
x>0

—minimize —c'z
subjectto Az —b=<0
-z =<0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA; — ¢ — Xy = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

—maximize —AJb
subjectto ATA; —c— Xy =0

A=0

The Lagrange Dual Problem 9/25



Langrange Dual Problem of LP

meé)gmlze j$< ) —minimize  —cTz
subjectto Az < subjectto Az —b =<0
x>0
-z =<0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA; — ¢ — Xy = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

—maximize —AJb
subject to W
AT\ = ¢
A-0
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Langrange Dual Problem of LP

meé)gmlze j$< ) —minimize  —cTz
subjectto Az < subjectto Az —b =<0
x>0
-z =<0

Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain ATA; — ¢ — Xy = 0.

g(A) = —AJb

The Lagrange dual problem can then be written as

minimize  yTb —maximize —\]b
subjectto ATy = ¢ subject to W
Yy = 0 AT)\l ~C
A>=0
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Another Example: Conic Optimization Problem

minimize cTz
subjectto Az =1b
re K

@ z € K can equivalently be written as 2Tx < 0, Vz € K°

L(z,\,v)=cTz+ VT (Ax —b) Z)\Z 2T
zeK°
=(c—ATv+ Z Ay 2)Te +vTh
zeK®°
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Another Example: Conic Optimization Problem

minimize cTz
subjectto Az =1b
re K

@ z € K can equivalently be written as 2Tx < 0, Vz € K°

L(z,\,v)=cTz+ VT (Ax —b) Z)\Z 2T
zeK®°
=(c—ATv+ Z Ay 2)Te +vTh
z€EK®°

@ Can think of A > 0 as choosing some s € K°

L(z,s,v) =(c—ATv +s)Tx + v
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Another Example: Conic Optimization Problem

minimize cTz
subjectto Az =1b
re K

@ z € K can equivalently be written as 2Tx < 0, Vz € K°

L(z,\,v)=cTz+ VT (Ax —b) Z)\Z 2T
zeK®°
=(c—ATv+ Z Ay 2)Te +vTh
z€EK®°

@ Can think of A > 0 as choosing some s € K°
L(z,s,v) =(c—ATv +s)Tx + v

@ Lagrange dual function g(s, v) is bounded when coefficient of z is
zero, in which case it has value vTb
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Another Example: Conic Optimization Problem

minimize cTz
subjectto Az =1b
re K

@ z € K can equivalently be written as 2Tx < 0, Vz € K°

maximize v7b
subjectto ATv —ce K°

L(z,\,v)=cTz+ VT (Ax —b) Z)\Z 2T
zeK®°
=(c—ATv+ Z Ay 2)Te +vTh
z€EK®°

@ Can think of A > 0 as choosing some s € K°
L(z,s,v) =(c—ATv +s)Tx + v

@ Lagrange dual function g(s, v) is bounded when coefficient of z is
zero, in which case it has value vTb
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@ Duaiity



Weak Duality

Primal Problem

min fo(z)

s.t.

fz( )go Vi=1,...

Duality

Dual Problem

max g(A, v)
s.t.
A=0
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Weak Duality

Primal Problem

Dual Problem

min fo(x)

ot ;ntax g\, v)

fi(z) <0, Vi=1,...,m. )\“}0

hi(x) =0, Vi=1,..k -

: Agu +t = g(Az) G
Weak Duallty Nutt=g(h) >
yd

OPT(dual) < OPT(primal). Nt t= g(h) &

@ We have already argued holds for every optimization problem
@ Duality Gap: difference between optimal dual and primal values
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Recall: Geometric Interpretation of Weak Duality
g
minimize  fo(z) ;p.

subjectto  fi(x) <0 Nott=oy—— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}
@ g(\) =inf{du+t : (u,t) € G}
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Recall: Geometric Interpretation of Weak Duality
g
minimize  fo(z) ;p,

subjectto  fi(x) <0 Nott=oy—— |

@ Let G be attainable constraint/objective function value tuples
e i.e. (u,t) € Gifthereis an x such that fi(z) = v and fo(z) =t

@ p* =inf{t: (u,t) € G,u <0}

@ g(A) =inf{ u+t: (ut) €G}

The equation Au + ¢t = g()\) defines a supporting hyperplane to G,
intersecting ¢ axis at g(\) < p*.
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Strong Duality

Strong Duality
We say strong duality holds if OPT'(dual) = OPT (primal).

@ Equivalently: there exists a setting of Lagrange multipliers so that
g(A,v) gives a tight lowerbound on primal optimal value.
@ In general, does not hold for non-convex optimization problems
@ Usually, but not always, holds for convex optimization problems.
o Mild assumptions, such as Slater’s condition, needed.
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Geometric Proof of Strong Duality

minimize  fo(z)
subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G

e i.e. (u,t) € Aifthereis an x such that f1(z) <wand fo(z) <t
@ p*=inf{t: (0,t) € A}
@ g(\) =inf{du+t : (u,t) e A}
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Geometric Proof of Strong Duality

minimize  fo(x)
subjectto  fi(z) <0

X+t = gA) .77

(0.glA))

@ Let A be everything northeast (i.e. “worse”) than G

e i.e. (u,t) € Aifthereis an x such that f1(z) <wand fo(z) <t
@ p*=inf{t: (0,t) € A}
@ g(\) =inf{du+t : (u,t) e A}

The equation \u + t = g(\) defines a supporting hyperplane to A,
intersecting ¢ axis at g(\) < p*.
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Geometric Proof of Strong Duality

minimize  fo(x)
subjectto  fi(z) <0

When fy and f; are convex, A is convex. \
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subjectto  fi(x) <0

When f, and f; are convex, A is convex.

@ Assume (u,t) and (u/,t') are in A
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Geometric Proof of Strong Duality

minimize  fo(x)
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

@ Assume (u,t) and (u/,t') are in A
@ dx, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z")) < (W, t').
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Geometric Proof of Strong Duality

minimize  fo(x)
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

@ Assume (u,t) and (u/,t') are in A
@ dx, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z')) < (W, t').
@ By Jensen’s inequality

(fi(0z+(1—-0)2"), fo(Ox+(1—0)a")) = (Qu+(1—0)u',6t+(1—06)t')
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Geometric Proof of Strong Duality

minimize  fo(x)
subjectto  fi(x) <0

When f, and f; are convex, A is convex.

@ Assume (u,t) and (u/,t') are in A
@ dx, 2’ with (f1(z), fo(z)) < (u,t) and (f1(z'), fo(z')) < (W, t').
@ By Jensen’s inequality

(fi(0z+(1—-0)2"), fo(Ox+(1—0)a")) = (Qu+(1—0)u',6t+(1—06)t')

@ Therefore, segment connecting (u,t) and (v/,¢') also in A.

Duality
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Geometric Proof of Strong Duality

minimize  fo(z)

subjectto  fi(z) <0 \¥

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.
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Geometric Proof of Strong Duality

minimize  fo(z)

subjectto  fi(z) <0 ¥

Theorem (Informal)

There is a choice of A so that g(\) = p*. Therefore, strong duality
holds.

@ Recall (0,p*) is on the boundary of A

@ By the supporting hyperplane theorem, there is a supporting
hyperplane to A at (0, p*)

@ Direction of the supporting hyperplane gives us an appropriate A

Duality

10,



| Lied (A little)

minimize  fo(z)

subjectto  fi(z) <0 ¥

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.
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| Lied (A little)

minimize  fo(z)
subjectto  fi(z) <0

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.
@ What if our supporting hyperplane H at (0, p*) is vertical?
e The normal to H is perpendicular to the ¢ axis

@ In this case, no finite A exists such that (), 1) is normal to H.
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| Lied (A little)

minimize  fo(z)
subjectto  fi(z) <0

@ In our proof, we ignored a technicality that can prevent strong
duality from holding.

@ What if our supporting hyperplane H at (0, p*) is vertical?

e The normal to H is perpendicular to the ¢ axis

@ In this case, no finite A exists such that (), 1) is normal to H.

@ Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)
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Violation of Strong Duality

minimize e~ "

subject to % <0
@ Let domain be the regiony > 1
@ Problem is convex, with feasible region given by z = 0
@ Optimalvalueis 1,atz =0andy =1
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Violation of Strong Duality

T

minimize e

subject to :

5 <0

@ Let domain be the regiony > 1

@ Problem is convex, with feasible region given by z = 0

@ Optimalvalueis 1,atz =0andy =1

o A=R2, U({0} x [1,00])

@ Therefore, any supporting hyperplane to A at (0, 1) must be
vertical.

@ Optimal dual value is 0; a duality gap of 1.
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Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.
@ Forces supporting hyperplane to be non-vertical
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Slater’'s Condition

There exists a point z € D where all inequality constraints are strictly
satisfied (i.e. f;(z) < 0). l.e. the optimization problem is strictly
feasible.

@ A sufficient condition for strong duality.
@ Forces supporting hyperplane to be non-vertical

@ Can be weakened to requiring strict feasibility only of non-affine
constraints
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e Optimality Conditions



Recall: Lagrangian Duality

Primal Problem

Dual Problem
;ntm Jolt) max g(\, v)
filx) <0, Vi=1,...,m. it} ;
hi(z) =0, Vi=1,... k. -
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Recall: Lagrangian Duality

Primal Problem

min fo(x)
s.t.
filz) <0, Vi=1,...,m.
hi(z) =0, Vi=1,...,k
A+t = g(Aa)
Weak Duallty Mau+t=g(A)
OPT(dual) < OPT (primal). M+ t= g(Ay)

Dual Problem

max g(\, v)
s.t.
A=0

Optimality Conditions

20/25



Recall: Lagrangian Duality

Primal Problem

Strong Duality
OPT(dual) = OPT (primal).

Optimality Conditions

Dual Problem

max g(\, v)
s.t.
A=0

A
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Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntln fo@) max g(\,v)
o ) s.t.
filz) <0, Vi=1,. xS0

hi(z) =0, Vi=1,. k
e Dual solutions serves as a certificate of optimality

o If fo(x) = g(\, v), and both are feasible, then both are optimal.
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Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntln fo@) max g(\,v)
o ) s.t.
filz) <0, Vi=1,. xS0

hi(z) =0, Vi=1,. k
e Dual solutions serves as a certificate of optimality

o If fo(x) = g(\, v), and both are feasible, then both are optimal.
o If fo(x) — g(A\,v) < ¢, then both are within e of optimality.
o OPT(primal) and OPT(dual) lie in the interval [g(\, v), fo(x)]
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Dual Solution as a Certificate

Primal Problem

Dual Problem
rsntln fo@) max g(\,v)
o ) s.t.
filz) <0, Vi=1,. xS0

hi(x) =0, Vi=1,. k
e Dual solutions serves as a certificate of optimality

o If fo(x) = g(\, v), and both are feasible, then both are optimal.
o If fo(z) — g(\,v) <, then both are within e of optimality.
o OPT(primal) and OPT(dual) lie in the interval [g(\, v), fo(x)]

@ Primal-dual algorithms use dual certificates to recognize
optimality, or bound sub-optimality.
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Implications of Strong Duality

Primal Problem Dual Problem

rSn’ln fole) max g(\, v)
hi(x) =0, Vi=1,...,k. =

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(z, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)
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Implications of Strong Duality

Primal Problem

Dual Problem
min fo(z)
st max g(\, v)
fi(x) <0, Vi=1,...,m. ito
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(z, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)

fo(z™) = g(\*,v*) = min L(x, \*, ")

m k
< L(a*, X, 0%) = fo(a®) + Y A fi(a®) + D viha(®)
i=1 =1
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Implications of Strong Duality
Primal Problem

Dual Problem
rSn’ln fole) max g(\, v)
fi(x) <0, Vi=1,...,m. ito
hi(z) =0, Vi=1,... k. >

If strong duality holds, and z* and (\*, v*) are feasible & optimal, then
@ z* minimizes L(x, \*,v*) over all x.
@ X\ fi(z*)=0foralli=1,...,m. (Complementary Slackness)

A\

Interpretation
@ Lagrange multipliers (\*,v*) “simulate” the primal feasibility
constraints

@ Interpreting \; as the “value” of the i’th constraint, at optimality
only the binding constraints are “valuable”

o Recall economic interpretation of LP
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;n,in fo(z) max g(\,v)
o ) s.t.
filx) <0, Vi=1,...,m.
hi(x) =0, Yi=1,... k. AZ0
KKT Conditions
Suppose the primal problem is convex and defined on an open domain,
and moreover the constraint functions are differentiable everywhere in
the domain. If strong duality holds, then z* and (\*, v*) are optimal iff:
@ z* and (\*,v*) are feasible
@ X! fi(z*) = 0 for all i (Complementary Slackness)

0 . L(z*, N, v*) = fola)+ 0 M fila®)+ 08 v hi(z*) = 0
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min fo(z)
st. ?tax g\ v)

(z) < =
Mo 2o, o1k r=0
KKT Conditions
Suppose the primal problem is convex and defined on an open domain,
and moreover the constraint functions are differentiable everywhere in
the domain. If strong duality holds, then z* and (\*, v*) are optimal iff:
@ z* and (\*,v*) are feasible
@ X! fi(z*) = 0 for all i (Complementary Slackness)

0 . L(z*, N, v*) = fola)+ 0 M fila®)+ 08 v hi(z*) = 0

Why are KKT Conditions Useful?
@ Derive an analytical solution to some convex optimization
problems

@ Gain structural insights
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Example: Equality-constrained Quadratic Program

minimize  2TPz+¢Tz +r
subjectto Az =1b

@ KKT Conditions: Az* =band Px*+q+ ATv* =0
@ Simply a solution of a linear system with variables z* and v*.
@ m + n constraints and m + n variables

Optimality Conditions 24/25



Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer i has budget m;, and there’s one divisible unit of each good.
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.

@ Buyer 7 has budget m;, and there’s one divisible unit of each good.
@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer 7 has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

maximize Zz m; log Zj Wi Tij
subjectto ), x;; <1, forjeG.
xz>=0
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Example: Market Equilibria (Fisher's Model)

@ Buyers B, and goods G.
@ Buyer i has utility u;; for each unit of good G.
@ Buyer 7 has budget m;, and there’s one divisible unit of each good.

@ Does there exist a market equilibrium?

e Prices p; on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

maximize Zz m; log Zj Wi Tij
subjectto ), x;; <1, forjeG.
xz>=0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!
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