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Recall: Optimization Problem in Standard Form

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

For convex optimization problems in standard form, fi is convex
and hi is affine.
Let D denote the domain of all these functions (i.e. when their
value is finite)

This Lecture + Next
We will develop duality theory for convex optimization problems,
generalizing linear programming duality.
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Running Example: Linear Programming

We have already seen the standard form LP below

maximize c⊺x
subject to Ax ⪯ b

x ⪰ 0

−minimize −c⊺x
subject to Ax− b ⪯ 0

−x ⪯ 0

Along the way, we will recover the following standard form dual

minimize y⊺b
subject to A⊺y ⪰ c

y ⪰ 0
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The Lagrangian

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

Basic idea of Lagrangian duality is to relax/soften the constraints by
replacing each with a linear “penalty term” or “cost” in the objective.

The Lagrangian Function

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
k∑

i=1

νihi(x)

λi is Lagrange Multiplier for i’th inequality constraint
Required to be nonnegative

νi is Lagrange Multiplier for i’th equality constraint
Allowed to be of arbitrary sign
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The Lagrange Dual Function

minimize f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

The Lagrange dual function gives the optimal value of the primal
problem subject to the softened constraints

The Lagrange Dual Function

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
k∑

i=1

νihi(x)

)

Observe: g is a concave function of the Lagrange multipliers
We will see: Its quite common for the Lagrange dual to be
unbounded (−∞) for some λ and ν

By convention, domain of g is (λ, ν) s.t. g(λ, ν) > −∞
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Langrange Dual of LP

minimize −c⊺x
subject to Ax− b ⪯ 0

−x ⪯ 0

First, the Lagrangian function

L(x, λ) = −c⊺x+ λ⊺
1(Ax− b)− λ⊺

2x

= (A⊺λ1 − c− λ2)
⊺x− λ⊺

1b

And the Lagrange Dual

g(λ) = inf
x
L(x, λ)

=

{
−∞ if A⊺λ1 − c− λ2 ̸= 0

−λ⊺
1b if A⊺λ1 − c− λ2 = 0

So we restrict the domain of g to λ satisfying A⊺λ1 − c− λ2 = 0
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Interpretation: “Soft” Lower Bound

min f0(x)
subject to fi(x) ≤ 0, for i = 1, . . . ,m.

hi(x) = 0, for i = 1, . . . , k.

The Lagrange Dual Function

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

k∑
i=1

νihi(x)

)
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x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

k∑
i=1

νihi(x)

)

Fact
g(λ, ν) is a lowerbound on OPT(primal) for every λ ⪰ 0 and ν ∈ Rk.

Proof
Every primal feasible x incurs nonpositive penalty by L(x, λ, ν)

Therefore, L(x∗, λ, ν) ≤ f0(x
∗)

So g(λ, ν) ≤ f0(x
∗) = OPT (Primal)
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(
f0(x) +

m∑
i=1

λifi(x) +

k∑
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νihi(x)

)

Interpretation
A “hard” feasibility constraint can be thought of as imposing a
penalty of +∞ if violated, and a penalty/reward of 0 if satisfied
Lagrangian imposes a “soft” linear penalty for violating a
constraint, and a reward for slack
Lagrange dual finds the optimal subject to these soft constraints
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Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize f0(x)
subject to f1(x) ≤ 0

Let G be attainable constraint/objective function value tuples
i.e. (u, t) ∈ G if there is an x such that f1(x) = u and f0(x) = t

p∗ = inf {t : (u, t) ∈ G, u ≤ 0}
g(λ) = inf {λu+ t : (u, t) ∈ G}

λu+ t = g(λ) is a supporting hyperplane to G pointing northeast
Must intersect vertical axis below p∗

Therefore g(λ) ≤ p∗
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The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal)
implied by the Lagrange dual function

maximize g(λ, ν)
subject to λ ⪰ 0

Note: this is a convex optimization problem, regardless of whether
primal problem was convex
By convention, sometimes we add “dual feasibility” constraints to
impose “nontrivial” lowerbounds (i.e. g(λ, ν) ≥ −∞)
(λ∗, ν∗) solving the above are referred to as the dual optimal
solution
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Langrange Dual Problem of LP

maximize c⊺x
subject to Ax ⪯ b

x ⪰ 0

−minimize −c⊺x
subject to Ax− b ⪯ 0

−x ⪯ 0

Recall
Our Lagrange dual function for the above minimization LP (to the
right), defined over the domain A⊺λ1 − c− λ2 = 0.

g(λ) = −λ⊺
1b

The Lagrange dual problem can then be written as

minimize y⊺b
subject to A⊺y ⪰ c

y ⪰ 0

−maximize −λ⊺
1b

subject to

A⊺λ1 ⪰ c

λ ⪰ 0
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Another Example: Conic Optimization Problem

minimize c⊺x
subject to Ax = b

x ∈ K

maximize ν⊺b
subject to A⊺ν − c ∈ K◦

x ∈ K can equivalently be written as z⊺x ≤ 0, ∀z ∈ K◦

L(x, λ, ν) = c⊺x+ ν⊺(Ax− b) +
∑
z∈K◦

λz · z⊺x

= (c−A⊺ν +
∑
z∈K◦

λz · z)⊺x+ ν⊺b

Can think of λ ⪰ 0 as choosing some s ∈ K◦

L(x, s, ν) = (c−A⊺ν + s)⊺x+ ν⊺b

Lagrange dual function g(s, ν) is bounded when coefficient of x is
zero, in which case it has value ν⊺b
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Weak Duality
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0

Weak Duality
OPT (dual) ≤ OPT (primal).

We have already argued holds for every optimization problem
Duality Gap: difference between optimal dual and primal values
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Recall: Geometric Interpretation of Weak Duality

minimize f0(x)
subject to f1(x) ≤ 0

Let G be attainable constraint/objective function value tuples
i.e. (u, t) ∈ G if there is an x such that f1(x) = u and f0(x) = t

p∗ = inf {t : (u, t) ∈ G, u ≤ 0}
g(λ) = inf {λu+ t : (u, t) ∈ G}

Fact
The equation λu+ t = g(λ) defines a supporting hyperplane to G,
intersecting t axis at g(λ) ≤ p∗.
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Strong Duality

Strong Duality
We say strong duality holds if OPT (dual) = OPT (primal).

Equivalently: there exists a setting of Lagrange multipliers so that
g(λ, ν) gives a tight lowerbound on primal optimal value.
In general, does not hold for non-convex optimization problems
Usually, but not always, holds for convex optimization problems.

Mild assumptions, such as Slater’s condition, needed.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Let A be everything northeast (i.e. “worse”) than G
i.e. (u, t) ∈ A if there is an x such that f1(x) ≤ u and f0(x) ≤ t

p∗ = inf {t : (0, t) ∈ A}
g(λ) = inf {λu+ t : (u, t) ∈ A}

Fact
The equation λu+ t = g(λ) defines a supporting hyperplane to A,
intersecting t axis at g(λ) ≤ p∗.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Fact
When f0 and f1 are convex, A is convex.

Proof
Assume (u, t) and (u′, t′) are in A
∃x, x′ with (f1(x), f0(x)) ≤ (u, t) and (f1(x

′), f0(x
′)) ≤ (u′, t′).

By Jensen’s inequality
(f1(θx+(1−θ)x′), f0(θx+(1−θ)x′)) ⪯ (θu+(1−θ)u′, θt+(1−θ)t′)

Therefore, segment connecting (u, t) and (u′, t′) also in A.
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Geometric Proof of Strong Duality

minimize f0(x)
subject to f1(x) ≤ 0

Theorem (Informal)
There is a choice of λ so that g(λ) = p∗. Therefore, strong duality
holds.

Proof
Recall (0, p∗) is on the boundary of A
By the supporting hyperplane theorem, there is a supporting
hyperplane to A at (0, p∗)
Direction of the supporting hyperplane gives us an appropriate λ
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I Lied (A little)

minimize f0(x)
subject to f1(x) ≤ 0

In our proof, we ignored a technicality that can prevent strong
duality from holding.

What if our supporting hyperplane H at (0, p∗) is vertical?
The normal to H is perpendicular to the t axis

In this case, no finite λ exists such that (λ, 1) is normal to H.
Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)
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What if our supporting hyperplane H at (0, p∗) is vertical?

The normal to H is perpendicular to the t axis

In this case, no finite λ exists such that (λ, 1) is normal to H.
Somewhat counterintuitively, this can happen even in simple
convex optimization problems (though its somewhat rare in
practice)

Duality 17/25



Violation of Strong Duality

minimize e−x

subject to x2

y ≤ 0

Let domain be the region y ≥ 1

Problem is convex, with feasible region given by x = 0

Optimal value is 1, at x = 0 and y = 1

A = R2
++

⋃
({0} × [1,∞])

Therefore, any supporting hyperplane to A at (0, 1) must be
vertical.
Optimal dual value is 0; a duality gap of 1.
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Slater’s Condition
There exists a point x ∈ D where all inequality constraints are strictly
satisfied (i.e. fi(x) < 0). I.e. the optimization problem is strictly
feasible.

A sufficient condition for strong duality.
Forces supporting hyperplane to be non-vertical

Can be weakened to requiring strict feasibility only of non-affine
constraints
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Outline

1 The Lagrange Dual Problem

2 Duality

3 Optimality Conditions



Recall: Lagrangian Duality

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0
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Strong Duality
OPT (dual) = OPT (primal).
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Dual Solution as a Certificate

Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0

Dual solutions serves as a certificate of optimality
If f0(x) = g(λ, ν), and both are feasible, then both are optimal.

If f0(x)− g(λ, ν) ≤ ϵ, then both are within ϵ of optimality.
OPT(primal) and OPT(dual) lie in the interval [g(λ, ν), f0(x)]

Primal-dual algorithms use dual certificates to recognize
optimality, or bound sub-optimality.
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Implications of Strong Duality
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0

Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are feasible & optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗
i fi(x

∗) = 0 for all i = 1, . . . ,m. (Complementary Slackness)
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min f0(x)
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fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0

Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are feasible & optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗
i fi(x

∗) = 0 for all i = 1, . . . ,m. (Complementary Slackness)

Proof

f0(x
∗) = g(λ∗, ν∗) = min

x
L(x, λ∗, ν∗)

≤ L(x∗, λ∗, ν∗) = f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

k∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗)
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Implications of Strong Duality
Primal Problem

min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

Dual Problem

max g(λ, ν)
s.t.
λ ⪰ 0

Facts
If strong duality holds, and x∗ and (λ∗, ν∗) are feasible & optimal, then

x∗ minimizes L(x, λ∗, ν∗) over all x.
λ∗
i fi(x

∗) = 0 for all i = 1, . . . ,m. (Complementary Slackness)

Interpretation
Lagrange multipliers (λ∗, ν∗) “simulate” the primal feasibility
constraints
Interpreting λi as the “value” of the i’th constraint, at optimality
only the binding constraints are “valuable”

Recall economic interpretation of LP
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min f0(x)
s.t.
fi(x) ≤ 0, ∀i = 1, . . . ,m.
hi(x) = 0, ∀i = 1, . . . , k.

max g(λ, ν)
s.t.
λ ⪰ 0

KKT Conditions
Suppose the primal problem is convex and defined on an open domain,
and moreover the constraint functions are differentiable everywhere in
the domain. If strong duality holds, then x∗ and (λ∗, ν∗) are optimal iff:

x∗ and (λ∗, ν∗) are feasible
λ∗
i fi(x

∗) = 0 for all i (Complementary Slackness)

▽xL(x
∗, λ∗, ν∗) = ▽f0(x

∗)+
∑m

i=1 λ
∗
i▽fi(x

∗)+
∑k

i=1 ν
∗
i ▽hi(x

∗) = 0

Why are KKT Conditions Useful?
Derive an analytical solution to some convex optimization
problems
Gain structural insights
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Example: Equality-constrained Quadratic Program

minimize 1
2x

⊺Px+ q⊺x+ r
subject to Ax = b

KKT Conditions: Ax∗ = b and Px∗ + q +A⊺ν∗ = 0

Simply a solution of a linear system with variables x∗ and ν∗.
m+ n constraints and m+ n variables

Optimality Conditions 24/25



Example: Market Equilibria (Fisher’s Model)

Buyers B, and goods G.
Buyer i has utility uij for each unit of good G.
Buyer i has budget mi, and there’s one divisible unit of each good.

Does there exist a market equilibrium?
Prices pj on items, such that each player can buy his favorite
bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

maximize
∑

imi log
∑

j uijxij
subject to

∑
i xij ≤ 1, for j ∈ G.

x ⪰ 0

Using KKT conditions, we can prove that the dual variables
corresponding to the item supply constraints are market-clearing
prices!
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