CS675: Convex and Combinatorial Optimization Fall 2023 Convex Functions

Instructor: Shaddin Dughmi

Outline

(1) Convex Functions
(2) Examples of Convex and Concave Functions
(3) Convexity-Preserving Operations

Convex Functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Convex Functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Inequality called Jensen's inequality (basic form)

Convex Functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x+t v: t \in \mathbb{R}\}$ is convex

Convex Functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x+t v: t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$ and $\theta \in(0,1)$.

Convex Functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if the line segment between any points on the graph of f lies above f. i.e. if $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x+t v: t \in \mathbb{R}\}$ is convex
- f is strictly convex if inequality strict when $x \neq y$ and $\theta \in(0,1)$.
- Analogous definition when domain of f is a convex subset of \mathbb{R}^{n}

Concave and Affine Functions

A function is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave if $-f$ is convex. Equivalently:

- Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)
$$

Concave and Affine Functions

A function is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave if $-f$ is convex. Equivalently:

- Line segment between any points on the graph of f lies below f.
- If $x, y \in \mathbb{R}^{n}$ and $\theta \in[0,1]$, then

$$
f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is affine if it is both concave and convex. Equivalently:

- Line segment between any points on the graph of f lies on the graph of f.
- $f(x)=a^{\top} x+b$ for some $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.

We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$
f(y) \geq f(x)+(\nabla f(x))^{\top}(y-x)
$$

We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

$$
f(y) \geq f(x)+(\nabla f(x))^{\top}(y-x)
$$

- Local information \rightarrow global information
- If $\nabla f(x)=0$ then x is a global minimizer of f

Second Order Definition

A twice differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^{2} f(x)$ is positive semi-definite for all x. (We write $\nabla^{2} f(x) \succeq 0$)

Second Order Definition

A twice differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^{2} f(x)$ is positive semi-definite for all x. (We write $\nabla^{2} f(x) \succeq 0$)

Intepretation

- Recall definition of PSD: $z^{\top} \nabla^{2} f(x) z \geq 0$ for all $z \in \mathbb{R}^{n}$
- When $n=1$, this is $f^{\prime \prime}(x) \geq 0$.
- More generally, $\frac{z^{\top} \nabla^{2} f(x) z}{\|z\|^{2}}$ is the second derivative of f along the line $\{x+t z: t \in \mathbb{R}\}$. So if $\nabla^{2} f(x) \succeq 0$ then f curves upwards along any line.
- Moving from x to $x+\delta \vec{z}$, infitisimal change in gradient is $\delta \nabla^{2} f(x) z$. When $\nabla^{2} f(x) \succeq 0$, this is in roughly the same direction as \vec{z}.

Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$
\operatorname{epi}(f)=\{(x, t): t \geq f(x)\}
$$

Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$
\operatorname{epi}(f)=\{(x, t): t \geq f(x)\}
$$

Epigraph Definition

f is a convex function if and only if its epigraph is a convex set.

Jensen's Inequality (General Form)

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if

- For every x_{1}, \ldots, x_{k} in the domain of f, and $\theta_{1}, \ldots, \theta_{k} \geq 0$ such that $\sum_{i} \theta_{i}=1$, we have

$$
f\left(\sum_{i} \theta_{i} x_{i}\right) \leq \sum_{i} \theta_{i} f\left(x_{i}\right)
$$

- Given a probability measure \mathcal{D} on the domain of f, and $x \sim \mathcal{D}$,

$$
f(\mathbf{E}[x]) \leq \mathbf{E}[f(x)]
$$

Jensen's Inequality (General Form)

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if

- For every x_{1}, \ldots, x_{k} in the domain of f, and $\theta_{1}, \ldots, \theta_{k} \geq 0$ such that $\sum_{i} \theta_{i}=1$, we have

$$
f\left(\sum_{i} \theta_{i} x_{i}\right) \leq \sum_{i} \theta_{i} f\left(x_{i}\right)
$$

- Given a probability measure \mathcal{D} on the domain of f, and $x \sim \mathcal{D}$,

$$
f(\mathbf{E}[x]) \leq \mathbf{E}[f(x)]
$$

Adding noise to x can only increase $f(x)$ in expectation.

Local and Global Optimality

Local minimum

x is a local minimum of f if there is a an open ball B containing x where $f(y) \geq f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

Local and Global Optimality

Local minimum

x is a local minimum of f if there is a an open ball B containing x where $f(y) \geq f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

- This fact underlies much of the tractability of convex optimization.

Sub-level sets

Sublevel set

The α-sublevel set of f is $\{x \in \operatorname{domain}(f): f(x) \leq \alpha\}$.

Sub-level sets

Sublevel set

The α-sublevel set of f is $\{x \in \operatorname{domain}(f): f(x) \leq \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization

Sub-level sets

$$
\text { Level sets of } f(x, y)=\sqrt{x^{2}+y^{2}}
$$

Sublevel set

The α-sublevel set of f is $\{x \in \operatorname{domain}(f): f(x) \leq \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

- This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.

Other Basic Properties

Continuity

Real-valued convex functions are continuous on the interior of their domain.

Other Basic Properties

Continuity

Real-valued convex functions are continuous on the interior of their domain.

Extended-value extension

If a function $f: D \rightarrow \mathbb{R}$ is convex on its domain, and D is convex, then it can be extended to a convex function on \mathbb{R}^{n} by setting $f(x)=\infty$ whenever $x \notin D$.

This simplifies notation. Resulting function $\tilde{f}: D \rightarrow \mathbb{R} \bigcup \infty$ is "convex" with respect to the ordering on $\mathbb{R} \bigcup \infty$

Outline

(1) Convex Functions

(2) Examples of Convex and Concave Functions
(3) Convexity-Preserving Operations

Functions on the reals

- Affine: $a x+b$
- Exponential: $e^{a x}$ convex for any $a \in \mathbb{R}$
- Powers: x^{a} convex on \mathbb{R}_{++}when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$
- Logarithm: $\log x$ concave on \mathbb{R}_{++}.

Norms

Norms are convex.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Norms

Norms are convex.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Max

$\max _{i} x_{i}$ is convex

$$
\begin{aligned}
\max _{i}(\theta x+(1-\theta) y)_{i} & =\max _{i}\left(\theta x_{i}+(1-\theta) y_{i}\right) \\
& \leq \max _{i} \theta x_{i}+\max _{i}(1-\theta) y_{i} \\
& =\theta \max _{i} x_{i}+(1-\theta) \max _{i} y_{i}
\end{aligned}
$$

If i'm allowed to pick the maximum entry of θx and θy independently, I can do only better.

- Log-sum-exp: $\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right)$ is convex
- Geometric mean: $\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}$ is concave
- Log-determinant: $\log \operatorname{det} X$ is concave
- Quadratic form: $x^{\top} A x$ is convex iff $A \succeq 0$
- Other examples in book

$$
f(x, y)=\log \left(e^{x}+e^{y}\right)
$$

- Log-sum-exp: $\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right)$ is convex
- Geometric mean: $\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}$ is concave
- Log-determinant: $\log \operatorname{det} X$ is concave
- Quadratic form: $x^{\top} A x$ is convex iff $A \succeq 0$
- Other examples in book

$$
f(x, y)=\log \left(e^{x}+e^{y}\right)
$$

Proving convexity often comes down to case-by-case reasoning, involving:

- Definition: restrict to line and check Jensen's inequality
- Write down the Hessian and prove PSD
- Express as a combination of other convex functions through convexity-preserving operations (Next)

Outline

(1) Convex Functions

(2) Examples of Convex and Concave Functions

(3) Convexity-Preserving Operations

Nonnegative Weighted Combinations

If $f_{1}, f_{2}, \ldots, f_{k}$ are convex, and $w_{1}, w_{2}, \ldots, w_{k} \geq 0$, then $g=w_{1} f_{1}+w_{2} f_{2} \ldots+w_{k} f_{k}$ is convex.

Nonnegative Weighted Combinations

If $f_{1}, f_{2}, \ldots, f_{k}$ are convex, and $w_{1}, w_{2}, \ldots, w_{k} \geq 0$, then $g=w_{1} f_{1}+w_{2} f_{2} \ldots+w_{k} f_{k}$ is convex.

proof $(k=2)$

$$
\begin{aligned}
g\left(\frac{x+y}{2}\right) & =w_{1} f_{1}\left(\frac{x+y}{2}\right)+w_{2} f_{2}\left(\frac{x+y}{2}\right) \\
& \leq w_{1} \frac{f_{1}(x)+f_{1}(y)}{2}+w_{2} \frac{f_{2}(x)+f_{2}(y)}{2} \\
& =\frac{g(x)+g(y)}{2}
\end{aligned}
$$

Nonnegative Weighted Combinations

If $f_{1}, f_{2}, \ldots, f_{k}$ are convex, and $w_{1}, w_{2}, \ldots, w_{k} \geq 0$, then
$g=w_{1} f_{1}+w_{2} f_{2} \ldots+w_{k} f_{k}$ is convex.

Extends to integrals $g(x)=\int_{y} w(y) f_{y}(x)$ with $w(y) \geq 0$, and therefore expectations $\mathbf{E}_{y} f_{y}(x)$.

Nonnegative Weighted Combinations

If $f_{1}, f_{2}, \ldots, f_{k}$ are convex, and $w_{1}, w_{2}, \ldots, w_{k} \geq 0$, then
$g=w_{1} f_{1}+w_{2} f_{2} \ldots+w_{k} f_{k}$ is convex.

Extends to integrals $g(x)=\int_{y} w(y) f_{y}(x)$ with $w(y) \geq 0$, and therefore expectations $\mathbf{E}_{y} f_{y}(x)$.

Worth Noting

Minimizing the expectation of a random convex cost function is also a convex optimization problem!

- A stochastic convex optimization problem is a convex optimization problem.

Example: Stochastic Facility Location

Average Distance

- k customers located at $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{R}^{n}$
- If I place a facility at $x \in \mathbb{R}^{n}$, average distance to a customer is $g(x)=\sum_{i} \frac{1}{k}\left\|x-y_{i}\right\|$

Example: Stochastic Facility Location

Average Distance

- k customers located at $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{R}^{n}$
- If I place a facility at $x \in \mathbb{R}^{n}$, average distance to a customer is $g(x)=\sum_{i} \frac{1}{k}\left\|x-y_{i}\right\|$
- Since distance to any one customer is convex in x, so is the average distance.
- Extends to probability measure over customers

Implication

Convex functions are a convex cone in the vector space of functions from \mathbb{R}^{n} to \mathbb{R}.

The set of convex functions is the intersection of an infinite set of homogeneous linear inequalities indexed by x, y, θ

$$
f(\theta x+(1-\theta) y)-\theta f(x)-(1-\theta) f(y) \leq 0
$$

Composition with Affine Function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$, then

$$
g(x)=f(A x+b)
$$

is a convex function from \mathbb{R}^{m} to \mathbb{R}.

Composition with Affine Function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$, then

$$
g(x)=f(A x+b)
$$

is a convex function from \mathbb{R}^{m} to \mathbb{R}.

Proof

$(x, t) \in \operatorname{graph}(g) \Longleftrightarrow t=g(x)=f(A x+b) \Longleftrightarrow(A x+b, t) \in \operatorname{graph}(f)$

Composition with Affine Function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$, then

$$
g(x)=f(A x+b)
$$

is a convex function from \mathbb{R}^{m} to \mathbb{R}.

Proof

$$
\begin{aligned}
& (x, t) \in \operatorname{graph}(g) \Longleftrightarrow t=g(x)=f(A x+b) \Longleftrightarrow(A x+b, t) \in \operatorname{graph}(f) \\
& (x, t) \in \mathbf{e p i}(g) \Longleftrightarrow t \geq g(x)=f(A x+b) \Longleftrightarrow(A x+b, t) \in \mathbf{e p i}(f)
\end{aligned}
$$

Composition with Affine Function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$, then

$$
g(x)=f(A x+b)
$$

is a convex function from \mathbb{R}^{m} to \mathbb{R}.

Proof

$$
\begin{aligned}
(x, t) \in \operatorname{graph}(g) & \Longleftrightarrow t=g(x)=f(A x+b) \\
(x, t) \in \mathbf{e p i}(g) & \Longleftrightarrow t \geq g(x)=f(A x+b)
\end{aligned}
$$

epi (g) is the inverse image of epi (f) under the affine mapping

$$
(x, t) \rightarrow(A x+b, t)
$$

Examples

- $\|A x+b\|$ is convex
- $\max (A x+b)$ is convex
- $\log \left(e^{a_{1}^{\top} x+b_{1}}+e^{a_{2}^{\top} x+b_{2}}+\ldots+e^{a_{n}^{\top} x+b_{n}}\right)$ is convex

Maximum

If f_{1}, f_{2} are convex, then $g(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$ is also convex.
Generalizes to the maximum of any number of functions, $\max _{i=1}^{k} f_{i}(x)$, and also to the supremum of an infinite set of functions $\sup _{y} f_{y}(x)$.

Maximum

If f_{1}, f_{2} are convex, then $g(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$ is also convex.
Generalizes to the maximum of any number of functions, $\max _{i=1}^{k} f_{i}(x)$, and also to the supremum of an infinite set of functions $\sup _{y} f_{y}(x)$.

$$
\text { epi } g=\mathbf{e p i} f_{1} \bigcap \text { epi } f_{2}
$$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{R}^{n}$
- If I place a facility at $x \in \mathbb{R}^{n}$, maximum distance to a customer is $g(x)=\max _{i}\left\|x-y_{i}\right\|$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{R}^{n}$
- If I place a facility at $x \in \mathbb{R}^{n}$, maximum distance to a customer is $g(x)=\max _{i}\left\|x-y_{i}\right\|$

Since distance to any one customer is convex in x, so is the worst-case distance.

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_{1}, y_{2}, \ldots, y_{k} \in \mathbb{R}^{n}$
- If I place a facility at $x \in \mathbb{R}^{n}$, maximum distance to a customer is $g(x)=\max _{i}\left\|x-y_{i}\right\|$

Worth Noting

When a convex cost function is uncertain, minimizing the worst-case cost is also a convex optimization problem!

- A robust (in the worst-case sense) convex optimization problem is a convex optimization problem.

Other Examples

- Maximum eigenvalue of a symmetric matrix A is convex in A

$$
\max \left\{v^{\top} A v:\|v\|=1\right\}
$$

- Sum of k largest components of a vector x is convex in x

$$
\max \left\{\overrightarrow{\mathbf{1}}_{S} \cdot x:|S|=k\right\}
$$

Minimization

If $f(x, y)$ is convex and \mathcal{C} is convex and nonempty, then $g(x)=\inf _{y \in C} f(x, y)$ is convex.

Minimization

If $f(x, y)$ is convex and \mathcal{C} is convex and nonempty, then $g(x)=\inf _{y \in C} f(x, y)$ is convex.

Proof (for $\mathcal{C}=\mathbb{R}^{k}$)

epi g is the projection of epi f onto hyperplane $y=0$.

Example

Distance from a convex set \mathcal{C}

$$
f(x)=\inf _{y \in \mathcal{C}}\|x-y\|
$$

Composition Rules

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$, then $f=h \circ g$ is convex if

- g_{i} are convex, and h is convex and nondecreasing in each argument.
- g_{i} are concave, and h is convex and nonincreasing in each argument.

Composition Rules

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$, then $f=h \circ g$ is convex if

- g_{i} are convex, and h is convex and nondecreasing in each argument.
- g_{i} are concave, and h is convex and nonincreasing in each argument.

Proof ($n=k=1$, twice differentiable)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

Composition Rules

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$, then $f=h \circ g$ is convex if

- g_{i} are convex, and h is convex and nondecreasing in each argument.
- g_{i} are concave, and h is convex and nonincreasing in each argument.

Proof of first case

$$
\begin{array}{rlr}
g(\theta x+(1-\theta) y) & \preceq \theta g(x)+(1-\theta) g(y) & \text { (component-wise) } \\
h(g(\theta x+(1-\theta) y)) & \leq h(\theta g(x)+(1-\theta) g(y)) & (h \text { non-decreasing) } \\
& \leq \theta h(g(x))+(1-\theta) h(g(y) & \\
(h \text { convex })
\end{array}
$$

Composition Rules

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$, then $f=h \circ g$ is convex if

- g_{i} are convex, and h is convex and nondecreasing in each argument.
- g_{i} are concave, and h is convex and nonincreasing in each argument.

Proof of first case

$$
\begin{array}{rlr}
g(\theta x+(1-\theta) y) & \preceq \theta g(x)+(1-\theta) g(y) & \text { (component-wise) } \\
h(g(\theta x+(1-\theta) y)) & \leq h(\theta g(x)+(1-\theta) g(y)) & (h \text { non-decreasing) } \\
& \leq \theta h(g(x))+(1-\theta) h(g(y) & (h \text { convex) }
\end{array}
$$

Proof of second case is almost identical

Perspective

If f is convex then $g(x, t)=t f(x / t)$ is also convex.

Perspective

If f is convex then $g(x, t)=t f(x / t)$ is also convex.

Proof

$$
(x, t, y) \in \operatorname{graph}(g) \Longleftrightarrow y=t f(x / t) \Longleftrightarrow(x / t, y / t) \in \operatorname{graph}(f)
$$

Perspective

If f is convex then $g(x, t)=t f(x / t)$ is also convex.

Proof

$$
\begin{aligned}
(x, t, y) \in \operatorname{graph}(g) & \Longleftrightarrow y=t f(x / t)
\end{aligned} \Longleftrightarrow(x / t, y / t) \in \operatorname{graph}(f)
$$

Perspective

If f is convex then $g(x, t)=t f(x / t)$ is also convex.

Proof

$$
\begin{aligned}
(x, t, y) \in \operatorname{graph}(g) & \Longleftrightarrow y=t f(x / t)
\end{aligned} \Longleftrightarrow(x / t, y / t) \in \operatorname{graph}(f)
$$

epi g is inverse image of epi f under the perspective function $(x, t, y) \rightarrow(x / t, y / t)$.

