# CS675: Convex and Combinatorial Optimization Fall 2023 <br> Convex Optimization Problems 

Instructor: Shaddin Dughmi

## Outline

(1) Convex Optimization Basics
(2) Common Classes
(3) Interlude: Positive Semi-Definite Matrices

4 More Convex Optimization Problems

## Recall: Convex Optimization Problem

A problem of minimizing a convex function (or maximizing a concave function) over a convex set.

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{array}
$$

- $\mathcal{X} \subseteq \mathbb{R}^{n}$ is convex, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex
- Terminology: decision variable(s), objective function, feasible set, optimal solution/value, $\epsilon$-optimal solution/value


## Standard Form

Instances typically formulated in the following standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad \text { for } i \in \mathcal{C}_{1} \\
& \left\langle a_{i}, x\right\rangle=b_{i}, \quad \text { for } i \in \mathcal{C}_{2}
\end{array}
$$

- $g_{i}$ is convex
- Terminology: equality constraints, inequality constraints, active/inactive at $x$, feasible/infeasible, unbounded


## Standard Form

Instances typically formulated in the following standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad \text { for } i \in \mathcal{C}_{1} . \\
& \left\langle a_{i}, x\right\rangle=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} .
\end{array}
$$

- $g_{i}$ is convex
- Terminology: equality constraints, inequality constraints, active/inactive at $x$, feasible/infeasible, unbounded
- In principle, every convex optimization problem can be formulated in this form (possibly implicitly)
- Recall: every convex set is the intersection of halfspaces


## Standard Form

Instances typically formulated in the following standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad \text { for } i \in \mathcal{C}_{1} \\
& \left\langle a_{i}, x\right\rangle=b_{i}, \quad \text { for } i \in \mathcal{C}_{2}
\end{array}
$$

- $g_{i}$ is convex
- Terminology: equality constraints, inequality constraints, active/inactive at $x$, feasible/infeasible, unbounded
- In principle, every convex optimization problem can be formulated in this form (possibly implicitly)
- Recall: every convex set is the intersection of halfspaces
- When there is no objective function (or, equivalently, $f(x)=0$ for all $x$ ), we say this is convex feasibility problem


## Local and Global Optimality

$x \in \mathcal{X}$ is locally optimal if $\exists$ open ball $B$ centered at $x$ s.t. $f(x) \leq f(y)$ for all $y \in B \bigcap \mathcal{X}$. It is globally optimal if it's an optimal solution.

## Fact

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

## Local and Global Optimality

$x \in \mathcal{X}$ is locally optimal if $\exists$ open ball $B$ centered at $x$ s.t. $f(x) \leq f(y)$ for all $y \in B \bigcap \mathcal{X}$. It is globally optimal if it's an optimal solution.

## Fact

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

## Proof

- Let $x$ be locally optimal, and $y$ be any other feasible point.


## Local and Global Optimality

$x \in \mathcal{X}$ is locally optimal if $\exists$ open ball $B$ centered at $x$ s.t. $f(x) \leq f(y)$ for all $y \in B \bigcap \mathcal{X}$. It is globally optimal if it's an optimal solution.

## Fact

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

## Proof

- Let $x$ be locally optimal, and $y$ be any other feasible point.
- The line segment from $x$ to $y$ is contained in the feasible set.


## Local and Global Optimality

$x \in \mathcal{X}$ is locally optimal if $\exists$ open ball $B$ centered at $x$ s.t. $f(x) \leq f(y)$ for all $y \in B \bigcap \mathcal{X}$. It is globally optimal if it's an optimal solution.

## Fact

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

## Proof

- Let $x$ be locally optimal, and $y$ be any other feasible point.
- The line segment from $x$ to $y$ is contained in the feasible set.
- By local optimality $f(x) \leq f(\theta x+(1-\theta) y)$ for $\theta$ sufficiently close to 1 .


## Local and Global Optimality

$x \in \mathcal{X}$ is locally optimal if $\exists$ open ball $B$ centered at $x$ s.t. $f(x) \leq f(y)$ for all $y \in B \bigcap \mathcal{X}$. It is globally optimal if it's an optimal solution.

## Fact

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

## Proof

- Let $x$ be locally optimal, and $y$ be any other feasible point.
- The line segment from $x$ to $y$ is contained in the feasible set.
- By local optimality $f(x) \leq f(\theta x+(1-\theta) y)$ for $\theta$ sufficiently close to 1.
- Jensen's inequality then implies that $y$ is suboptimal.

$$
\begin{gathered}
f(x) \leq f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \\
f(x) \leq f(y)
\end{gathered}
$$

## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## Explicit Representation

A family of linear programs of the following form

$$
\begin{array}{ll}
\text { maximize } & c^{T} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

may be described by $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$.

## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## Oracle Representation

At their most abstract, convex optimization problems of the following form

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{array}
$$

are described via a separation oracle for $\mathcal{X}$ and epi $f$.

## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## Oracle Representation

At their most abstract, convex optimization problems of the following form

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{array}
$$ are described via a separation oracle for $\mathcal{X}$ and epi $f$.

Given additional data about instances of the problem, namely a range $[L, H]$ for its optimal value and a ball of volume $V$ containing $\mathcal{X}$, the ellipsoid method returns an $\epsilon$-optimal solution using only poly $\left(n, \log \left(\frac{H-L}{\epsilon}\right), \log V\right)$ oracle calls.

## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## In Between

Consider the following fractional relaxation of the Traveling Salesman Problem, described by a network ( $V, E$ ) and distances $d_{e}$ on $e \in E$.

$$
\begin{aligned}
& \min \sum_{e} d_{e} x_{e} \\
& \text { s.t. } \\
& \sum_{e \in \delta(S)} x_{e} \geq 2, \quad \forall S \subset V, S \neq \emptyset . \\
& x \succeq 0
\end{aligned}
$$



## Representation

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

## In Between

Consider the following fractional relaxation of the Traveling Salesman Problem, described by a network ( $V, E$ ) and distances $d_{e}$ on $e \in E$.

$$
\begin{aligned}
& \min \sum_{e} d_{e} x_{e} \\
& \text { s.t. } \\
& \sum_{e \in \delta(S)} x_{e} \geq 2, \quad \forall S \subset V, S \neq \emptyset . \\
& x \succeq 0
\end{aligned}
$$



Representation of LP is implicit, in the form of a network. Using this representation, separation oracles can be implemented efficiently, and used as subroutines in the ellipsoid method.

## Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem


## Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem


## Equivalence

Loosly speaking, two optimization problems are equivalent if an optimal solution to one can easily be "translated" into an optimal solution for the other.

## Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem


## Equivalence

Loosly speaking, two optimization problems are equivalent if an optimal solution to one can easily be "translated" into an optimal solution for the other.

## Note

Deciding whether an optimization problem is equivalent to a tractable convex optimization problem is, in general, a black art honed by experience. There is no silver bullet.

## Outline

## (1) Convex Optimization Basics

(2) Common Classes
(3) Interlude: Positive Semi-Definite Matrices

4 More Convex Optimization Problems

## Linear Programming

We have already seen linear programming

| minimize | $\langle c, x\rangle$ |
| :--- | :--- |
| subject to | $A x \leq b$ |



## Linear Fractional Programming

Generalizes linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{\langle c, x\rangle+d}{\langle e, x\rangle+f} \\
\text { subject to } & A x \preceq b \\
& \langle e, x\rangle+f>0
\end{array}
$$

- The objective is quasiconvex (in fact, quasilinear) over the open halfspace where the denominator is positive.


## Linear Fractional Programming

Generalizes linear programming

$$
\begin{array}{ll}
\text { minimize } & \frac{\langle c, x\rangle+d}{\langle e, x\rangle+f} \\
\text { subject to } & A x \preceq b \\
& \langle e, x\rangle+f>0
\end{array}
$$

- The objective is quasiconvex (in fact, quasilinear) over the open halfspace where the denominator is positive.
- Can be reformulated as an equivalent linear program
(1) Change variables to $y=\frac{x}{\langle e, x\rangle+f}$ and $z=\frac{1}{\langle e, x\rangle+f}$

$$
\begin{array}{ll}
\operatorname{minimize} & \langle c, y\rangle+d z \\
\text { subject to } & A y \preceq b z \\
& z>0 \\
& y=\frac{x}{\langle e, x+f} \\
& z=\frac{1}{\langle e, x\rangle+f}
\end{array}
$$

## Linear Fractional Programming

Generalizes linear programming

$$
\begin{array}{ll}
\text { minimize } & \frac{\langle c, x\rangle+d}{\langle e, x\rangle+f} \\
\text { subject to } & A x \preceq b \\
& \langle e, x\rangle+f>0
\end{array}
$$

- The objective is quasiconvex (in fact, quasilinear) over the open halfspace where the denominator is positive.
- Can be reformulated as an equivalent linear program
(1) Change variables to $y=\frac{x}{\langle e, x\rangle+f}$ and $z=\frac{1}{\langle e, x\rangle+f}$
(2) $(y, z)$ is solution to the above iff $\langle e, y\rangle+f z=1$. In that case $x=y / z$.

$$
\begin{array}{ll}
\operatorname{minimize} & \langle c, y\rangle+d z \\
\text { subject to } & A y \preceq b z \\
& z>0 \\
& \frac{y=\frac{x}{\langle e, x\rangle+f}}{\langle e, x\rangle+f} \\
& \frac{\langle e, y\rangle+f z=1}{}
\end{array}
$$

## Linear Fractional Programming

Generalizes linear programming

$$
\begin{array}{ll}
\text { minimize } & \frac{\langle c, x\rangle+d}{\langle e, x\rangle+f} \\
\text { subject to } & A x \preceq b \\
& \langle e, x\rangle+f>0
\end{array}
$$

- The objective is quasiconvex (in fact, quasilinear) over the open halfspace where the denominator is positive.
- Can be reformulated as an equivalent linear program
(1) Change variables to $y=\frac{x}{\langle e, x\rangle+f}$ and $z=\frac{1}{\langle e, x\rangle+f}$
(2) $(y, z)$ is solution to the above iff $\langle e, y\rangle+f z=1$. In that case $x=y / z$.

$$
\begin{array}{ll}
\text { minimize } & \langle c, y\rangle+d z \\
\text { subject to } & A y \preceq b z \\
& z \geq 0 \\
& \frac{y=\frac{x}{\langle e, x\rangle+f}}{\langle e, x\rangle+f} \\
& \frac{\langle e, y\rangle+f z=1}{}
\end{array}
$$

## Example: Optimal Production Variant

- $n$ products, $m$ raw materials
- Every unit of product $j$ uses $a_{i j}$ units of raw material $i$
- There are $b_{i}$ units of material $i$ available
- Product $j$ yields profit $c_{j}$ dollars per unit, and requires an investment of $e_{j}$ dollars per unit to produce, with $f$ as a fixed cost
- Facility wants to maximize "Return rate on investment"

$$
\begin{array}{ll}
\operatorname{maximize} & \frac{\langle c, x\rangle}{\langle e, x\rangle+f} \\
\text { subject to } & \left\langle a_{i}, x\right\rangle \leq b_{i}, \quad \text { for } i=1, \ldots, m . \\
& x_{j} \geq 0, \quad \text { for } j=1, \ldots, n .
\end{array}
$$

## Geometric Programming

## Definition

- A monomial is a function $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$of the form

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

where $c \geq 0, a_{i} \in \mathbb{R}$.

- A posynomial is a sum of monomials.


## Geometric Programming

## Definition

- A monomial is a function $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$of the form

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

where $c \geq 0, a_{i} \in \mathbb{R}$.

- A posynomial is a sum of monomials.

A Geometric Program is an optimization problem of the following form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad \text { for } i \in \mathcal{C}_{1} . \\
& h_{i}(x)=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} \\
& x \succeq 0
\end{array}
$$

where $f_{i}$ 's are posynomials, $h_{i}$ 's are monomials, and $b_{i}>0$ (wlog 1).

## Geometric Programming

## Definition

- A monomial is a function $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$of the form

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

where $c \geq 0, a_{i} \in \mathbb{R}$.

- A posynomial is a sum of monomials.

A Geometric Program is an optimization problem of the following form

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad \text { for } i \in \mathcal{C}_{1} . \\
& h_{i}(x)=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} . \\
& x \succeq 0
\end{array}
$$

where $f_{i}$ 's are posynomials, $h_{i}$ 's are monomials, and $b_{i}>0$ (wlog 1 ).

## Interpretation

GP model volume/area minimization problems, subject to constraints.

## Example: Designing a Suitcase

- A suitcase manufacturer is designing a suitcase
- Variables: $h, w, d$
- Want to minimize surface area $2(h w+h d+w d)$ (i.e. amount of material used)
- Have a target volume $h w d \geq 5$
- Practical/aesthetic constraints limit aspect ratio: $h / w \leq 2, h / d \leq 3$
- Constrained by airline to $h+w+d \leq 7$

$$
\begin{array}{ll}
\operatorname{minimize} & 2 h w+2 h d+2 w d \\
\text { subject to } & h^{-1} w^{-1} d^{-1} \leq \frac{1}{5} \\
& h w^{-1} \leq 2 \\
& h d^{-1} \leq 3 \\
& h+w+d \leq 7 \\
& h, w, d \geq 0
\end{array}
$$

## Example: Designing a Suitcase

- A suitcase manufacturer is designing a suitcase
- Variables: $h, w, d$
- Want to minimize surface area $2(h w+h d+w d)$ (i.e. amount of material used)
- Have a target volume $h w d \geq 5$
- Practical/aesthetic constraints limit aspect ratio: $h / w \leq 2, h / d \leq 3$
- Constrained by airline to $h+w+d \leq 7$

$$
\begin{array}{ll}
\operatorname{minimize} & 2 h w+2 h d+2 w d \\
\text { subject to } & h^{-1} w^{-1} d^{-1} \leq \frac{1}{5} \\
& h w^{-1} \leq 2 \\
& h d^{-1} \leq 3 \\
& h+w+d \leq 7 \\
& h, w, d \geq 0
\end{array}
$$

More interesting applications involve optimal component layout in chip design.

## Designing a Suitcase in Convex Form

$$
\begin{array}{ll}
\operatorname{minimize} & 2 h w+2 h d+2 w d \\
\text { subject to } & h^{-1} w^{-1} d^{-1} \leq \frac{1}{5} \\
& h w^{-1} \leq 2 \\
& h d^{-1} \leq 3 \\
& h+w+d \leq 7 \\
& h, w, d \geq 0
\end{array}
$$

## Designing a Suitcase in Convex Form

$$
\begin{array}{ll}
\operatorname{minimize} & 2 h w+2 h d+2 w d \\
\text { subject to } & h^{-1} w^{-1} d^{-1} \leq \frac{1}{5} \\
& h w^{-1} \leq 2 \\
& h d^{-1} \leq 3 \\
& h+w+d \leq 7 \\
& h, w, d \geq 0
\end{array}
$$

Change of variables to $\widetilde{h}=\log h, \widetilde{w}=\log w, \widetilde{d}=\log d$
minimize $2 e^{\widetilde{h}+\widetilde{w}}+2 e^{\widetilde{h}+\widetilde{d}}+2 e^{\widetilde{w}+\widetilde{d}}$
subject to $e^{-\widetilde{h}-\widetilde{w}-\widetilde{d}} \leq \frac{1}{5}$

$$
e_{\sim \sim}^{\widetilde{h}-\widetilde{w}} \leq 2
$$

$$
e^{\widetilde{h}-\tilde{d}} \leq 3
$$

$$
e^{\widetilde{h}}+e^{\widetilde{w}}+e^{\widetilde{d}} \leq 7
$$

## Geometric Programs in Convex Form

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad \text { for } i \in \mathcal{C}_{1} . \\
& h_{i}(x)=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} . \\
& x \succeq 0
\end{array}
$$

where $f_{i}$ 's are posynomials, $h_{i}$ 's are monomials, and $b_{i}>0$ (wlog 1 ).

- In their natural parametrization by $x_{1}, \ldots, x_{n} \in \mathbb{R}_{+}$, geometric programs are not convex optimization problems


## Geometric Programs in Convex Form

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad \text { for } i \in \mathcal{C}_{1} . \\
& h_{i}(x)=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} . \\
& x \succeq 0
\end{array}
$$

where $f_{i}$ 's are posynomials, $h_{i}$ 's are monomials, and $b_{i}>0$ (wlog 1 ).

- In their natural parametrization by $x_{1}, \ldots, x_{n} \in \mathbb{R}_{+}$, geometric programs are not convex optimization problems
- However, the feasible set and objective function are convex in the variables $y_{1}, \ldots, y_{n} \in \mathbb{R}$ where $y_{i}=\log x_{i}$


## Geometric Programs in Convex Form

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad \text { for } i \in \mathcal{C}_{1} . \\
& h_{i}(x)=b_{i}, \quad \text { for } i \in \mathcal{C}_{2} .
\end{array}
$$

where $f_{i}$ 's are posynomials, $h_{i}$ 's are monomials, and $b_{i}>0$ (wlog 1 ).

- Each monomial $c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ can be rewritten as a convex function $c e^{a_{1} y_{1}+a_{2} y_{2}+\ldots+a_{k} y_{k}}$
- Therefore, each posynomial becomes the sum of these convex exponential functions
- Inequality constraints and objective become convex
- Equality constraint $c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}=b$ reduces to an affine constraint $a_{1} y_{1}+a_{2} y_{2} \ldots a_{k} y_{k}=\log \frac{b}{c}$


## Outline

## (1) Convex Optimization Basics

(2) Common Classes
(3) Interlude: Positive Semi-Definite Matrices

4 More Convex Optimization Problems

## Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all $i, j$.

- We denote the cone of $n \times n$ symmetric matrices by $S^{n}$.


## Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all $i, j$.

- We denote the cone of $n \times n$ symmetric matrices by $S^{n}$.


## Fact

A matrix $\mathcal{A} \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

## Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{i j}=A_{j i}$ for all $i, j$.

- We denote the cone of $n \times n$ symmetric matrices by $S^{n}$.


## Fact

A matrix $\mathcal{A} \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

- i.e. $A=Q D Q^{\top}$ where $Q$ is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- The columns of $Q$ are the (normalized) eigenvectors of $A$, with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
- Equivalently: As a linear operator, $A$ scales the space along an orthonormal basis $Q$
- The scaling factor $\lambda_{i}$ along direction $q_{i}$ may be negative, positive, or 0 .


## Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by $S_{+}^{n}$
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$


## Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by $S_{+}^{n}$
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$
- $A=Q D Q^{\top}$ where $Q$ is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i} \geq 0$.
- As a linear operator, $A$ performs nonnegative scaling along an orthonormal basis $Q$


## Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by $S_{+}^{n}$
- We use $A \succeq 0$ as shorthand for $A \in S_{+}^{n}$
- $A=Q D Q^{\top}$ where $Q$ is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{i} \geq 0$.
- As a linear operator, $A$ performs nonnegative scaling along an orthonormal basis $Q$


## Note

Positive definite, negative semi-definite, and negative definite defined similarly.

## Geometric Intuition for PSD Matrices

- For $A \succeq 0$, let $q_{1}, \ldots, q_{n}$ be the orthonormal eigenbasis for $A$, and let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ be the corresponding eigenvalues.
- The linear operator $x \rightarrow A x$ scales the $q_{i}$ component of $x$ by $\lambda_{i}$
- When applied to every $x$ in the unit ball, the image of $A$ is an ellipsoid centered at the origin with principal directions $q_{1}, \ldots, q_{n}$ and corresponding diameters $2 \lambda_{1}, \ldots, 2 \lambda_{n}$
- When $A$ is positive definite (i.e. $\lambda_{i}>0$ ), and therefore invertible, the ellipsoid is the set $\left\{y: y^{T}\left(A A^{T}\right)^{-1} y \leq 1\right\}$


## Useful Properties of PSD Matrices

If $A \succeq 0$, then

- $x^{T} A x \geq 0$ for all $x$
- $A$ has a positive semi-definite square root $A^{\frac{1}{2}}$
- $A^{\frac{1}{2}}=Q \operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right) Q^{\top}$
- $A=B^{T} B$ for some matrix $B$.
- Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. $A_{i j}$ is dot product of the $i$ th and $j$ th columns of $B$.
- Interpretation: The quadratic form $x^{T} A x$ is the length of a linear transformation of $x$, namely $\|B x\|_{2}^{2}$
- The quadratic function $x^{T} A x$ is convex
- $A$ can be expressed as a sum of vector outer-products
- e.g., $A=\sum_{i=1}^{n} v_{i} v_{i}^{T}$ for $\overrightarrow{v_{i}}=\sqrt{\lambda_{i}} \overrightarrow{q_{i}}$


## Useful Properties of PSD Matrices

If $A \succeq 0$, then

- $x^{T} A x \geq 0$ for all $x$
- $A$ has a positive semi-definite square root $A^{\frac{1}{2}}$
- $A^{\frac{1}{2}}=Q \operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right) Q^{\top}$
- $A=B^{T} B$ for some matrix $B$.
- Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. $A_{i j}$ is dot product of the $i$ th and $j$ th columns of $B$.
- Interpretation: The quadratic form $x^{T} A x$ is the length of a linear transformation of $x$, namely $\|B x\|_{2}^{2}$
- The quadratic function $x^{T} A x$ is convex
- $A$ can be expressed as a sum of vector outer-products
- e.g., $A=\sum_{i=1}^{n} v_{i} v_{i}^{T}$ for $\overrightarrow{v_{i}}=\sqrt{\lambda_{i}} \overrightarrow{q_{i}}$

As it turns out, each of the above is also sufficient for $A \succeq 0$ (assuming $A$ is symmetric).

## Outline

## (1) Convex Optimization Basics

(2) Common Classes
(3) Interlude: Positive Semi-Definite Matrices
4) More Convex Optimization Problems

## Quadratic Programming

Minimizing convex quadratic fn over a polyhedron. Require $P \succeq 0$.

$$
\begin{array}{ll}
\text { minimize } & x^{\top} P x+\langle c, x\rangle+d \\
\text { subject to } & A x \leq b
\end{array}
$$



- When $P \succ 0$, objective can be rewritten as $\left(x-x_{0}\right)^{\top} P\left(x-x_{0}\right)$ for some center $x_{0}$ (might need to change $d$, which is immaterial)
- Sublevel sets are scaled copies of an ellipsoid centered at $x_{0}$


## Examples

## Constrained Least Squares

Given a set of measurements $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$, where $a_{i} \in \mathbb{R}^{n}$ is the $i$ 'th input and $b_{i} \in \mathbb{R}$ is the $i$ 'th output, fit a linear function minimizing mean square error, subject to known bounds on the linear coefficients.
minimize $\quad\|A x-b\|_{2}^{2}=x^{\top} A^{\top} A x-2 b^{\top} A x+\langle b, b\rangle$ subject to $\quad l_{i} \leq x_{i} \leq u_{i}, \quad$ for $i=1, \ldots, n$.


## Examples

## Distance Between Polyhedra

Given two polyhedra $A x \preceq b$ and $C x \preceq d$, find the distance between them.

$$
\begin{array}{ll}
\operatorname{minimize} & \|z\|_{2}^{2}=z^{\top} I z \\
\text { subject to } & z=y-x \\
& A x \preceq b \\
& B y \preceq d
\end{array}
$$

## Conic Optimization Problems

This is an umbrella term for problems of the following form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x+b \in K
\end{array}
$$

Where $K$ is a convex cone (e.g. $\mathbb{R}_{+}^{n}$, positive semi-definite matrices, etc). Evidently, such optimization problems are convex.

## Conic Optimization Problems

This is an umbrella term for problems of the following form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x+b \in K
\end{array}
$$

Where $K$ is a convex cone (e.g. $\mathbb{R}_{+}^{n}$, positive semi-definite matrices, etc). Evidently, such optimization problems are convex.

As shorthand, the cone containment constraint is often written using generalized inequalities

- $A x+b \succeq_{K} 0$
- $-A x \preceq_{K} b$


## Example: Second Order Cone Programming

We will exhibit an example of a conic optimization problem with $K$ as the second order cone

$$
K=\left\{(x, t):\|x\|_{2} \leq t\right\}
$$



## Example: Second Order Cone Programming

## Linear Program with Random Constraints

Consider the following optimization problem, where each $a_{i}$ is a gaussian random variable with mean $\bar{a}_{i}$ and covariance matrix $\Sigma_{i}$. minimize $c^{\top} x$
subject to $\left\langle a_{i}, x\right\rangle \leq b_{i}$ w.p. at least 0.9, for $i=1, \ldots, m$.

- $u_{i}:=\left\langle a_{i}, x\right\rangle$ is a univariate normal r.v. with mean $\bar{u}_{i}:=\bar{a}_{i}^{\top} x$ and stddev $\sigma_{i}:=\sqrt{x^{\top} \Sigma_{i} x}=\left\|\Sigma_{i}^{\frac{1}{2}} x\right\|_{2}$


## Example: Second Order Cone Programming

## Linear Program with Random Constraints

Consider the following optimization problem, where each $a_{i}$ is a gaussian random variable with mean $\bar{a}_{i}$ and covariance matrix $\Sigma_{i}$. minimize $c^{\top} x$
subject to $\left\langle a_{i}, x\right\rangle \leq b_{i}$ w.p. at least 0.9, for $i=1, \ldots, m$.

- $u_{i}:=\left\langle a_{i}, x\right\rangle$ is a univariate normal r.v. with mean $\bar{u}_{i}:=\bar{a}_{i}^{\top} x$ and stddev $\sigma_{i}:=\sqrt{x^{\top} \Sigma_{i} x}=\left\|\Sigma_{i}^{\frac{1}{2}} x\right\|_{2}$
- $u_{i} \leq b_{i}$ with probability $\phi\left(\frac{b_{i}-\bar{u}_{i}}{\sigma_{i}}\right)$, where $\phi$ is the CDF of the standard normal random variable.


## Example: Second Order Cone Programming

## Linear Program with Random Constraints

Consider the following optimization problem, where each $a_{i}$ is a gaussian random variable with mean $\bar{a}_{i}$ and covariance matrix $\Sigma_{i}$. minimize $c^{\top} x$
subject to $\left\langle a_{i}, x\right\rangle \leq b_{i}$ w.p. at least 0.9, for $i=1, \ldots, m$.

- $u_{i}:=\left\langle a_{i}, x\right\rangle$ is a univariate normal r.v. with mean $\bar{u}_{i}:=\bar{a}_{i}^{\top} x$ and stddev $\sigma_{i}:=\sqrt{x^{\top} \Sigma_{i} x}=\left\|\Sigma_{i}^{\frac{1}{2}} x\right\|_{2}$
- $u_{i} \leq b_{i}$ with probability $\phi\left(\frac{b_{i}-\bar{u}_{i}}{\sigma_{i}}\right)$, where $\phi$ is the CDF of the standard normal random variable.
- Since we want this probability to exceed 0.9 , we require that

$$
\begin{aligned}
\frac{b_{i}-\bar{u}_{i}}{\sigma_{i}} & \geq \phi^{-1}(0.9) \approx 1.3 \approx 1 / 0.77 \\
\left\|\Sigma_{i}^{\frac{1}{2}} x\right\|_{2} & \leq 0.77\left(b_{i}-\bar{a}_{i}^{\top} x\right)
\end{aligned}
$$

## Semi-Definite Programming

These are conic optimization problems where the cone in question is the set of positive semi-definite matrices.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2} \ldots x_{n} F_{n}+G \succeq 0
\end{array}
$$

Where $F_{1}, \ldots, F_{n}$ are matrices, and $\succeq$ refers to the positive semi-definite cone $S_{+}^{n}$.

## Semi-Definite Programming

These are conic optimization problems where the cone in question is the set of positive semi-definite matrices.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2} \ldots x_{n} F_{n}+G \succeq 0
\end{array}
$$

Where $F_{1}, \ldots, F_{n}$ are matrices, and $\succeq$ refers to the positive semi-definite cone $S_{+}^{n}$.

## Examples

- Fitting a distribution, say a Gaussian, to observed data. Variable is a positive semi-definite covariance matrix.
- As a relaxation to combinatorial problems that encode pairwise relationships: e.g. finding the maximum cut of a graph.


## Example: Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of $V$ into $(S, V \backslash S$ ) maximizing number of edges with exactly one end in $S$.

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

## Example: Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of $V$ into ( $S, V \backslash S$ ) maximizing number of edges with exactly one end in $S$.
maximize $\sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2}$
subject to $\quad x_{i} \in\{-1,1\}, \quad$ for $i \in V$.

## Vector Program relaxation

$$
\begin{array}{lll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-x_{i} \cdot x_{j}}{2} & \\
\text { subject to } & \left\|x_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& x_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

## Example: Max Cut Problem

Given an undirected graph $G=(V, E)$, find a partition of $V$ into $(S, V \backslash S$ ) maximizing number of edges with exactly one end in $S$.

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2} \\
\text { subject to } & x_{i} \in\{-1,1\}, \quad \text { for } i \in V .
\end{array}
$$

## Vector Program relaxation

$$
\begin{array}{lll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1-x_{i} \cdot x_{j}}{2} & \\
\text { subject to } & \left\|x_{i}\right\|_{2}=1, & \text { for } i \in V . \\
& x_{i} \in \mathbb{R}^{n}, & \text { for } i \in V .
\end{array}
$$

## SDP Relaxation

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{(i, j) \in E} \frac{1-X_{i j}}{2} \\
\text { subject to } & X_{i i}=1, \\
& X \in S_{+}^{n}
\end{array} \quad .
$$

