CS675: Convex and Combinatorial Optimization Fall 2023 The Ellipsoid Algorithm

Instructor: Shaddin Dughmi

History and Basics

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP

History and Basics

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP
- Inefficient in practice, has been surpassed by newer interior point methods.

History and Basics

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP
- Inefficient in practice, has been surpassed by newer interior point methods.
- Theoretically most powerful, with deep consequences for complexity and optimization
 - Polynomial-time algorithm for linear programming
 - Polynomial-time algorithm for approximate convex optimization under mild conditions
 - Equivalence of separation and optimization

Outline

Description of The Ellipsoid Method

Properties

Convex Feasibility Problem

Given as input the following

- A description of a compact convex set $K \subseteq \mathbb{R}^n$
- An ellipsoid E(c,Q) (typically a ball) containing K
- A rational number R > 0 satisfying $vol(E) \le R$.
- A rational number r > 0 such that if K is nonempty, then $\operatorname{vol}(K) \geq r$.

Find a point $x \in K$ or declare that K is empty.

- Note: convex optimization reduces to checking feasibility by binary search
 - We will explain later how the parameters r, R, E figure into this
- Description of K: any description that admits an efficient implementation of a separation oracle

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- ullet i.e. a vector $h \in \mathbb{R}^n$ with $\langle h, y \rangle < \langle h, x \rangle$ for all $y \in K$.
- ullet Equivalently, K is contained in the open halfspace

$$H(h,x) = \{y : \langle h, y \rangle < \langle h, x \rangle\}$$

with x at its boundary.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- ullet i.e. a vector $h \in \mathbb{R}^n$ with $\langle h,y \rangle < \langle h,x \rangle$ for all $y \in K$.
- ullet Equivalently, K is contained in the open halfspace

$$H(h,x) = \{y : \langle h, y \rangle < \langle h, x \rangle\}$$

with x at its boundary.

Examples:

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $\langle h, y \rangle < \langle h, x \rangle$ for all $y \in K$.
- ullet Equivalently, K is contained in the open halfspace

$$H(h, x) = \{ y : \langle h, y \rangle < \langle h, x \rangle \}$$

with x at its boundary.

Examples:

• Explicitly written polytope $Ay \le b$: take $h = a_i$ where the ith constraint is violated by x.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $\langle h, y \rangle < \langle h, x \rangle$ for all $y \in K$.
- ullet Equivalently, K is contained in the open halfspace

$$H(h, x) = \{ y : \langle h, y \rangle < \langle h, x \rangle \}$$

with x at its boundary.

Examples:

- Explicitly written polytope $Ay \le b$: take $h = a_i$ where the *i*th constraint is violated by x.
- Convex set given by a family of convex inequalities $f_i(y) \leq 0$: Let $h = \nabla f_i(x)$ for some violated constraint.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- ullet i.e. a vector $h \in \mathbb{R}^n$ with $\langle h, y \rangle < \langle h, x \rangle$ for all $y \in K$.
- ullet Equivalently, K is contained in the open halfspace

$$H(h, x) = \{ y : \langle h, y \rangle < \langle h, x \rangle \}$$

with x at its boundary.

Examples:

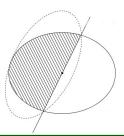
- Explicitly written polytope $Ay \le b$: take $h = a_i$ where the ith constraint is violated by x.
- Convex set given by a family of convex inequalities $f_i(y) \le 0$: Let $h = \nabla f_i(x)$ for some violated constraint.
- The positive semi-definite cone S_n^+ : Let $H = -vv^{\mathsf{T}}$, where v is an eigenvector corresponding to a negative eigenvalue.

Recall:Ellipsoids

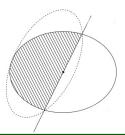
- Unit ball $B(0,1) = \{x \in \mathbb{R}^n : \langle x, x \rangle \leq 1\}.$
- Ellipsoid: the result of applying some affine transformation $x \to Lx + c$ to B(0,1).
- ullet We will focus on full dimensional case, with nonsingular L
- Gives the set $\{x: (x-c)^{\mathsf{T}}L^{-\mathsf{T}}L^{-1}(x-c) \leq 1\}$
- ullet Conventional to take $Q=LL^{\intercal}$, which is positive definite, and write

$$E(c,Q) = \{x : (x-c)^{\mathsf{T}} Q^{-1} (x-c) \le 1\}$$

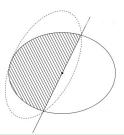
- Can calculate volume easily: $\mathbf{vol}(E(c,Q)) = \sqrt{\det Q} \, \mathbf{vol}(B(0,1))$
- Note: since Q ≥ 0 has a PSD square root, can take L to be PSD as well



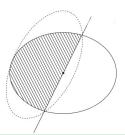
- **1** Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- ② Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output c.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid $E \cap \{y : \langle h, y \rangle \leq \langle h, c \rangle\}$
- 3 Let E'=E(c',Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- **1** Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- ② Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output c.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid $E \cap \{y : \langle h, y \rangle \leq \langle h, c \rangle\}$
- 3 Let E'=E(c',Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- **①** Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- ② Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output c.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid $E \cap \{y : \langle h, y \rangle \leq \langle h, c \rangle\}$
- 3 Let E'=E(c',Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- **1** Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- ② Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output c.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid $E \cap \{y : \langle h, y \rangle \leq \langle h, c \rangle\}$
- 3 Let E'=E(c',Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".

Outline

Description of The Ellipsoid Method

2 Properties

Correctness

Theorem

If the ellipsoid algorithm terminates, then it either outputs $x \in K$ or correctly declares that K is empty.

- Algorithm outputs some x only if it was certified in K by the separation oracle
- $E \supset K$ is maintained throughout the algorithm, by definition
- We are promised vol(K) < r only if $K = \emptyset$
- If algorithm outputs empty then $r > vol(E) \ge vol(K)$, and $K = \emptyset$.

Properties 6

Runtime

To prove that the ellipsoid method runs in polynomial time, we need the following lemma

Lemma

- The minimum volume ellipsoid E' containing half of another ellipsoid E can be computed in $\operatorname{poly}(n)$ operations.
- Moreover, the volume of E' is smaller than the volume of E by a factor of at least $e^{\frac{1}{2(n+1)}} \approx 1 + \frac{1}{2(n+1)}$.

This is tricky to show, but there is an explicit, easy-to-compute, closed form for the matrix and center of E^\prime in terms of the matrix and center of E. (See notes for proof)

Properties 7/7

Runtime

Theorem

The ellipsoid method terminates after $2(n+1) \ln \frac{R}{r}$ iterations. Moreover, each iteration can be implemented using poly(n) operations and a single call to the separation oracle.

- Volume of working ellipsoid starts off at R
- Decreases by a factor of $e^{\frac{1}{2(n+1)}}$ each iteration.
- After $2(n+1) \ln \frac{R}{r}$ interations, volume is less than r, triggering termination.

Properties

7/7

Runtime

Theorem

The ellipsoid method terminates after $2(n+1) \ln \frac{R}{r}$ iterations. Moreover, each iteration can be implemented using poly(n) operations and a single call to the separation oracle.

- Volume of working ellipsoid starts off at R
- Decreases by a factor of $e^{\frac{1}{2(n+1)}}$ each iteration.
- After $2(n+1) \ln \frac{R}{r}$ interations, volume is less than r, triggering termination.
- In each iteration, we
 - Call the separation oracle
 - Compute the minimum volume ellipsoid (poly(n) time by lemma)

ullet Compute the volume of E' (reduces to determinant computation).

Properties 7/7