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Duality Correspondances

There are two equivalent ways to represent a convex set
The family of points in the set (standard or “primal” representation)
The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a
variety of “duality” relationships among convex sets, cones, and
functions.

Definition
“Duality” is a woefully overloaded mathematical term for a relation that
groups elements of a set into “dual” pairs.
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Theorem
A closed convex set S is the intersection of all closed halfspaces H
containing it.

Proof
Clearly, S ⊆

⋂
H∈HH

To prove equality, consider x ̸∈ S

By the separating hyperplane theorem, there is a hyperplane
separating S from x

Therefore there is H ∈ H with x ̸∈ H, hence x ̸∈
⋂

H∈HH
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Theorem
A closed convex cone K is the intersection of all closed homogeneous
halfspaces H containing it.

Proof
For every non-homogeneous halfspace ⟨a, x⟩ ≤ b containing K,
the smaller homogeneous halfspace ⟨a, x⟩ ≤ 0 contains K as well.
Therefore, can discard non-homogeneous halfspaces without
changing the intersection
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Theorem
A convex function is the point-wise supremum of all affine functions
under-estimating it everywhere.

Proof
epi f convex, therefore is the intersection of family of halfspaces H
Each h ∈ H can be written as ⟨a, x⟩ − t ≤ b, for some a ∈ Rn and
b ∈ R. (Why?)

Constrains (x, t) ∈ epi f to ⟨a, x⟩ − b ≤ t

f(x) is the lowest t s.t. (x, t) ∈ epi f

Therefore, f(x) is the point-wise maximum of ⟨a, x⟩ − b over all
halfspaces h(a, b) ∈ H.
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Polar Duality of Convex Sets

One way of representing all the halfspaces containing a convex set.

Polar
Let S ⊆ Rn be a closed convex set containing the origin. The polar of
S is defined as follows:

S◦ = {y : ⟨y, x⟩ ≤ 1 for all x ∈ S}

Note
Every halfspace ⟨a, x⟩ ≤ b with b ̸= 0 can be written as a
“normalized” inequality ⟨y, x⟩ ≤ 1, by dividing by b.
S◦ can be thought of as the normalized representations of
halfspaces containing S.
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S◦ = {y : ⟨y, x⟩ ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.
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S◦ = {y : ⟨y, x⟩ ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

2 Follows from representation as intersection of halfspaces
3 S contains an ϵ-ball centered at the origin, so S◦ is contained in

the 1
ϵ ball centered at the origin.
Take y ∈ S◦

x := ϵ y
||y||2 ∈ S

1 ≥ ⟨y, x⟩ = ϵ||y||2, so ||y||2 ≤ 1
ϵ
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S◦ = {y : ⟨y, x⟩ ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

S◦◦ = {x : ⟨x, y⟩ ≤ 1 for all y ∈ S◦}

1 S ⊆ S◦◦ is easy: x̂ ∈ S =⇒ ∀y ∈ S◦ ⟨x̂, y⟩ ≤ 1 =⇒ x̂ ∈ S◦◦

Take x̂ ̸∈ S, by SSHT and 0 ∈ S, there is a halfspace ⟨z, x⟩ ≤ 1
containing S but not x̂ (i.e. ⟨z, x̂⟩ > 1)
z ∈ S◦, therefore x̂ ̸∈ S◦◦
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S◦ = {y : ⟨y, x⟩ ≤ 1 for all x ∈ S}

Properties of the Polar
1 S◦◦ = S

2 S◦ is a closed convex set containing the origin
3 When 0 is in the interior of S, then S◦ is bounded.

Note
When S is non-convex, S◦ = (convexhull(S))◦, and
S◦◦ = convexhull(S).
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Examples

Norm Balls
The polar of the Euclidean unit ball is itself (we say it is self-dual)
The polar of the 1-norm ball is the ∞-norm ball
More generally, the p-norm ball is dual to the q-norm ball, where
1
p + 1

q = 1
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Examples

Polytopes

Given a polytope P represented as Ax ⪯ 1⃗, the polar P ◦ is the convex
hull of the rows of A.

Facets of P correspond to vertices of P ◦.
Dually, vertices of P correspond to facets of P ◦.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar
The polar of a closed convex cone K is given by

K◦ = {y : ⟨y, x⟩ ≤ 0 for all x ∈ K}

Note
∀x ∈ K ⟨y, x⟩ ≤ 1 ⇐⇒ ∀x ∈ K ⟨y, x⟩ ≤ 0

K◦ represents all homogeneous halfspaces containing K.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar
The polar of a closed convex cone K is given by

K◦ = {y : ⟨y, x⟩ ≤ 0 for all x ∈ K}

Dual Cone
By convention, K∗ = −K◦ is referred to as the dual cone of K.

K∗ = {y : ⟨y, x⟩ ≥ 0 for all x ∈ K}
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K◦ = {y : ⟨y, x⟩ ≤ 0 for all x ∈ K}

Properties of the Polar Cone
1 K◦◦ = K

2 K◦ is a closed convex cone
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K◦ = {y : ⟨y, x⟩ ≤ 0 for all x ∈ K}

Properties of the Polar Cone
1 K◦◦ = K

2 K◦ is a closed convex cone

1 Same as before
2 Intersection of homogeneous halfspaces
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Examples

The polar of a subspace is its orthogonal complement
The polar cone of the nonnegative orthant is the nonpositive
orthant

Self-dual

The polar of a polyhedral cone Ax ⪯ 0 is the conic hull of the rows
of A
The polar of the cone of positive semi-definite matrices is the cone
of negative semi-definite matrices

Self-dual

Duality of Convex Sets 10/14



Recall: Farkas’ Lemma
Let K be a closed convex cone and let w ̸∈ K. There is z ∈ Rn such
that ⟨z, x⟩ ≤ 0 for all x ∈ K, and ⟨z, w⟩ > 0.

Equivalently: there is z ∈ K◦ with ⟨z, w⟩ > 0.
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Conjugation of Convex Functions

Conjugate
For a function f : Rn → R

⋃
{∞}, the conjugate of f is

f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Note
f∗(y) is the minimal value of β such that the affine function
⟨y, x⟩ − β underestimates f(x) everywhere.
Equivalently, the distance we need to lower the hyperplane
⟨y, x⟩ − t = 0 in order to get a supporting hyperplane to epi f .
⟨y, x⟩ − t = f∗(y) are the supporting hyperplanes of epi f
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f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)
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f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

2 Supremum of affine functions of y
3 By definition of f∗(y)
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f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

1 f∗∗(x) = supy⟨y, x⟩ − f∗(y) by definition

For fixed y, f∗(y) is minimal β such that ⟨y, x⟩−β underestimates f .
Therefore f∗∗(x) is the maximum, over all y, of affine
underestimates ⟨y, x⟩ − β of f
By our earlier characterization, this is equal to f when f is convex.
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Note
When f is non-convex, f∗ = (convexhull(f))∗, and
f∗∗ = convexhull(f).

Duality of Convex Functions 13/14



f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

1 f∗∗(x) = supy⟨y, x⟩ − f∗(y) by definition
For fixed y, f∗(y) is minimal β such that ⟨y, x⟩−β underestimates f .
Therefore f∗∗(x) is the maximum, over all y, of affine
underestimates ⟨y, x⟩ − β of f

By our earlier characterization, this is equal to f when f is convex.

Duality of Convex Functions 13/14



f∗(y) = sup
x
(⟨y, x⟩ − f(x))

Properties of the Conjugate
1 f∗∗ = f when f is convex
2 f∗ is a convex function
3 xy ≤ f(x) + f∗(y) for all x, y ∈ Rn (Fenchel’s Inequality)

1 f∗∗(x) = supy⟨y, x⟩ − f∗(y) by definition
For fixed y, f∗(y) is minimal β such that ⟨y, x⟩−β underestimates f .
Therefore f∗∗(x) is the maximum, over all y, of affine
underestimates ⟨y, x⟩ − β of f
By our earlier characterization, this is equal to f when f is convex.

Duality of Convex Functions 13/14



Examples

Affine function: f(x) = ax+ b. Conjugate has f∗(a) = −b, and ∞
elsewhere
f(x) = x2/2 is self-conjugate
Exponential: f(x) = ex. Conjugate has f∗(y) = y log y − y for
y ∈ R+, and ∞ elsewhere.
Convex Quadratic: f(x) = 1

2x
⊺Qx with Q positive definite.

Conjugate is f∗(y) = 1
2y

⊺Q−1y

Log-sum-exp: f(x) = log(
∑

i e
xi). Conjugate has

f∗(y) =
∑

i yi log yi for y ⪰ 0 and ⟨⃗1, y⟩ = 1, ∞ otherwise.
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