CS675: Convex and Combinatorial Optimization Fall 2023
 Geometric Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi

Outline

(9) Convexity and Duality

(2) Duality of Convex Sets

(3) Duality of Convex Functions

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Definition

"Duality" is a woefully overloaded mathematical term for a relation that groups elements of a set into "dual" pairs.

Theorem

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Theorem

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Proof

- Clearly, $S \subseteq \bigcap_{H \in \mathcal{H}} H$
- To prove equality, consider $x \notin S$
- By the separating hyperplane theorem, there is a hyperplane separating S from x
- Therefore there is $H \in \mathcal{H}$ with $x \notin H$, hence $x \notin \bigcap_{H \in \mathcal{H}} H$

Theorem

A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

Theorem

A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

Proof

- For every non-homogeneous halfspace $\langle a, x\rangle \leq b$ containing K, the smaller homogeneous halfspace $\langle a, x\rangle \leq 0$ contains K as well.
- Therefore, can discard non-homogeneous halfspaces without changing the intersection

Theorem
A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Theorem

A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Proof

- epi f convex, therefore is the intersection of family of halfspaces \mathcal{H}
- Each $h \in \mathcal{H}$ can be written as $\langle a, x\rangle-t \leq b$, for some $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. (Why?)
- Constrains $(x, t) \in \mathbf{e p i} f$ to $\langle a, x\rangle-b \leq t$
- $f(x)$ is the lowest t s.t. $(x, t) \in$ epi f
- Therefore, $f(x)$ is the point-wise maximum of $\langle a, x\rangle-b$ over all halfspaces $h(a, b) \in \mathcal{H}$.

Outline

(1) Convexity and Duality

(2) Duality of Convex Sets
(3) Duality of Convex Functions

Polar Duality of Convex Sets

One way of representing all the halfspaces containing a convex set.

Polar

Let $S \subseteq \mathbb{R}^{n}$ be a closed convex set containing the origin. The polar of S is defined as follows:

$$
S^{\circ}=\{y:\langle y, x\rangle \leq 1 \text { for all } x \in S\}
$$

Note

- Every halfspace $\langle a, x\rangle \leq b$ with $b \neq 0$ can be written as a "normalized" inequality $\langle y, x\rangle \leq 1$, by dividing by b.
- S° can be thought of as the normalized representations of halfspaces containing S.

$$
S^{\circ}=\{y:\langle y, x\rangle \leq 1 \text { for all } x \in S\}
$$

Properties of the Polar

(1) $S^{\circ \circ}=S$
(2) S° is a closed convex set containing the origin
(When 0 is in the interior of S, then S° is bounded.

$$
S^{\circ}=\{y:\langle y, x\rangle \leq 1 \text { for all } x \in S\}
$$

Properties of the Polar

(1) $S^{\circ \circ}=S$
(2) S° is a closed convex set containing the origin
(3) When 0 is in the interior of S, then S° is bounded.
(2) Follows from representation as intersection of halfspaces
(3) S contains an ϵ-ball centered at the origin, so S° is contained in the $\frac{1}{\epsilon}$ ball centered at the origin.

- Take $y \in S^{\circ}$
- $x:=\epsilon \frac{y}{\|y\|_{2}} \in S$
- $1 \geq\langle y, x\rangle=\epsilon\|y\|_{2}$, so $\|y\|_{2} \leq \frac{1}{\epsilon}$

$$
S^{\circ}=\{y:\langle y, x\rangle \leq 1 \text { for all } x \in S\}
$$

Properties of the Polar

(1) $S^{\circ \circ}=S$
(2) S° is a closed convex set containing the origin
(3) When 0 is in the interior of S, then S° is bounded.

$$
S^{\circ \circ}=\left\{x:\langle x, y\rangle \leq 1 \text { for all } y \in S^{\circ}\right\}
$$

(1) $S \subseteq S^{\circ \circ}$ is easy: $\widehat{x} \in S \Longrightarrow \forall y \in S^{\circ}\langle\widehat{x}, y\rangle \leq 1 \Longrightarrow \widehat{x} \in S^{\circ \circ}$

- Take $\widehat{x} \notin S$, by SSHT and $0 \in S$, there is a halfspace $\langle z, x\rangle \leq 1$ containing S but not \widehat{x} (i.e. $\langle z, \widehat{x}\rangle>1$)
- $z \in S^{\circ}$, therefore $\widehat{x} \notin S^{\circ \circ}$

$$
S^{\circ}=\{y:\langle y, x\rangle \leq 1 \text { for all } x \in S\}
$$

Properties of the Polar

(1) $S^{\circ \circ}=S$
(2) S° is a closed convex set containing the origin
(3) When 0 is in the interior of S, then S° is bounded.

Note

When S is non-convex, $S^{\circ}=(\text { convexhull }(S))^{\circ}$, and $S^{\circ \circ}=\operatorname{convexhull}(S)$.

Examples

The unit sphere for different metrics: $\|x\|_{l_{p}}=1$ in \mathbb{R}^{2}.

Norm Balls

- The polar of the Euclidean unit ball is itself (we say it is self-dual)
- The polar of the 1-norm ball is the ∞-norm ball
- More generally, the p-norm ball is dual to the q-norm ball, where $\frac{1}{p}+\frac{1}{q}=1$

Examples

Polytopes

Given a polytope P represented as $A x \preceq \overrightarrow{1}$, the polar P° is the convex hull of the rows of A.

- Facets of P correspond to vertices of P°.
- Dually, vertices of P correspond to facets of P°.

Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by

$$
K^{\circ}=\{y:\langle y, x\rangle \leq 0 \text { for all } x \in K\}
$$

Note

- $\forall x \in K\langle y, x\rangle \leq 1 \Longleftrightarrow \forall x \in K\langle y, x\rangle \leq 0$
- K° represents all homogeneous halfspaces containing K.

Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by

$$
K^{\circ}=\{y:\langle y, x\rangle \leq 0 \text { for all } x \in K\}
$$

Dual Cone

By convention, $K^{*}=-K^{\circ}$ is referred to as the dual cone of K.

$$
K^{*}=\{y:\langle y, x\rangle \geq 0 \text { for all } x \in K\}
$$

$$
K^{\circ}=\{y:\langle y, x\rangle \leq 0 \text { for all } x \in K\}
$$

Properties of the Polar Cone

(1) $K^{\circ \circ}=K$
(2) K° is a closed convex cone

$$
K^{\circ}=\{y:\langle y, x\rangle \leq 0 \text { for all } x \in K\}
$$

Properties of the Polar Cone

(1) $K^{\circ \circ}=K$
(2) K° is a closed convex cone

- Same as before
(2) Intersection of homogeneous halfspaces

Examples

- The polar of a subspace is its orthogonal complement
- The polar cone of the nonnegative orthant is the nonpositive orthant
- Self-dual
- The polar of a polyhedral cone $A x \preceq 0$ is the conic hull of the rows of A
- The polar of the cone of positive semi-definite matrices is the cone of negative semi-definite matrices
- Self-dual

Recall: Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^{n}$ such that $\langle z, x\rangle \leq 0$ for all $x \in K$, and $\langle z, w\rangle>0$.

Equivalently: there is $z \in K^{\circ}$ with $\langle z, w\rangle>0$.

Outline

(1) Convexity and Duality

(2) Duality of Convex Sets

(3) Duality of Convex Functions

Conjugation of Convex Functions

Conjugate

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \bigcup\{\infty\}$, the conjugate of f is

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Note

- $f^{*}(y)$ is the minimal value of β such that the affine function $\langle y, x\rangle-\beta$ underestimates $f(x)$ everywhere.
- Equivalently, the distance we need to lower the hyperplane $\langle y, x\rangle-t=0$ in order to get a supporting hyperplane to epi f.
- $\langle y, x\rangle-t=f^{*}(y)$ are the supporting hyperplanes of epi f

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)
(2) Supremum of affine functions of y
(3) By definition of $f^{*}(y)$

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)
(1) $f^{* *}(x)=\sup _{y}\langle y, x\rangle-f^{*}(y)$ by definition

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)
(1) - $f^{* *}(x)=\sup _{y}\langle y, x\rangle-f^{*}(y)$ by definition

- For fixed $y, f^{*}(y)$ is minimal β such that $\langle y, x\rangle-\beta$ underestimates f.

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)
(1) - $f^{* *}(x)=\sup _{y}\langle y, x\rangle-f^{*}(y)$ by definition

- For fixed $y, f^{*}(y)$ is minimal β such that $\langle y, x\rangle-\beta$ underestimates f.
- Therefore $f^{* *}(x)$ is the maximum, over all y, of affine underestimates $\langle y, x\rangle-\beta$ of f

$$
f^{*}(y)=\sup _{x}(\langle y, x\rangle-f(x))
$$

Properties of the Conjugate

(1) $f^{* *}=f$ when f is convex
(2) f^{*} is a convex function
(3) $x y \leq f(x)+f^{*}(y)$ for all $x, y \in \mathbb{R}^{n}$ (Fenchel's Inequality)
(1) - $f^{* *}(x)=\sup _{y}\langle y, x\rangle-f^{*}(y)$ by definition

- For fixed $y, f^{*}(y)$ is minimal β such that $\langle y, x\rangle-\beta$ underestimates f.
- Therefore $f^{* *}(x)$ is the maximum, over all y, of affine underestimates $\langle y, x\rangle-\beta$ of f
- By our earlier characterization, this is equal to f when f is convex.

Examples

- Affine function: $f(x)=a x+b$. Conjugate has $f^{*}(a)=-b$, and ∞ elsewhere
- $f(x)=x^{2} / 2$ is self-conjugate
- Exponential: $f(x)=e^{x}$. Conjugate has $f^{*}(y)=y \log y-y$ for $y \in \mathbb{R}_{+}$, and ∞ elsewhere.
- Convex Quadratic: $f(x)=\frac{1}{2} x^{\top} Q x$ with Q positive definite. Conjugate is $f^{*}(y)=\frac{1}{2} y^{\top} Q^{-1} y$
- Log-sum-exp: $f(x)=\log \left(\sum_{i} e^{x_{i}}\right)$. Conjugate has $f^{*}(y)=\sum_{i} y_{i} \log y_{i}$ for $y \succeq 0$ and $\langle\overrightarrow{1}, y\rangle=1, \infty$ otherwise.

