CS675: Convex and Combinatorial Optimization Fall 2023 Geometric Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi

2 Duality of Convex Sets

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Duality Correspondances

There are two equivalent ways to represent a convex set

- The family of points in the set (standard or "primal" representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Definition

"Duality" is a woefully overloaded mathematical term for a relation that groups elements of a set into "dual" pairs.

Convexity and Duality

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Proof

- Clearly, $S \subseteq \bigcap_{H \in \mathcal{H}} H$
- To prove equality, consider $x \notin S$
- By the separating hyperplane theorem, there is a hyperplane separating *S* from *x*
- Therefore there is $H \in \mathcal{H}$ with $x \notin H$, hence $x \notin \bigcap_{H \in \mathcal{H}} H$

A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

Proof

- For every non-homogeneous halfspace ⟨a, x⟩ ≤ b containing K, the smaller homogeneous halfspace ⟨a, x⟩ ≤ 0 contains K as well.
- Therefore, can discard non-homogeneous halfspaces without changing the intersection

A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Proof

- epi f convex, therefore is the intersection of family of halfspaces H
- Each $h \in \mathcal{H}$ can be written as $\langle a, x \rangle t \leq b$, for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. (Why?)
 - Constrains $(x,t)\in \operatorname{epi} f$ to $\langle a,x
 angle -b\leq t$
- f(x) is the lowest t s.t. $(x, t) \in epi f$
- Therefore, f(x) is the point-wise maximum of ⟨a, x⟩ − b over all halfspaces h(a, b) ∈ H.

Convexity and Duality

Polar Duality of Convex Sets

One way of representing all the halfspaces containing a convex set.

Polar

Let $S \subseteq \mathbb{R}^n$ be a closed convex set containing the origin. The polar of S is defined as follows:

$$S^{\circ} = \{y : \langle y, x \rangle \le 1 \text{ for all } x \in S\}$$

Note

- Every halfspace $\langle a, x \rangle \leq b$ with $b \neq 0$ can be written as a "normalized" inequality $\langle y, x \rangle \leq 1$, by dividing by *b*.
- S° can be thought of as the normalized representations of halfspaces containing S.

$$S^{\circ} = \{y : \langle y, x \rangle \le 1 \text{ for all } x \in S\}$$

- ${f O}$ S° is a closed convex set containing the origin
- **(a)** When 0 is in the interior of S, then S° is bounded.

$$S^{\circ} = \{y : \langle y, x \rangle \le 1 \text{ for all } x \in S\}$$

 $I S^{\circ \circ} = S$

- ${f O}$ S° is a closed convex set containing the origin
- **(a)** When 0 is in the interior of S, then S° is bounded.

Pollows from representation as intersection of halfspaces

S contains an ε-ball centered at the origin, so S° is contained in the ¹/_ε ball centered at the origin.

• Take
$$y \in S^{\circ}$$

•
$$x := \epsilon \frac{y}{||y||_2} \in S$$

•
$$1 \geq \langle y, x
angle = \epsilon ||y||_2$$
, so $||y||_2 \leq rac{1}{\epsilon}$

$$S^{\circ} = \{y : \langle y, x \rangle \le 1 \text{ for all } x \in S\}$$

2 S° is a closed convex set containing the origin

③ When 0 is in the interior of S, then S° is bounded.

$$S^{\circ\circ} = \{x : \langle x, y \rangle \le 1 \text{ for all } y \in S^{\circ}\}$$

$$S^{\circ} = \{y : \langle y, x \rangle \le 1 \text{ for all } x \in S\}$$

- ${f O}$ S° is a closed convex set containing the origin
- **③** When 0 is in the interior of S, then S° is bounded.

Note

When S is non-convex, $S^{\circ} = (convexhull(S))^{\circ}$, and $S^{\circ\circ} = convexhull(S)$.

The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

Norm Balls

- The polar of the Euclidean unit ball is itself (we say it is self-dual)
- The polar of the 1-norm ball is the $\infty\text{-norm}$ ball
- More generally, the p-norm ball is dual to the q-norm ball, where $\frac{1}{p}+\frac{1}{q}=1$

Polytopes

Given a polytope *P* represented as $Ax \leq \vec{1}$, the polar P° is the convex hull of the rows of *A*.

- Facets of P correspond to vertices of P° .
- Dually, vertices of P correspond to facets of P° .

Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by $K^\circ = \{y: \langle y,x\rangle \leq 0 \text{ for all } x \in K\}$

Note

• $\forall x \in K \langle y, x \rangle \leq 1 \iff \forall x \in K \langle y, x \rangle \leq 0$

• K° represents all homogeneous halfspaces containing K.

Duality of Convex Sets

Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by $K^\circ = \{y: \langle y, x\rangle \leq 0 \text{ for all } x \in K\}$

Dual Cone

By convention, $K^* = -K^\circ$ is referred to as the dual cone of K. $K^* = \{y : \langle y, x \rangle \ge 0 \text{ for all } x \in K\}$

Duality of Convex Sets

$$K^{\circ} = \{ y : \langle y, x \rangle \le 0 \text{ for all } x \in K \}$$

- $\bigcirc K^{\circ\circ} = K$
- 2 K° is a closed convex cone

$$K^{\circ} = \{ y : \langle y, x \rangle \le 0 \text{ for all } x \in K \}$$

- $I K^{\circ \circ} = K$
- 2 K° is a closed convex cone

- Same as before
- Intersection of homogeneous halfspaces

- The polar of a subspace is its orthogonal complement
- The polar cone of the nonnegative orthant is the nonpositive orthant
 - Self-dual
- The polar of a polyhedral cone $Ax \preceq 0$ is the conic hull of the rows of A
- The polar of the cone of positive semi-definite matrices is the cone of negative semi-definite matrices
 - Self-dual

Recall: Farkas' Lemma

Let *K* be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $\langle z, x \rangle \leq 0$ for all $x \in K$, and $\langle z, w \rangle > 0$.

Equivalently: there is $z \in K^{\circ}$ with $\langle z, w \rangle > 0$.

Duality of Convex Sets

Convexity and Duality

2 Duality of Convex Sets

Conjugation of Convex Functions

Conjugate

For a function $f : \mathbb{R}^n \to \mathbb{R} \bigcup \{\infty\}$, the conjugate of f is $f^*(y) = \sup_x (\langle y, x \rangle - f(x))$

Note

- $f^*(y)$ is the minimal value of β such that the affine function $\langle y, x \rangle \beta$ underestimates f(x) everywhere.
- Equivalently, the distance we need to lower the hyperplane $\langle y, x \rangle t = 0$ in order to get a supporting hyperplane to epi f.
- $\langle y,x\rangle t = f^*(y)$ are the supporting hyperplanes of ${
 m epi}\,f$

$$f^*(y) = \sup_{x} (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

③ $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

$$f^*(y) = \sup_{x} (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

3
$$xy \leq f(x) + f^*(y)$$
 for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

Supremum of affine functions of y

3 By definition of $f^*(y)$

$$f^*(y) = \sup_{x} (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

③ $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

•
$$f^{**}(x) = \sup_{y} \langle y, x \rangle - f^{*}(y)$$
 by definition

$$f^*(y) = \sup_x (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2) f^* is a convex function

③ $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

•
$$f^{**}(x) = \sup_{y} \langle y, x \rangle - f^{*}(y)$$
 by definition

For fixed y, f^{*}(y) is minimal β such that ⟨y, x⟩ − β underestimates f.

$$f^*(y) = \sup_x (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

• $xy \leq f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

•
$$f^{**}(x) = \sup_{y} \langle y, x \rangle - f^{*}(y)$$
 by definition

- For fixed y, f^{*}(y) is minimal β such that ⟨y, x⟩ − β underestimates f.
- Therefore $f^{**}(x)$ is the maximum, over all y, of affine underestimates $\langle y, x \rangle \beta$ of f

$$f^*(y) = \sup_x (\langle y, x \rangle - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

• $xy \leq f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

•
$$f^{**}(x) = \sup_{y} \langle y, x \rangle - f^{*}(y)$$
 by definition

- For fixed y, $f^*(y)$ is minimal β such that $\langle y, x \rangle \beta$ underestimates f.
- Therefore $f^{**}(x)$ is the maximum, over all y, of affine underestimates $\langle y, x \rangle \beta$ of f
- By our earlier characterization, this is equal to *f* when *f* is convex.

- Affine function: f(x) = ax + b. Conjugate has $f^*(a) = -b$, and ∞ elsewhere
- $f(x) = x^2/2$ is self-conjugate
- Exponential: $f(x) = e^x$. Conjugate has $f^*(y) = y \log y y$ for $y \in \mathbb{R}_+$, and ∞ elsewhere.
- Convex Quadratic: $f(x) = \frac{1}{2}x^{T}Qx$ with Q positive definite. Conjugate is $f^{*}(y) = \frac{1}{2}y^{T}Q^{-1}y$
- Log-sum-exp: $f(x) = \log(\sum_i e^{x_i})$. Conjugate has $f^*(y) = \sum_i y_i \log y_i$ for $y \succeq 0$ and $\langle \vec{1}, y \rangle = 1, \infty$ otherwise.