CS675: Convex and Combinatorial Optimization
Fall 2023

Geometric Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi



0 Convexity and Duality



Duality Correspondances

There are two equivalent ways to represent a convex set
@ The family of points in the set (standard or “primal” representation)
@ The set of halfspaces containing the set (“dual” representation)
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Duality Correspondances

There are two equivalent ways to represent a convex set
@ The family of points in the set (standard or “primal” representation)
@ The set of halfspaces containing the set (“dual” representation)

This equivalence between the two representations gives rise to a
variety of “duality” relationships among convex sets, cones, and
functions.

Definition
“Duality” is a woefully overloaded mathematical term for a relation that
groups elements of a set into “dual” pairs.
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A closed convex set S is the intersection of all closed halfspaces H
containing it.
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A closed convex set S is the intersection of all closed halfspaces H
containing it.

o Clearly, S C Nyey H
@ To prove equality, consider z ¢ S

@ By the separating hyperplane theorem, there is a hyperplane
separating S from z

@ Therefore there is H € H with z ¢ H, hence x & (\ycy H
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A closed convex cone K is the intersection of all closed homogeneous
halfspaces H containing it.
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A closed convex cone K is the intersection of all closed homogeneous
halfspaces H containing it.

@ For every non-homogeneous halfspace (a, z) < b containing K,
the smaller homogeneous halfspace (a,z) < 0 contains K as well.

@ Therefore, can discard non-homogeneous halfspaces without
changing the intersection
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A convex function is the point-wise supremum of all affine functions
under-estimating it everywhere.
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A convex function is the point-wise supremum of all affine functions
under-estimating it everywhere.

Proof
@ epi f convex, therefore is the intersection of family of halfspaces #H
@ Each h € H can be written as (a,z) — t < b, for some a € R" and

b € R. (Why?)
e Constrains (z,t) € epi f to (a,z) —b <t
@ f(z)isthe lowestts.t. (z,t) € epi f
@ Therefore, f(x) is the point-wise maximum of (a, z) — b over all
halfspaces h(a,b) € H.
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@ Duality of Convex Sets



Polar Duality of Convex Sets

One way of representing all the halfspaces containing a convex set.

Let S C R” be a closed convex set containing the origin. The polar of
S is defined as follows:

S ={y:(y,z) < 1lforallz € S}

A\,

@ Every halfspace (a,z) < b with b # 0 can be written as a
“normalized” inequality (y, z) < 1, by dividing by b.
@ S° can be thought of as the normalized representations of

halfspaces containing S.
Duality of Convex Sets
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S ={y:(y,z) <1lforallz e S}

Properties of the Polar

Q@ 5*°=5

@ S° is a closed convex set containing the origin

© When 0 is in the interior of S, then S° is bounded.
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S ={y:(y,z) <1lforallz e S}

Properties of the Polar
o SOO — S

@ S°is aclosed convex set containing the origin
© When 0 is in the interior of S, then S° is bounded.

@ Follows from representation as intersection of halfspaces

© S contains an e-ball centered at the origin, so S° is contained in
the 1 ball centered at the origin.
o Take y e S°
¢ z=cpr €8

° 1> (y,z) =ellyll2 so [lyll2 < ¢
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S ={y:(y,z) <1lforallz e S}

Properties of the Polar

Q s5°=5
@ S° is a closed convex set containing the origin
© When 0 is in the interior of S, then S° is bounded.

S ={x:(r,y) <1lforally € S°}

@ oS5CSiseasy:z€S — WyeS°(@,y)<1 = z€8°
e Take z ¢ S, by SSHT and 0 € S, there is a halfspace (z,z) <1
containing S but not z (i.e. (z,z) > 1)
@ z € S°, therefore 7 ¢ S°°
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S ={y:(y,z) <1lforallz e S}

Properties of the Polar

Q s5°=5

@ S° is a closed convex set containing the origin

© When 0 is in the interior of S, then S° is bounded.

When S is non-convex, S° = (convexhull(S))°, and
S°° = convexhull(S).
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Examples

The unit sphere for different metrics: ||z[|;, =1 in R?.

Norm Balls
@ The polar of the Euclidean unit ball is itself (we say it is self-dual)
@ The polar of the 1-norm ball is the co-norm ball

@ More generally, the p-norm ball is dual to the ¢g-norm ball, where
1 1
I, 1_7
p q
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Examples

Polytopes

Given a polytope P represented as Az < 1, the polar P° is the convex
hull of the rows of A.

@ Facets of P correspond to vertices of P°.
@ Dually, vertices of P correspond to facets of P°.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

The polar of a closed convex cone K is given by
K°={y:(y,z) <Oforallz € K}

.

oVre K (y,z) <1 < Ve € K (y,x) <0
@ K° represents all homogeneous halfspaces containing K.
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Polar Duality of Convex Cones

Polar duality takes a simplified form when applied to cones

The polar of a closed convex cone K is given by
K°={y:(y,z) <Oforallz € K}

.

Dual Cone

By convention, K* = —K° is referred to as the dual cone of K.
K*={y:(y,z) >0forallz € K}
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K°={y:(y,z) <Oforallz € K}

Properties of the Polar Cone

o Koo — K
@ K°is aclosed convex cone
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K°={y:(y,z) <Oforallz € K}

Properties of the Polar Cone

Q@ K*°=K
@ K°is aclosed convex cone

@ Same as before
@ Intersection of homogeneous halfspaces
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@ The polar of a subspace is its orthogonal complement

@ The polar cone of the nonnegative orthant is the nonpositive
orthant

o Self-dual
@ The polar of a polyhedral cone Az < 0 is the conic hull of the rows
of A

@ The polar of the cone of positive semi-definite matrices is the cone
of negative semi-definite matrices

e Self-dual
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Recall: Farkas’ Lemma

Let K be a closed convex cone and let w ¢ K. There is z € R™ such
that (z,z) < 0forall z € K, and (z,w) > 0.

Equivalently: there is z € K° with (z,w) > 0. J
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e Duality of Convex Functions



Conjugation of Convex Functions

(x)

\/J{n—mn)
Conjugate

For a function f : R™ — R {o0}, the conjugate of f is

) = sgp(<y,w> - f(=))

A,

@ f*(y) is the minimal value of 5 such that the affine function
(y,x) — f underestimates f(z) everywhere.

@ Equivalently, the distance we need to lower the hyperplane
(y,x) —t =0 in order to get a supporting hyperplane to epi f.

@ (y,x) —t = f*(y) are the supporting hyperplanes of epi f

Duality of Convex Functions

12/14



Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R™ (Fenchel’s Inequality)
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Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R™ (Fenchel’s Inequality)

@ Supremum of affine functions of y
© By definition of f*(y)
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Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R™ (Fenchel’s Inequality)

Q@ o )= sup, (y, r) — f*(y) by definition
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Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R™ (Fenchel’s Inequality)

Q@ o f*(x)=sup,(y,z) — f*(y) by definition
o For fixed y, f*(y) is minimal 8 such that (y, z) — 8 underestimates f.
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Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R™ (Fenchel’s Inequality)

Q@ o )= supy(y x) — f*(y) by definition
o For fixed y, f*(y) is minimal 8 such that (y, z) — 8 underestimates f.
o Therefore f**(z) is the maximum, over all y, of affine
underestimates (y,x) — 8 of f

Duality of Convex Functions 13/14



Properties of the Conjugate

@ /* = f when f is convex
@ f*is a convex function
Q zy < f(x) + f*(y) for all z,y € R (Fenchel's Inequality)

[**(z) = sup, (y, z) — f*(y) by definition

For fixed y, f*(y) is minimal 8 such that (y, ) — 8 underestimates f.
Therefore f**(z) is the maximum, over all y, of affine
underestimates (y,x) — 8 of f

By our earlier characterization, this is equal to f when f is convex. |
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@ Affine function: f(x) = az + b. Conjugate has f*(a) = —b, and oo
elsewhere

e f(x) = x?/2is self-conjugate

@ Exponential: f(z) = e*. Conjugate has f*(y) = ylogy — y for
y € R, and oo elsewhere.

@ Convex Quadratic: f(z) = 127Qx with @ positive definite.
Conjugate is f*(y) = 3yTQ "'y

® Log-sum-exp: f(x) = log(3_, ™). Conjugate has
[*(y) =, yilogy; fory = 0and (1,y) = 1, co otherwise.
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