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Mathematical Optimization
The task of selecting the “best” configuration of a set of variables from
a “feasible” set of configurations.

minimize (or maximize) f(x)
subject to x ∈ X

Terminology: decision variable(s), objective function, feasible set,
optimal solution, optimal value
Two main classes: continuous and combinatorial
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Continuous Optimization Problems
Optimization problems where feasible set X is a connected subset of
Euclidean space, and f is a continuous function.

Instances typically formulated as follows.

minimize f(x)
subject to gi(x) ≤ bi, for i ∈ C.

Objective function f : Rn → R.
Constraint functions gi : Rn → R. The inequality gi(x) ≤ bi is the
i’th constraint.
In general, intractable to solve efficiently (NP hard)
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Convex Optimization Problem
A continuous optimization problem where f is a convex function on X ,
and X is a convex set.

Convex function: f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all
x, y ∈ X and α ∈ [0, 1]
Convex set: αx+ (1− α)y ∈ X , for all x, y ∈ X and α ∈ [0, 1]
Convexity of X implied by convexity of gi’s
For maximization problems, f should be concave
Typically solvable efficiently (i.e. in polynomial time)
Encodes optimization problems from a variety of application areas

Convex Set
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Convex Optimization Example: Least Squares
Regression

Given a set of measurements (a1, b1), . . . , (am, bm), where ai ∈ Rn is
the i’th input and bi ∈ R is the i’th output, find the linear function
f : Rn → R best explaining the relationship between inputs and
outputs.

f(a) = ⟨x, a⟩ for some x ∈ Rn

Least squares: minimize
mean-square error.

minimize ||Ax− b||22
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Convex Optimization Example: Minimum Cost Flow

Given a directed network G = (V,E) with cost ce ∈ R+ per unit of
traffic on edge e, and capacity de, find the minimum cost routing of r
divisible units of traffic from s to t.
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minimize
∑

e∈E cexe
subject to

∑
e←v xe =

∑
e→v xe, for v ∈ V \ {s, t} .∑

e←s xe = r
xe ≤ de, for e ∈ E.
xe ≥ 0, for e ∈ E.

Generalizes to traffic-dependent costs. For example
ce(xe) = aex

2
e + bexe + ce.
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Combinatorial Optimization

Combinatorial Optimization Problem
An optimization problem where the feasible set X is finite.

e.g. X is the set of paths in a network, assignments of tasks to
workers, etc...
Again, NP-hard in general, but many are efficiently solvable (either
exactly or approximately)
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Combinatorial Optimization Example: Shortest Path

Given a directed network G = (V,E) with cost ce ∈ R+ on edge e, find
the minimum cost path from s to t.
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Combinatorial Optimization Example: Traveling
Salesman Problem

Given a set of cities V , with d(u, v) denoting the distance between
cities u and v, find the minimum length tour that visits all cities.
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Continuous vs Combinatorial Optimization

Some optimization problems are best formulated as one or the
other
Many problems, particularly in computer science and operations
research, can be formulated as both
This dual perspective can lead to structural insights and better
algorithms
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Example: Shortest Path

The shortest path problem can be encoded as a minimum cost flow
problem, using distances as the edge costs, unit capacities, and
desired flow rate 1
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minimize
∑

e∈E cexe
subject to

∑
e←v xe =

∑
e→v xe, for v ∈ V \ {s, t} .∑

e←s xe = 1
xe ≤ 1, for e ∈ E.
xe ≥ 0, for e ∈ E.

The optimum solution of the (linear) convex program above will assign
flow only on a shortest path.
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Course Goals

Recognize and model convex optimization problems, and develop
a general understanding of the relevant algorithms.
Formulate combinatorial optimization problems as convex
programs
Use both the discrete and continuous perspectives to design
algorithms and gain structural insights for optimization problems
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Who Should Take this Class

Anyone planning to do research in the design and analysis of
algorithms

Convex and combinatorial optimization have become an
indispensible part of every algorithmist’s toolkit

Students interested in theoretical machine learning and AI
Convex optimization underlies much of machine learning
Submodularity has recently emerged as an important abstraction
for feature selection, active learning, planning, and other
applications

Anyone else who solves or reasons about optimization problems:
electrical engineers, control theorists, operations researchers,
economists . . .

If there are applications in your field you would like to hear more
about, let me know.
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Who Should Not Take this Class

You don’t satisfy the prerequisites “in practice”
You are looking for a “cookbook” of optimization algorithms, and/or
want to learn how to use Gurobi, CPLEX, CVX, etc

This is a THEORY class
We will bias our attention towards simple yet theoretically insightful
algorithms and questions
We will not write code
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Course Outline

Weeks 1-5: Convex optimization basics and duality theory
Weeks 6-7: Combinatorial problems posed as linear and convex
programs
Weeks 8-9: Algorithms for convex optimization
Weeks 10-11: Matroid theory and optimization
Weeks 12-13: Submodular Function optimization
Week 14: Semidefinite programming and constraint satisfaction
problems
Week 15: Additional topics
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Basic Information

Lecture time: Mondays and Wednesdays 4:00pm - 5:50pm
Lecture place: DMC 260
Instructor: Shaddin Dughmi

Email: shaddin@usc.edu
Office: SAL 234
Office Hours: TBD

TA: Neel Patel
Email: neelbpat@usc.edu
Office Hours: TBD

Course Homepage:
https://viterbi-web.usc.edu/ shaddin/cs675fa23/index.html
References: Convex Optimization by Boyd and Vandenberghe,
and Combinatorial Optimization by Korte and Vygen. (Available
online through USC libraries.)
Additional References: Schrijver, Luenberger and Ye (available
online through USC libraries)
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Prerequisites

Mathematical maturity: Be good at proofs, at the graduate level.
Linear algebra at advanced undergrad / beginning grad level
Exposure to algorithms or optimization at advanced undergrad /
beginning grad level

CS570 or equivalent, or
CS270 and you did really well
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Requirements and Grading

This is an advanced elective class, so grade is not the point.
I assume you want to learn this stuff.

6-8 homeworks, 75% of grade.
Proof based.
Challenging.
Discussion allowed, even encouraged, but must write up solutions
independently.

Research project worth 25% of grade: Can be theoretical, applied,
or anything in between.
6 late days allowed total (use in integer amounts)
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