CS675: Convex and Combinatorial Optimization
Fall 2023

Introduction to Matroid Theory

Instructor: Shaddin Dughmi

Optimization over Sets

@ Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

Shortest paths

o Max-weight matching

o Independent set

]

1/30

Optimization over Sets

@ Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

e Shortest paths
o Max-weight matching
o Independent set
o ...
@ Set system: Pair (X, 7) where X is a finite ground set and 7 C 2%
are the feasible sets

1/30

Optimization over Sets

@ Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

e Shortest paths
o Max-weight matching
o Independent set
o ...
@ Set system: Pair (X, 7) where X is a finite ground set and 7 C 2%
are the feasible sets

@ Obijective: often “linear”, referred to as modular

1/30

Optimization over Sets

@ Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

e Shortest paths
o Max-weight matching
o Independent set
o ...
@ Set system: Pair (X, 7) where X is a finite ground set and 7 C 2%
are the feasible sets

@ Obijective: often “linear”, referred to as modular

@ Analogues of concave and convex: submodular and supermodular
(in no particular order!)

1/30

Optimization over Sets

@ Most combinatorial optimization problems can be thought of as
choosing the best set from a family of allowable sets

e Shortest paths
o Max-weight matching
o Independent set
o ...
@ Set system: Pair (X, 7) where X is a finite ground set and 7 C 2%
are the feasible sets

@ Obijective: often “linear”, referred to as modular
@ Analogues of concave and convex: submodular and supermodular
(in no particular order!)

@ Today, we will look only at optimizing modular objectives over an
extremely prolific family of set systems
o Related, directly or indirectly, to a large fraction of optimization
problems in P
@ Also pops up in submodular/supermodular optimization problems

1/30

0 Matroids and The Greedy Algorithm

Maximum Weight Forest Problem

Given an undirected graph G = (V, E), and weights w. € R on edges
e, find a maximum weight acyclic subgraph (aka forest) of G. J

@ Slight generalization of minimum weight spanning tree
@ We use n and m to denote |V| and | E|, respectively.

Matroids and The Greedy Algorithm 2/30

The Greedy Algorithm

Q@ B0
© Sort non-negative weight edges in decreasing order of weight
@ el,....,em, Withw; >wy > ... >w,, >0

Q Fori=1tom:
e if BJ{e;} is acyclic, add e; to B.

Matroids and The Greedy Algorithm 3/30

The Greedy Algorithm

Q@ B0
© Sort non-negative weight edges in decreasing order of weight
@ el,....,em, Withw; >wy > ... >w,, >0

Q Fori=1tom:
e if BJ{e;} is acyclic, add e; to B.

v

The greedy algorithm outputs a maximum-weight forest.

Matroids and The Greedy Algorithm 3/30

TSN
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

Matroids and The Greedy Algorithm 4/30

Ul L,
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

(1) and (2) are trivial, so let’s prove (3)

Matroids and The Greedy Algorithm 4/30

Ul L,
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

@ Sub-lemma: if C'is acyclic, then |C| = n — #components(C').
@ Induction

Matroids and The Greedy Algorithm 4/30

Ul L,
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

@ Sub-lemma: if C'is acyclic, then |C| = n — #components(C').
@ Induction
@ When |B| > |A|, this means #components(B) < #components(A)

Matroids and The Greedy Algorithm 4/30

Ul L,
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

@ Sub-lemma: if C'is acyclic, then |C| = n — #components(C').

@ Induction
@ When |B| > |A|, this means #components(B) < #components(A)
@ Can'’t be that all e € B are “inside” connected components of A

Matroids and The Greedy Algorithm 4/30

Ul L,
o)

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic

@ Sub-lemma: if C'is acyclic, then |C| = n — #components(C').

@ Induction
@ When |B| > |A|, this means #components(B) < #components(A)
@ Can'’t be that all e € B are “inside” connected components of A

@ Some e € B must “go between” connected components of A.
Matroids and The Greedy Algorithm 4/30

@ The empty set is acyclic
@ If Ais an acyclic set of edges, and B C A, then B is also acyclic.

o Contrapositive: if B cyclic then sois A

Q If A, B are acyclic, and |B| > |A|, then there is e € B\ A such that
AlJ{e} is acyclic
e Inductively: can extend A by adding |B| — |A| elements from B \ A

@ Sub-lemma: if C'is acyclic, then |C| = n — #components(C).

@ Induction
@ When |B| > |A|, this means #components(B) < #components(A)
@ Can'’t be that all e € B are “inside” connected components of A

@ Some e € B must “go between” connected components of A.
Matroids and The Greedy Algorithm 4/30

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest F* which “agrees” with the
algorithm’s choices on edges ey, .. ., e;.

@ i.e. if B; denotes the algorithm’s choice up to iteration 7, then
Bz’ = Fi*ﬂ{el,...,ei}

Matroids and The Greedy Algorithm 5/30

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest F* which “agrees” with the
algorithm’s choices on edges ey, .. ., e;.

@ i.e. if B; denotes the algorithm’s choice up to iteration 7, then
Bz’ = Fi*ﬂ{el,...,ei}

@ Assume true for step ¢« — 1, and consider step i

Matroids and The Greedy Algorithm 5/30

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest F* which “agrees” with the
algorithm’s choices on edges ey, .. ., e;.

@ i.e. if B; denotes the algorithm’s choice up to iteration 7, then
Bz' = Fi*ﬂ{el,...,ei}

@ Assume true for step ¢« — 1, and consider step i

o Ife; € By, then B;_; |J{e;} is cyclic. Since B;_; C F* |, then
e; ¢ F | (Property 2). So take F* = F* ;.

Matroids and The Greedy Algorithm 5/30

Proof

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest F* which “agrees” with the
algorithm’s choices on edges ey, .. ., e;.

@ i.e. if B; denotes the algorithm’s choice up to iteration 7, then
B; = FN{e1,...,ei}

@ Assume true for step ¢« — 1, and consider step i
o Ife; € By, then B;_; |J{e;} is cyclic. Since B;_; C F* |, then
e; ¢ F;*, (Property 2). So take F;" = F; ;.
@ Ife; € B, and e; € F;* |, build F;* by repeatedly extending B; using
E | (property 3)
o Recall that B; = B;,_1 | {e;} agrees with F* ; oney,...,e;—1.
o Fr=Fr U{e} \{er} forsome k > i
e F* has weight no less than F;* ,, so also optimal.

Matroids and The Greedy Algorithm

5/30

To prove optimality of greedy algorithm, all we needed was following.

A set system M = (X,) is a matroid if
Qhez
Q If Ac Zand B C A, then B € T (Downward Closure)

Q IfA,BeZand|B|>|A|,then3z e B\ Asuchthat AJ{z} €Z
(Exchange Property)

Matroids and The Greedy Algorithm 6/30

To prove optimality of greedy algorithm, all we needed was following.

A set system M = (X,) is a matroid if
Qhez
Q If Ac Zand B C A, then B € T (Downward Closure)

Q IfA,BeZand|B|>|A|,then3z e B\ Asuchthat AJ{z} €Z
(Exchange Property)

@ Three conditions above are called the matroid axioms
@ A € 7 is called an independent set of the matroid.

Matroids and The Greedy Algorithm 6/30

To prove optimality of greedy algorithm, all we needed was following.

A set system M = (X,) is a matroid if
Qler
@ IfAcZand B C A, then B € Z (Downward Closure)

Q IfA,BeZand|B|>|A|,then3z e B\ Asuchthat AJ{z} €Z
(Exchange Property)

@ Three conditions above are called the matroid axioms
@ A € 7 is called an independent set of the matroid.

@ The matroid whose independent sets are acyclic subgraphs is
called a graphic matroid

@ Other examples abound!

Matroids and The Greedy Algorithm 6/30

Example: Linear Matroid
@ X is a finite set of vectors {vi,...,v,,} CR”
@ S € T iff the vectors in S are linearly independent

@ Downward closure: If a set of vectors is linearly independent, then
every subset of it is also

@ Exchange property: Can always extend a low-dimension
independent set S by adding vectors from a higher dimension
independent set T’

Matroids and The Greedy Algorithm 7/30

Example: Uniform Matroid
@ X is an arbitrary finite set {1,...,n}.
@ SeTiff|S| <k.

@ Downward closure: If a set S has |S| < k then the same holds for
TCS.

@ Exchange property: If |S| < |T'| < k, then there is an element in
T\ S, and we can add it to S while preserving independence.

Matroids and The Greedy Algorithm

8/30

Example: Partition Matroid
@ X is the disjoint union of classes X;,..., X,

@ Each class X; has an upperbound k;.
@ ScZiff|SNX;| <kjforally

@ This is the “disjoint union” of a number of uniform matroids

Matroids and The Greedy Algorithm 9/30

Example: Transversal Matroid

@ Described by a bipartite graph £ C L x R
e X=1L
@ S e T iff there is a bipartite matching which matches S

@ Downward closure: If we can match S, then we can match T" C S.

@ Exchange property: If |T'| > |S| is matchable, then an augmenting
path/alternating path extends the matching of S to some z € T'\ S.

Matroids and The Greedy Algorithm 10/30

The Greedy Algorithm on Matroids

Q@ B0

© Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
o if BlJ{i} €Z, addito B.

The greedy algorithm returns the maximum weight feasible set for
every choice of weights if and only if the set system (X ,Z) is a matroid.

We already saw the “if” direction. We will skip “only if”.

Matroids and The Greedy Algorithm 11/30

The Greedy Algorithm on Matroids

Q@ B0

@ Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
o if BlJ{i} €Z, addito B.

Matroids and The Greedy Algorithm 12/30

The Greedy Algorithm on Matroids

Q@ B0

@ Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
o if BlJ{i} €Z, addito B.

@ To implement this, we need an independence oracle for step 3
o A subroutine which checks whether S € Z or not.
@ Runs intime O(nlogn) + nT', where T is runtime of the
independence oracle.

Matroids and The Greedy Algorithm 12/30

The Greedy Algorithm on Matroids

Q@ B0

@ Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
o if BlJ{i} €Z, addito B.

@ To implement this, we need an independence oracle for step 3
o A subroutine which checks whether S € Z or not.
@ Runs intime O(nlogn) + nT', where T is runtime of the
independence oracle.
@ For most “natural” matroids, independence oracle is easy to
implement efficiently
o Graphic matroid
o Linear matroid
o Uniform/partition matroid

e Transversal matroid
Matroids and The Greedy Algorithm 12/30

e Basic Terminology and Properties

Independent Sets, Bases, and Circuits

Consider a matroid M = (X,T).
@ Anindependent setisaset A € 7.

Basic Terminology and Properties 13/30

Independent Sets, Bases, and Circuits

Consider a matroid M = (X,T).
@ Anindependent setisaset A € 7.
@ A base of M is a maximal independent set

Basic Terminology and Properties 13/30

Independent Sets, Bases, and Circuits

Consider a matroid M = (X,T).
@ Anindependent setisaset A € 7.

@ A base of M is a maximal independent set
@ A base of S C X in M is maximal independent subset of S
e l.e. a base of the matroid after deleting S.

Basic Terminology and Properties 13/30

Independent Sets, Bases, and Circuits

Consider a matroid M = (X,T).
@ Anindependent setisaset A € 7.

@ A base of M is a maximal independent set
@ A base of S C X in M is maximal independent subset of S
e l.e. a base of the matroid after deleting S.

@ Acircuit S C X is a minimal dependent subset of X

Basic Terminology and Properties 13/30

Independent Sets, Bases, and Circuits

Consider a matroid M = (X,T).
@ Anindependent setisaset A € 7.

@ A base of M is a maximal independent set
@ A base of S C X in M is maximal independent subset of S
e l.e. a base of the matroid after deleting S.

@ Acircuit S C X is a minimal dependent subset of X

What are these for:
@ Graphic matroid
@ Linear matroid
@ Uniform matroid
@ Partition matroid
@ Transversal matroid

Basic Terminology and Properties 13/30

Rank
For every S C X, all bases of S in M have the same cardinality. \

@ Special case of S = X: all bases of M have the same cardinality.
@ Should remind you of vector space dimension

Basic Terminology and Properties 14/30

Rank
For every S C X, all bases of S in M have the same cardinality. \

@ Special case of S = X: all bases of M have the same cardinality.
@ Should remind you of vector space dimension

@ Follows directly from the exchange property. J

Basic Terminology and Properties 14/30

Rank
For every S C X, all bases of S in M have the same cardinality.

@ Special case of S = X: all bases of M have the same cardinality.
@ Should remind you of vector space dimension

@ Follows directly from the exchange property. |

The following analogue of vector space dimension is well-defined.

@ The Rank of S C X in M is the size of the maximal independent
subsets (i.e. bases) of S.

@ The rank of M is the size of the bases of M.
@ The function ranka(S) : 2% — N is called the rank function of M.

Basic Terminology and Properties 14/30

Rank
For every S C X, all bases of S in M have the same cardinality.

@ Special case of S = X: all bases of M have the same cardinality.
@ Should remind you of vector space dimension

@ Follows directly from the exchange property. |

The following analogue of vector space dimension is well-defined.

@ The Rank of S C X in M is the size of the maximal independent
subsets (i.e. bases) of S.

@ The rank of M is the size of the bases of M.
@ The function ranka(S) : 2% — N is called the rank function of M.

E.g.: Graphic matroid, linear matroid, transversal matroid
Basic Terminology and Properties 14/30

Span

Given S C X, span(S) = {i € X : rank(S) = rank(SU{i})}

@ i.e. S itself, plus the elements which would form a circuit if added
to a base of S

@ e.g.: Linear matroid, graphic matroid, uniform matroid.

Basic Terminology and Properties 15/30

Span

Given S C X, span(S) = {i € X : rank(S) = rank(SU{i})}

@ i.e. S itself, plus the elements which would form a circuit if added

to a base of S
@ e.g.: Linear matroid, graphic matroid, uniform matroid.

Observation
i €{1,...,n} is selected by the greedy algorithm iff
i & span({1,...,i—1})

Basic Terminology and Properties 15/30

Operations preserving Matroidness

Given M = (X,Z), consider the following operations:
@ Deletion: For B C X, we define M\ B = (X', T') with X’ = X'\ B,
I'={SCcX:5e1}
e Graphic: deleting edges from the graph

Basic Terminology and Properties 16/30

Operations preserving Matroidness

Given M = (X,Z), consider the following operations:
@ Deletion: For B C X, we define M\ B = (X', T') with X’ = X'\ B,
I'={SCcX:5e1}
e Graphic: deleting edges from the graph
@ Restriction: M|B = M\ B, where B is shorthand for X' \ B.

Basic Terminology and Properties 16/30

Operations preserving Matroidness

Given M = (X,Z), consider the following operations:
@ Deletion: For B C X, we define M\ B = (X', T') with X’ = X'\ B,
I'={SCcX:5e1}
e Graphic: deleting edges from the graph
@ Restriction: M|B = M \ B, where B is shorthand for X' \ B.
@ Disjoint union: Given M; = (X1,Z2) and My = (Xs,Zs) with
X1 N X = 0, we define

M, & My = (Xl UXQ, iAl UA2 A€ Il,AQ c IQ})
e Graphic: combining two node-disjoint graphs

Basic Terminology and Properties 16/30

Operations preserving Matroidness

Given M = (X,Z), consider the following operations:
@ Deletion: For B C X, we define M\ B = (X', T') with X’ = X'\ B,
I'={SCcX:5e1}

e Graphic: deleting edges from the graph
@ Restriction: M|B = M \ B, where B is shorthand for X' \ B.
@ Disjoint union: Given M; = (X1,Z2) and My = (Xs,Zs) with

X1 N X = 0, we define
M@ M, = (X UXQ,iAl Udz: ey 45 € 12})

e Graphic: combining two node-disjoint graphs

@ Contraction: Given B C X, let M/B = (X', ') with X’ = X \ B,
7 -{scx:B|Jse1}

e i.e. Think of B as always being included
e Graphic: contract the connected components of B

Basic Terminology and Properties 16/30

Operations preserving Matroidness

Given M = (X,Z), consider the following operations:
@ Deletion: For B C X, we define M\ B = (X', T') with X’ = X'\ B,
I'={SCcX:5e1}
e Graphic: deleting edges from the graph
@ Restriction: M|B = M\ B, where B is shorthand for X' \ B.

@ Disjoint union: Given M; = (X1,Z2) and My = (Xs,Zs) with
X1 N X = 0, we define

M, & My = (Xl UXQ, iAl UA2 A€ Il,AQ c IQ})
e Graphic: combining two node-disjoint graphs
@ Contraction: Given B C X, let M/B = (X', ') with X’ = X \ B,
I’:{SQX’:BUSGI}
e i.e. Think of B as always being included
e Graphic: contract the connected components of B
@ Others: truncation, dual, union...

Basic Terminology and Properties 16/30

Matroids as an Algebra of Tractable Discrete Problems

@ Optimization over matroids is “easy”, in the same way that
optimization over convex sets is “easy”

Basic Terminology and Properties 17/30

Matroids as an Algebra of Tractable Discrete Problems

@ Optimization over matroids is “easy”, in the same way that
optimization over convex sets is “easy”

@ Operations preserving set convexity are analogous to operations
preserving matroid structure

Basic Terminology and Properties 17/30

Matroids as an Algebra of Tractable Discrete Problems

@ Optimization over matroids is “easy”, in the same way that
optimization over convex sets is “easy”

@ Operations preserving set convexity are analogous to operations
preserving matroid structure

@ Arguably, matroids and submodular functions are discrete
analogues of convex sets and convex functions, respectively.

o Less exhaustive

Basic Terminology and Properties 17/30

e The Matroid Polytope

Viewing Matroids Polyhedrally

@ As is often the case with tractable discrete problems, we can view
their feasible set as a polyhedron

The Matroid Polytope 18/30

Viewing Matroids Polyhedrally

@ As is often the case with tractable discrete problems, we can view
their feasible set as a polyhedron

@ For M = (X,Z), the convex hull of independent sets can be
written as a polytope in a natural way

e The polytope is “solvable”, and admits a polytime separation oracle

The Matroid Polytope 18/30

Viewing Matroids Polyhedrally

@ As is often the case with tractable discrete problems, we can view
their feasible set as a polyhedron

@ For M = (X,Z), the convex hull of independent sets can be
written as a polytope in a natural way

e The polytope is “solvable”, and admits a polytime separation oracle
@ This perspective will be crucial for more advanced applications of
matroids

@ Optimization of linear functions over matroid intersections
@ Optimization of submodular functions over matroids
o ...

The Matroid Polytope 18/30

The Matroid Polytope

Polytope P(M) for M = (X, 1)

> xi <rankm(S), forSC X.
ieS
z; >0 fori € X.

@ Assigns a variable x; to every element i of the ground set
@ Each feasible z is a fractional subset of X
@ 0 < z; < 1 since the rank of a singleton is at most 1.

The Matroid Polytope 19/30

The Matroid Polytope

Polytope P(M) for M = (X, 1)

> xi <rankm(S), forSC X.
ieS
z; >0 fori € X.

@ Assigns a variable x; to every element i of the ground set
@ Each feasible z is a fractional subset of X
@ 0 < z; < 1 since the rank of a singleton is at most 1.

@ The 0-1 indicator vector z; for independent set I € T is in the
above polytope

The Matroid Polytope 19/30

The Matroid Polytope

Polytope P(M) for M = (X, T)

> xi <rankm(S), forSC X.
ieS
z; >0 fori € X.

@ Assigns a variable x; to every element i of the ground set
@ Each feasible z is a fractional subset of X
@ 0 < z; < 1 since the rank of a singleton is at most 1.
@ The 0-1 indicator vector z; for independent set I € T is in the
above polytope
@ In fact, we will show that P(M) is precisely the convex hull of
independent sets 7

The Matroid Polytope 19/30

The Matroid Polytope

Polytope P(M) for M = (X, T)

> xi <rankm(S), forSC X.
ieS
z; >0 fori € X.

@ Assigns a variable x; to every element i of the ground set
@ Each feasible z is a fractional subset of X
@ 0 < z; < 1 since the rank of a singleton is at most 1.

@ The 0-1 indicator vector z; for independent set I € T is in the
above polytope

@ In fact, we will show that P(M) is precisely the convex hull of
independent sets 7

@ Note: polytope has 2!*! constraints.

The Matroid Polytope 19/30

Integrality of the Matroid Polytope

Polytope P(M) for M = (X,7)

> x; < rankapm(S), for S C X.
€S
x; >0, fori e X.

P(M) = convexhull {z : I € T}

The Matroid Polytope 20/30

Integrality of the Matroid Polytope

Polytope P(M) for M = (X, 1)

> x; < rankapm(S), for S C X.
€S
x; >0, fori e X.

P(M) = convexhull {z : I € T}

@ ltis clear that P(M) D convezhull {z;: I € T}

The Matroid Polytope 20/30

Integrality of the Matroid Polytope

Polytope P(M) for M = (X,7)

> x; < rankapm(S), for S C X.
€S
x; >0, fori e X.

P(M) = convexhull {z : I € T}

@ ltis clear that P(M) D convezhull {z;: I € T}

@ To show that P(M) C convexhull {x; : I € Z}, we will show that
every vertex of P(M) equals z; for some I € 7.

The Matroid Polytope 20/30

Integrality of the Matroid Polytope

Polytope P(M) for M = (X,7)
> x; < rankapm(S), for S C X.
i€s
x; >0, fori e X.

P(M) = convexhull {z : I € T}

@ ltis clear that P(M) D convezhull {z;: I € T}

@ To show that P(M) C convexhull {x; : I € Z}, we will show that
every vertex of P(M) equals z; for some I € 7.

@ Recall: suffices to show that every linear function w”'z is
maximized over P(M) at some z; for I € 7.

The Matroid Polytope 20/30

Recall:The Greedy Algorithm

Q@ B0
© Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
e if Bl{i} €Z, addito B.

The greedy algorithm returns the maximum weight set for every choice
of weights if and only if the set system (X, T) is a matroid.

The Matroid Polytope 21/30

Recall:The Greedy Algorithm

Q@ B0
© Sort nonnegative elements of X in decreasing order of weight
o {1,...,n}twithw; >ws,>... >w, >0.

© Fori=1ton:
e if Bl{i} €Z, addito B.

The greedy algorithm returns the maximum weight set for every choice
of weights if and only if the set system (X, T) is a matroid.

@ We can think of the greedy algorithm as computing an indicator
vector 2* = zp € P(M)
@ We will show that z* maximizes (w, z) over x € P(M).

The Matroid Polytope 21/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

The Matroid Polytope 22/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

@ Therefore, z} = rank[l : i] — rank[l : i — 1] for nonneg-weight 1,
and z; = 0 for negative-weight <.

szx = Zw,x = sz (rank[l : i) —rank[l :i—1])

ieX

The Matroid Polytope 22/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

@ Therefore, z} = rank[l : i] — rank[l : i — 1] for nonneg-weight 1,
and z; = 0 for negative-weight <.

szx = Zw,x = sz (rank[l : i) —rank[l :i—1])

ieX
° ConS|der an arbitrary = € P(M)

szx, < Zwm =

ieX

T1 T2 T3z T4

The Matroid Polytope 22/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

@ Therefore, z} = rank[l : i] — rank[l : i — 1] for nonneg-weight 1,
and z; = 0 for negative-weight <.

szm = Zw,az = sz (rank[l : i) —rank[l :i—1])

ieX
° Con3|der an arbnrary x € P(M)

szxz < Zwm = Z —wiy1)z(l:4)

ieX i=1

T1 T2 T3z T4

The Matroid Polytope 22/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

@ Therefore, z} = rank[l : i] — rank[l : i — 1] for nonneg-weight 1,
and z; = 0 for negative-weight <.

szm = Zw,w = sz (rank[l : i) —rank[l :i—1])

ieX
° Con3|der an arbnrary x € P(M)

szxz < Zwm = Z —wiy1)z(l:4)

ieX i=1

< Z — wit1)rank(1 : 7)

The Matroid Polytope 22/30

Recall: Observation

i € {1,...,n} selected by greedy algorithm iff i ¢ span({1,...,71 —1})
@ ie. ifrank[l:i] —rank[l:i—1] =1

@ Therefore, z} = rank[l : i] — rank[l : i — 1] for nonneg-weight 1,
and z; = 0 for negative-weight <.

szx = Zw,x = sz (rank[l : i) —rank[l :i—1])

ieX
° ConS|der an arbltrary x € P(M)

szx, < Zwm = Z —wiy1)z(l:4)

ieX i=1

< Z — wit1)rank(1 : 7)

= sz (rank[l : i) —rank[l:i—1])

The Matroid Polytope 22/30

The Matroid Base Polytope

@ The matroid polytope is the convex hull of independent sets
e Graphic: convex hull of forests

@ What if we wish to consider only “full-rank” sets?
e Graphic: spanning trees

The Matroid Polytope 23/30

The Matroid Base Polytope

@ The matroid polytope is the convex hull of independent sets
e Graphic: convex hull of forests

@ What if we wish to consider only “full-rank” sets?
e Graphic: spanning trees

Polytope Ppuse(M) for M = (X,)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

z; > 0, fori e X.

@ The 0-1 indicator vector =5 for a base B of M is in above polytope

The Matroid Polytope 23/30

The Matroid Base Polytope

@ The matroid polytope is the convex hull of independent sets
e Graphic: convex hull of forests

@ What if we wish to consider only “full-rank” sets?
e Graphic: spanning trees

Polytope Ppuse(M) for M = (X,)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

z; > 0, fori e X.

@ The 0-1 indicator vector =5 for a base B of M is in above polytope

@ In fact, we will show that P, (M) is precisely the convex hull of
bases of M

The Matroid Polytope 23/30

Polytope Ppuse(M) for M = (X, T)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

z; > 0, fori e X.

Prase(M) = convexhull {zp : B is a base of M}

The Matroid Polytope 24/30

Polytope Ppuse(M) for M = (X, T)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

z; > 0, fori e X.

Prase(M) = convexhull {zp : B is a base of M}

@ As before, one direction is obvious:
Prase(M) 2 convexhull {zp : B is a base of M}

The Matroid Polytope 24/30

Polytope Ppuse(M) for M = (X, T)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

x; > 0, fori e X.

Prase(M) = convexhull {zp : B is a base of M}

@ As before, one direction is obvious:
Prase(M) 2 convexhull {zp : B is a base of M}

@ For the other direction, take = € Pyyse(M)

The Matroid Polytope 24/30

Polytope Ppuse(M) for M = (X, T)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

x; > 0, fori e X.

Prase(M) = convexhull {zp : B is a base of M}

@ As before, one direction is obvious:
Prase(M) 2 convexhull {zp : B is a base of M}

@ For the other direction, take = € Pyyse(M)

@ Since z € P(M), z is a convex combination of independent sets
L,.... I of M.

The Matroid Polytope 24/30

Polytope Ppuse(M) for M = (X, T)

> x; < rankapm(S), for S C X.
€S

> x; = rank(M)

1EX

x; > 0, fori e X.

Prase(M) = convexhull {zp : B is a base of M}

@ As before, one direction is obvious:
Prase(M) 2 convexhull {zp : B is a base of M}

@ For the other direction, take = € Py (M)
@ Since z € P(M), z is a convex combination of independent sets

L,.... I of M.
@ Since ||z||; = rank(M), and ||z, |1 < rank(M) for all ¢, it must
be that ||z, |1 = ||z|1 = ... = ||z |1 = rank(M)

The Matroid Polytope 24/30

Solvability of Matroid Polytopes

Polytope P(M) for M = (X, 1)

>z < rankapm(S), for S C X.
i€S
z; >0, forie X.

@ When given an independence oracle for M, we can maximize
linear functions over P(M) in O(nlogn + nT') time, where T is
runtime of independence oracle

e By integrality, same as finding max-weight independent set of M.

The Matroid Polytope 25/30

Solvability of Matroid Polytopes

Polytope P(M) for M = (X, 1)

>z < rankapm(S), for S C X.
i€S
z; >0, forie X.

@ When given an independence oracle for M, we can maximize
linear functions over P(M) in O(nlogn + nT') time, where T is
runtime of independence oracle

e By integrality, same as finding max-weight independent set of M.

@ Therefore, by equivalence of separation and optimization, can
also implement a separation oracle for (M) in poly(n,T’) time.

The Matroid Polytope 25/30

Solvability of Matroid Polytopes

Polytope P(M) for M = (X, 1)

>z < rankapm(S), for S C X.
i€S
z; >0, forie X.

@ When given an independence oracle for M, we can maximize
linear functions over P(M) in O(nlogn + nT') time, where T is
runtime of independence oracle

e By integrality, same as finding max-weight independent set of M.
@ Therefore, by equivalence of separation and optimization, can
also implement a separation oracle for (M) in poly(n,T’) time.
@ A more direct proof: reduces to submodular function minimization
@ rankq is a submodular set function.

The Matroid Polytope 25/30

e Matroid Intersection

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection 26/30

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z3) on the same ground
set, we define the set system M; My = (X, 7, Z2).

Matroid Intersection 26/30

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z3) on the same ground
set, we define the set system M; My = (X, 7, Z2).

@ i.e. a setis feasible if it is independent in both matroids

Matroid Intersection 26/30

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z3) on the same ground
set, we define the set system M; My = (X, 7, Z2).

@ i.e. a setis feasible if it is independent in both matroids
@ In general, does not produce a matroid

Matroid Intersection 26/30

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z3) on the same ground
set, we define the set system M; My = (X, 7, Z2).

@ i.e. a setis feasible if it is independent in both matroids
@ In general, does not produce a matroid

@ Nevertheless, it will turn out that maximizing linear functions over
a matroid intersection is tractable

Matroid Intersection 26/30

Matroid Intersection

@ Optimization of linear functions over matroids is tractable

@ Matroid operations provide an algebra for constructing new
matroids from old

@ We will look at one operation on matroids which does not produce
a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z3) on the same ground
set, we define the set system M; My = (X, 7, Z2).

@ i.e. a setis feasible if it is independent in both matroids

@ In general, does not produce a matroid

@ Nevertheless, it will turn out that maximizing linear functions over
a matroid intersection is tractable

@ However, maximizing linear functions over the intersection of 3 or

more matroids is NP-hard
Matroid Intersection 26/30

Examples

Bipartite Matching

Given a bipartite graph G, a set of ®
edges F is a bipartite matching if

and only if each node is incident on

at most one edge in F.

Matroid Intersection 27/30

Examples

Bipartite Matching

Given a bipartite graph G, a set of
edges F is a bipartite matching if
and only if each node is incident on
at most one edge in F.

Arborescence

Given a directed graph G, a set of
edges is an r-arborescence if it is a
tree directed away from the root r.

Matroid Intersection

27/30

Examples

Bipartite Matching
Given a bipartite graph G, a set of ®

edges F is a bipartite matching if
and only if each node is incident on
at most one edge in F.

Arborescence

Given a directed graph G, a set of
edges is an r-arborescence if it is a
tree directed away from the root r.

@ Others: colorful spanning trees, orientations, ...

Matroid Intersection 27/30

The Matroid Intersection Polytope

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z,) on the same ground
set, we define the set system M (\ My = (X,Z; (Z2).

@ Optimizing a modular function over M; () M5 is equivalent to
optimizing a linear function over convexhull {z; : I € 7, (\ I2}.
@ As it turns out, this is a solvable polytope.

P(My) P(Mz) = convexhull {zy : I € T) (12}

Matroid Intersection 28/30

The Matroid Intersection Polytope

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z,) on the same ground
set, we define the set system M (\ My = (X,Z; (Z2).

@ Optimizing a modular function over M; () M5 is equivalent to
optimizing a linear function over convexhull {z; : I € 7, (\ I2}.
@ As it turns out, this is a solvable polytope.

P(My) P(Mz) = convexhull {zy : I € T) (12}

@ One direction is obvious:
P(M1) N\ P(Mz) 2 convexhull {xy : I € I (L2}

Matroid Intersection 28/30

The Matroid Intersection Polytope

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z,) on the same ground
set, we define the set system M (\ My = (X,Z; (Z2).

@ Optimizing a modular function over M; () M5 is equivalent to
optimizing a linear function over convexhull {z; : I € 7, (\ I2}.
@ As it turns out, this is a solvable polytope.

P(My) P(Mz) = convexhull {zy : I € T) (12}

@ One direction is obvious:
P(My) N P(Mz) 2 convexhull {z : I € Iy (L2}
@ The other direction is not so obvious

Matroid Intersection 28/30

The Matroid Intersection Polytope

Matroid Intersection

Given matroids M; = (X,Z;) and My = (X, Z,) on the same ground
set, we define the set system M (\ My = (X,Z; (Z2).

@ Optimizing a modular function over M; () M5 is equivalent to
optimizing a linear function over convexhull {z; : I € 7, (\ I2}.
@ As it turns out, this is a solvable polytope.

P(My) P(Mz) = convexhull {zy : I € T) (12}

@ One direction is obvious:
P(My) N P(Mz) 2 convexhull {z : I € Iy (L2}
@ The other direction is not so obvious
o Itis conceivable that P(M;) () P(M;) has fractional vertices

Matroid Intersection 28/30

The Matroid Intersection Polytope

Matroid Intersection

Given matroids M; = (X,Z;) and Mq = (X, Z;) on the same ground
set, we define the set system M (\ My = (X,Z; (Z2).

@ Optimizing a modular function over M; () M5 is equivalent to
optimizing a linear function over convexhull {z; : I € 7, (\ I2}.
@ As it turns out, this is a solvable polytope.

P(My) P(Mz) = convexhull {zy : I € T) (12}

@ One direction is obvious:
P(My) N P(Mz) 2 convexhull {z : I € Iy (L2}
@ The other direction is not so obvious
o Itis conceivable that P(M;) () P(M;) has fractional vertices

@ Nevertheless, it is true but hard to prove ...

Matroid Intersection 28/30

Optimization over Matroid Intersections

Optimization over Matroid Intersection M; (| M,

maximize),y w;x;

subject to
> @i < ranka, (S), forS C X.
i€S
> x; < rankpa,(S), for S C X.
€S
x; >0, fori e X.)

Matroid Intersection 29/30

Optimization over Matroid Intersections

Optimization over Matroid Intersection M; [M,

maximize),y w;x;

subject to
> @i < ranka, (S), forS C X.
i€S
> x; < rankpa,(S), for S C X.
€S
x; > 0, fori e X.)

Given independence oracles to both matroids My and M, there is an
algorithm for finding the maximum weight set in M () Mz which runs
in poly(n) time.

Matroid Intersection 29/30

Optimization over Matroid Intersections

Optimization over Matroid Intersection M; [M,

maximize),y w;x;

subject to
> @i < ranka, (S), forS C X.
i€S
> x; < rankpa,(S), for S C X.
€S
x; > 0, fori e X.)

Given independence oracles to both matroids My and M, there is an
algorithm for finding the maximum weight set in M () Mz which runs
in poly(n) time.

Proof: Using equivalence of separation and optimization, and the fact
that all coefficients in the LP have poly(n) bits.

Matroid Intersection 29/30

NP-hardness of 3-way Matroid Intersection

By a reduction from Hamiltonian Path in directed graphs

Matroid Intersection 30/30

	Matroids and The Greedy Algorithm
	Basic Terminology and Properties
	The Matroid Polytope
	Matroid Intersection

