CS675: Convex and Combinatorial Optimization Fall 2023
 The Simplex Algorithm

Instructor: Shaddin Dughmi

History and Basics of the Simplex Algorithm

- First methodical procedure for solving linear programs
- Developed by George Dantzig in 1947
- Considered one of the most influential algorithms of the 20th century

History and Basics of the Simplex Algorithm

- First methodical procedure for solving linear programs
- Developed by George Dantzig in 1947
- Considered one of the most influential algorithms of the 20th century
- Really a family of algorithms, parametrized by a "pivot rule"

History and Basics of the Simplex Algorithm

- First methodical procedure for solving linear programs
- Developed by George Dantzig in 1947
- Considered one of the most influential algorithms of the 20th century
- Really a family of algorithms, parametrized by a "pivot rule"
- Efficient in practice, leading to conjectures that it runs in polynomial time
- In 1972, Klee and Minty exhibited worst-case examples that take exponential time, at least for some of the most popular simplex pivot rules

History and Basics of the Simplex Algorithm

- First methodical procedure for solving linear programs
- Developed by George Dantzig in 1947
- Considered one of the most influential algorithms of the 20th century
- Really a family of algorithms, parametrized by a "pivot rule"
- Efficient in practice, leading to conjectures that it runs in polynomial time
- In 1972, Klee and Minty exhibited worst-case examples that take exponential time, at least for some of the most popular simplex pivot rules
- This spurred development of the Ellipsoid method, interior point methods, ...

Outline

(1) Description of The Simplex Algorithm
(2) Properties
(3) Initialization

Linear Programming

We consider a standard form LP written as follows for convenience

```
maximize c}\mp@subsup{c}{}{\top}
subject to Ax\preceqb
```

- We use n to denote the number of variables, and m to denote the number of constraints.

Linear Programming

We consider a standard form LP written as follows for convenience

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

- We use n to denote the number of variables, and m to denote the number of constraints.
- Recall: optimal occurs at a vertex and corresponds to n linearly-independent tight inequalities

Linear Programming

We consider a standard form LP written as follows for convenience

```
maximize c cT
subject to Ax\preceqb
```

- We use n to denote the number of variables, and m to denote the number of constraints.
- Recall: optimal occurs at a vertex and corresponds to n linearly-independent tight inequalities
- We assume we are given a starting vertex x_{0} as input, and want to compute optimal vertex x^{*}
- This is Phase II
- Phase I, finding an initial vertex, involves solving another LP. We will come back to this at the end.

Linear Programming

We consider a standard form LP written as follows for convenience

```
maximize c}\mp@subsup{c}{}{\top}
subject to Ax\preceqb
```

- We use n to denote the number of variables, and m to denote the number of constraints.
- Recall: optimal occurs at a vertex and corresponds to n linearly-independent tight inequalities
- We assume we are given a starting vertex x_{0} as input, and want to compute optimal vertex x^{*}
- This is Phase II
- Phase I, finding an initial vertex, involves solving another LP. We will come back to this at the end.
- Degeneracy: a vertex with > n tight inequalities
- We will mostly assume this away to save ourselves a headache

Linear Programming

We consider a standard form LP written as follows for convenience

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

- We use n to denote the number of variables, and m to denote the number of constraints.
- Recall: optimal occurs at a vertex and corresponds to n linearly-independent tight inequalities
- We assume we are given a starting vertex x_{0} as input, and want to compute optimal vertex x^{*}
- This is Phase II
- Phase I, finding an initial vertex, involves solving another LP. We will come back to this at the end.
- Degeneracy: a vertex with $>n$ tight inequalities
- We will mostly assume this away to save ourselves a headache
- Incidentally, algorithm will produce optimal dual y^{*} as well.

Recall: Physical Interpretation of LP

- Apply force field c to a ball inside bounded polytope $A x \preceq b$.

Recall: Physical Interpretation of LP

- Apply force field c to a ball inside bounded polytope $A x \preceq b$.
- Eventually, ball will come to rest against the walls of the polytope.

Recall: Physical Interpretation of LP

- Apply force field c to a ball inside bounded polytope $A x \preceq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_{i} x \leq b_{i}$ applies some force $-y_{i} a_{i}$ to the ball for some $y_{i} \geq 0$

Recall: Physical Interpretation of LP

- Apply force field c to a ball inside bounded polytope $A x \preceq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_{i} x \leq b_{i}$ applies some force $-y_{i} a_{i}$ to the ball for some $y_{i} \geq 0$
- Since the ball is still, $c^{T}=\sum_{i} y_{i} a_{i}=y^{T} A$.

Recall: Physical Interpretation of LP

- Apply force field c to a ball inside bounded polytope $A x \preceq b$.
- Eventually, ball will come to rest against the walls of the polytope.
- Wall $a_{i} x \leq b_{i}$ applies some force $-y_{i} a_{i}$ to the ball for some $y_{i} \geq 0$
- Since the ball is still, $c^{T}=\sum_{i} y_{i} a_{i}=y^{T} A$.
- At optimality, only the walls adjacent to the ball push (Complementary Slackness)
- Necessary and sufficient for optimality, given dual-feasible y

Informal Description

- Starts at initial vertex $x=x_{0}$
- While x is not optimal, move to a neighbouring vertex x^{\prime} with $c x^{\prime}>c x$.

Informal Description

- Starts at initial vertex $x=x_{0}$
- While x is not optimal, move to a neighbouring vertex x^{\prime} with $c x^{\prime}>c x$.
- Either c is in the cone defined by tight constraints at x, in which case x is optimal by complementary slackness
- Or else can improve $c x$ by moving along an edge (1-d face)

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(6) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(5) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

- Let T be set of n linearly independent rows which are tight at x.
- $y_{T}^{\top} A_{T}=c^{\top}$
- Gaussian elimination

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(5) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

- y is a dual satisfying complementary slackness with x
- Therefore both are optimal

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(5) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

- Chosen so that moving in direction d preserves tightness of constraints $T \backslash\{i\}$, and loosens constraint i.
- A_{T} is full-rank, therefore $\operatorname{null}\left(A_{T \backslash\{i\}}\right)$ is a 1-dimensional subspace which is not normal to a_{i}
- Choose $d \in \operatorname{null}\left(A_{T \backslash\{i\}}\right)$ appropriately.
- Moving in direction d improves objective: $c^{\top} d=y^{\top} A d=y_{i} a_{i} d>0$

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(5) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

- i.e. $A d \preceq 0$

Simplex Method

- Input: vertex $x=x_{0}$
- Output: Optimal vertex x^{*} and complementary dual y^{*}, or unbounded

Repeat the following:

(1) Write $c^{\top}=y^{\top} A$, where $y_{i} \neq 0$ only for n tight constraints $a_{i} x=b_{i}$.
(2) If $y \succeq 0$ then stop and return (x, y), else
(3) Choose i with $y_{i}<0$, and let \vec{d} be s.t. $A_{T \backslash\{i\}} d=0$ and $a_{i} d=-1$.
(4) If $x+\lambda d$ feasible for all $\lambda \geq 0$, stop and return unbounded, else
(5) $x \leftarrow x+\lambda d$, for largest $\lambda \geq 0$ maintaining feasibility

- $\lambda=\min \left\{\frac{b_{j}-a_{j} x}{a_{j} d}: j \in[m], a_{j} d>0\right\}$
- j achieving this minimum is a new tight constraint, replacing i.
- By nondegeneracy assumption, $\lambda>0$

Outline

(1) Description of The Simplex Algorithm

(2) Properties
(3) Initialization

Correctness

Claim

If the simplex algorithm terminates, then it correctly outputs either an optimal primal/dual pair or unbounded.

- Primal feasibility of x is maintained throughout
- Returns (x, y) only if y is dual feasible and satisfies complementary slackness
- x and y are both optimal
- Returns unbounded only if there is a direction d with $c^{\top} d>0$ and $A d \preceq 0$.

Termination in the Absence of Degeneracy

Claim

In the absence of degenerate vertices, the simplex algorithm terminates in a finite number of steps, at most $\binom{m}{n} \leq 2^{m}$.

- There are at most $\binom{m}{n}$ distinct vertices in the polyhedron
- In the absence of degeneracy, the simplex algorithm does not repeat a vertex
- In each iteration, moves along an edge in direction d, in total λd
- We saw: $c^{\top} d>0$, and $\lambda>0$.
- Objective strictly improves each iteration

Pivot Rules

Note

The algorithm we presented was not fully specified

- When multiple neighboring vertices are improving, which one should we choose so as to terminate as quickly as possible?
- In the presence of degeneracy, how should we identify the next (geometric) vertex so as to guarantee termination?
- We maintain n tight and linearly independent constraints T, to be thought of as an algebraic representation of a vertex (aka a basic feasible solution (BFS))
- When many algebraic representations are possible of a single geometric vertex, unclear how to identify the next geometric vertex.

Pivot Rules

Both concerns are addressed by the use of a pivot rule, which determines the order in which we examine algebraic vertices.

Pivot rule

A rule for selecting which i leaves T, and which j enters T, when multiple choices are possible either because of multiple improving neighbors or degeneracy. Examples:

- Bland's rule: Choose lowest indexed i, then lowest indexed j
- Lexicographic: Maintain an order over rows, and move from T to the lexicographically smallest possible T^{\prime}.
- Perturbation: perturb entries of b by a small value to remove degeneracy. This perturbation can be purely symbolic.

Runtime and Termination

- Many pivot rules, like the ones we mentioned, have been shown to never cycle over algebraic vertices
- Guarantees termination in general, even in the presence of degeneracies
- See book and notes for proofs.
- However, no pivot rules have been shown to guarantee a polynomial number of pivots
- Even if no degeneracies.
- In 1972, Klee and Minty exhibited a family of examples that lead to exponential worst-case runtime for some widely-used pivot rules

Runtime and Termination

Nevertheless, one explanation as to the efficiency of the simplex algorithm in practice is through smoothed complexity

Theorem (Spielman \& Teng '01)

The simplex algorithm has polynomial smoothed complexity.

- Model of input:
- A, b, c chosen arbitrarily (worst case)
- Then subjected to small gaussian noise with stddev σ (relative to largest entry of A, b, c)
- Interpretation: measurement error
- More optimistic than worst case, but not quite as optimistic as average case.
- Expected runtime is polynomial in n, m and $\frac{1}{\sigma}$

Runtime and Termination

Open Question

Is there a pivot rule which guarantees a polynomial number of pivots of the simplex algorithm in the worst case?

Why is this important?

- Would yield a strongly polynomial algorithm for LP
- If true, resolves in the affirmative a classic open question in polyhedral combinatorics
- Polynomial Hirsch Conjecture: Is the diameter of the edge-vertex graph of an m-facet polytope in n-dimensional space bounded by a polynomial in n and m ?

Outline

(1) Description of The Simplex Algorithm

(2) Properties
(3) Initialization

Initialization

Solving a Linear Program via the Simplex Method

- Phase I: Find a vertex x_{0}.
- Phase II: Run the simplex algorithm starting from x_{0}
- So far, we have looked only at phase II
- For phase I, we pose a different LP whose optimal solution is a vertex, if one exists

Phase I

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

- If $x=0$ is feasible, then it is a vertex and we are done, otherwise

$$
b_{\min }<0
$$

Phase I

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

$$
\begin{array}{ll}
\text { minimize } & z \\
\text { subject to } & A x-z \overrightarrow{\mathbf{1}} \preceq b \\
& x \succeq 0 \\
& z \geq 0
\end{array}
$$

- If $x=0$ is feasible, then it is a vertex and we are done, otherwise $b_{\text {min }}<0$
- We write a new LP with a variable z measuring how far we are from feasibility

Phase I

- If $x=0$ is feasible, then it is a vertex and we are done, otherwise $b_{\text {min }}<0$
- We write a new LP with a variable z measuring how far we are from feasibility
- If original LP is feasible, then an optimal solution of the new LP will have $z=0$ and yield a feasible solution for original LP.

Phase I

- If $x=0$ is feasible, then it is a vertex and we are done, otherwise $b_{\text {min }}<0$
- We write a new LP with a variable z measuring how far we are from feasibility
- If original LP is feasible, then an optimal solution of the new LP will have $z=0$ and yield a feasible solution for original LP.
- An optimal vertex of new LP (with $z=0$) will correspond to some vertex x_{0} of original LP

Phase I

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

minimize z
$\begin{array}{ll}\text { subject to } & A x-z \overrightarrow{\mathbf{1}} \preceq b \\ & x \succeq 0 \\ & z \geq 0\end{array}$

- We need a starting vertex for new LP, this is easier!
- Let $x_{0}^{\prime}=\overrightarrow{0}$, and $z_{0}=-b_{\text {min }}$

Phase I

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

minimize z
$\begin{array}{ll}\text { subject to } & A x-z \overrightarrow{\mathbf{1}} \preceq b \\ & x \succeq 0 \\ & z \geq 0\end{array}$

- We need a starting vertex for new LP, this is easier!
- Let $x_{0}^{\prime}=\overrightarrow{0}$, and $z_{0}=-b_{\text {min }}$
- Running simplex on new LP with starting vertex $\left(x_{0}^{\prime}, z_{0}\right)$, we get starting vertex x_{0} for original LP.

