CS675: Convex and Combinatorial Optimization Spring 2018 Convex Functions

Instructor: Shaddin Dughmi

2 Examples of Convex and Concave Functions

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if the line segment between any points on the graph of *f* lies above *f*. i.e. if $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

• Inequality called Jensen's inequality (basic form)

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex

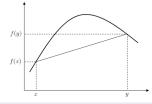
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- *f* is strictly convex if inequality strict when $x \neq y$.

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Inequality called Jensen's inequality (basic form)
- f is convex iff its restriction to any line $\{x + tv : t \in \mathbb{R}\}$ is convex
- *f* is strictly convex if inequality strict when $x \neq y$.
- Analogous definition when the domain of *f* is a convex subset *D* of ℝⁿ

Concave and Affine Functions



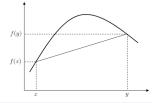
A function is $f : \mathbb{R}^n \to \mathbb{R}$ is concave if -f is convex. Equivalently:

• Line segment between any points on the graph of *f* lies below *f*.

• If
$$x, y \in \mathbb{R}^n$$
 and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

Concave and Affine Functions



A function is $f : \mathbb{R}^n \to \mathbb{R}$ is concave if -f is convex. Equivalently:

• Line segment between any points on the graph of *f* lies below *f*.

• If
$$x, y \in \mathbb{R}^n$$
 and $\theta \in [0, 1]$, then

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

- $f : \mathbb{R}^n \to \mathbb{R}$ is affine if it is both concave and convex. Equivalently:
 - Line segment between any points on the graph of *f* lies on the graph of *f*.

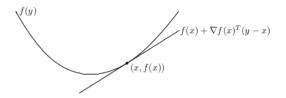
•
$$f(x) = a^{\mathsf{T}}x + b$$
 for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

 $f(y) \ge f(x) + (\bigtriangledown f(x))^{\mathsf{T}}(y-x)$

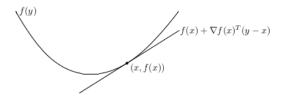


We will now look at some equivalent definitions of convex functions

First Order Definition

A differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the first-order approximation centered at any point x underestimates f everywhere.

 $f(y) \ge f(x) + (\bigtriangledown f(x))^{\mathsf{T}}(y-x)$



Local information → global information
If \sigma f(x) = 0 then x is a global minimizer of f

Second Order Definition

A twice differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all x. (We write $\nabla^2 f(x) \succeq 0$)

Second Order Definition

A twice differentiable $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all x. (We write $\nabla^2 f(x) \succeq 0$)

Intepretation

- Recall definition of PSD: $z^{\intercal} \bigtriangledown^2 f(x) z \ge 0$ for all $z \in \mathbb{R}^n$
- When n = 1, this is $f''(x) \ge 0$.
- More generally, $\frac{z^{\mathsf{T}} \bigtriangledown^2 f(x) z}{||z||^2}$ is the second derivative of f along the line $\{x + tz : t \in \mathbb{R}\}$. So if $\bigtriangledown^2 f(x) \succeq 0$ then f curves upwards along any line.
- Moving from x to x + δz, infitisimal change in gradient is δ
 ¬² f(x)z. When
 ¬²f(x) ≥ 0, this is in roughly the same direction as z.

Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$epi(f) = \{(x,t) : t \ge f(x)\}$$

Epigraph

The epigraph of f is the set of points above the graph of f. Formally,

$$epi(f) = \{(x,t) : t \ge f(x)\}$$

Epigraph Definition

f is a convex function if and only if its epigraph is a convex set.

 $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if

• For every x_1, \ldots, x_k in the domain of f, and $\theta_1, \ldots, \theta_k \ge 0$ such that $\sum_i \theta_i = 1$, we have

$$f(\sum_{i} \theta_{i} x_{i}) \le \sum_{i} \theta_{i} f(x_{i})$$

• Given a probability measure \mathcal{D} on the domain of f, and $x \sim \mathcal{D}$,

$$f(\mathbf{E}[x]) \le \mathbf{E}[f(x)]$$

 $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if

• For every x_1, \ldots, x_k in the domain of f, and $\theta_1, \ldots, \theta_k \ge 0$ such that $\sum_i \theta_i = 1$, we have

$$f(\sum_{i} \theta_{i} x_{i}) \le \sum_{i} \theta_{i} f(x_{i})$$

• Given a probability measure \mathcal{D} on the domain of f, and $x \sim \mathcal{D}$,

$$f(\mathbf{E}[x]) \le \mathbf{E}[f(x)]$$

Adding noise to x can only increase f(x) in expectation.

Local minimum

x is a local minimum of f if there is a an open ball B containing x where $f(y) \ge f(x)$ for all $y \in B$.

Local and Global Optimality

When f is convex, x is a local minimum of f if and only if it is a global minimum.

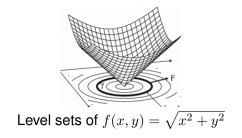
Local minimum

x is a local minimum of f if there is a an open ball B containing x where $f(y) \ge f(x)$ for all $y \in B$.

Local and Global Optimality

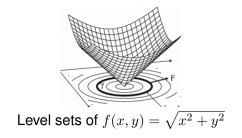
When f is convex, x is a local minimum of f if and only if it is a global minimum.

• This fact underlies much of the tractability of convex optimization.



Sublevel set

The α -sublevel set of f is $\{x \in domain(f) : f(x) \leq \alpha\}$.



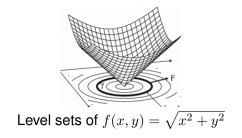
Sublevel set

The α -sublevel set of f is $\{x \in domain(f) : f(x) \le \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

• This fact also underlies tractability of convex optimization



Sublevel set

The α -sublevel set of f is $\{x \in domain(f) : f(x) \le \alpha\}$.

Fact

Every sub-level set of a convex function is a convex set.

This fact also underlies tractability of convex optimization

Note: converse false, but nevertheless useful check.

Convex Functions

Continuity

Real-valued convex functions are continuous on the interior of their domain.

Continuity

Real-valued convex functions are continuous on the interior of their domain.

Extended-value extension

If a function $f: D \to \mathbb{R}$ is convex on its domain, and D is convex, then it can be extended to a convex function on \mathbb{R}^n . by setting $f(x) = \infty$ whenever $x \notin D$.

This simplifies notation. Resulting function $\tilde{f}: D \to \mathbb{R} \bigcup \infty$ is "convex" with respect to the ordering on $\mathbb{R} \bigcup \infty$

2 Examples of Convex and Concave Functions

- Affine: ax + b
- Exponential: e^{ax} convex for any $a \in \mathbb{R}$
- Powers: x^a convex on \mathbb{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$
- Logarithm: $\log x$ concave on \mathbb{R}_{++} .

Norms

Norms are convex.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta ||x|| + (1 - \theta)||y||$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Norms

Norms are convex.

$$||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| = \theta ||x|| + (1 - \theta)||y||$$

- Uses both norm axioms: triangle inequality, and homogeneity.
- Applies to matrix norms, such as the spectral norm (radius of induced ellipsoid)

Max

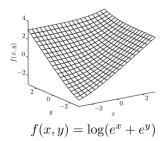
 $\max_i x_i$ is convex

$$\max_{i} (\theta x + (1 - \theta)y)_{i} = \max_{i} (\theta x_{i} + (1 - \theta)y_{i})$$
$$\leq \max_{i} \theta x_{i} + \max_{i} (1 - \theta)y_{i}$$
$$= \theta \max_{i} x_{i} + (1 - \theta) \max_{i} y_{i}$$

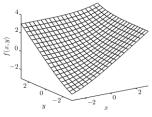
If i'm allowed to pick the maximum entry of θx and θy independently, I can do only better.

Examples of Convex and Concave Functions

- Log-sum-exp: $\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ is convex
- Geometric mean: $(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$ is concave
- Log-determinant: $\log \det X$ is concave
- Quadratic form: $x^{\mathsf{T}}Ax$ is convex iff $A \succeq 0$
- Other examples in book



- Log-sum-exp: $\log(e^{x_1} + e^{x_2} + \ldots + e^{x_n})$ is convex
- Geometric mean: $(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$ is concave
- Log-determinant: $\log \det X$ is concave
- Quadratic form: $x^{\mathsf{T}}Ax$ is convex iff $A \succeq 0$
- Other examples in book



 $f(x,y) = \log(e^x + e^y)$

Proving convexity often comes down to case-by-case reasoning, involving:

- Definition: restrict to line and check Jensen's inequality
- Write down the Hessian and prove PSD
- Express as a combination of other convex functions through convexity-preserving operations (Next)

2 Examples of Convex and Concave Functions

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

proof (k=2)

$$g\left(\frac{x+y}{2}\right) = w_1 f_1\left(\frac{x+y}{2}\right) + w_2 f_2\left(\frac{x+y}{2}\right)$$

$$\leq w_1 \frac{f_1(x) + f_1(y)}{2} + w_2 \frac{f_2(x) + f_2(y)}{2}$$

$$= \frac{g(x) + g(y)}{2}$$

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

Extends to integrals $g(x) = \int_y w(y) f_y(x)$ with $w(y) \ge 0$, and therefore expectations $\mathbf{E}_y f_y(x)$.

If f_1, f_2, \ldots, f_k are convex, and $w_1, w_2, \ldots, w_k \ge 0$, then $g = w_1 f_1 + w_2 f_2 \ldots + w_k f_k$ is convex.

Extends to integrals $g(x) = \int_y w(y) f_y(x)$ with $w(y) \ge 0$, and therefore expectations $\mathbf{E}_y f_y(x)$.

Worth Noting

Minimizing the expectation of a random convex cost function is also a convex optimization problem!

• A stochastic convex optimization problem is a convex optimization problem.

Example: Stochastic Facility Location

Average Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is $g(x) = \sum_i \frac{1}{k} ||x y_i||$

Example: Stochastic Facility Location

Average Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, average distance to a customer is $g(x) = \sum_i \frac{1}{k} ||x y_i||$
- Since distance to any one customer is convex in x, so is the average distance.
- Extends to probability measure over customers

Convexity-Preserving Operations

Implication

Convex functions are a convex cone in the vector space of functions from \mathbb{R}^n to \mathbb{R} .

The set of convex functions is the intersection of an infinite set of homogeneous linear inequalities indexed by x,y,θ

$$f(\theta x + (1 - \theta)y) - \theta f(x) - (1 - \theta)f(y) \le 0$$

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

 $(x,t)\in \mathbf{graph}(g) \iff t=g(x)=f(Ax+b) \iff (Ax+b,t)\in \mathbf{graph}(f)$

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

$$\begin{aligned} (x,t) \in \mathbf{graph}(g) \iff t = g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{graph}(f) \\ (x,t) \in \mathbf{epi}(g) \iff t \ge g(x) = f(Ax+b) \iff (Ax+b,t) \in \mathbf{epi}(f) \end{aligned}$$

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then

$$g(x) = f(Ax + b)$$

is a convex function from \mathbb{R}^m to \mathbb{R} .

Proof

 $\begin{array}{l} (x,t)\in \mathbf{graph}(g)\iff t=g(x)=f(Ax+b)\iff (Ax+b,t)\in \mathbf{graph}(f)\\ (x,t)\in \mathbf{epi}(g)\iff t\geq g(x)=f(Ax+b)\iff (Ax+b,t)\in \mathbf{epi}(f)\\ \mathbf{epi}(g) \text{ is the inverse image of } \mathbf{epi}(f) \text{ under the affine mapping}\\ (x,t)\to (Ax+b,t) \end{array}$

Convexity-Preserving Operations

Examples

- ||Ax + b|| is convex
- $\max(Ax + b)$ is convex
- $\log(e^{a_1^{\mathsf{T}}x+b_1}+e^{a_2^{\mathsf{T}}x+b_2}+\ldots+e^{a_n^{\mathsf{T}}x+b_n})$ is convex

Maximum

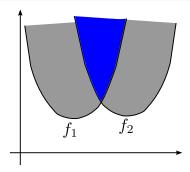
If f_1, f_2 are convex, then $g(x) = \max \{f_1(x), f_2(x)\}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_{y} f_y(x)$.

Maximum

If f_1, f_2 are convex, then $g(x) = \max \{f_1(x), f_2(x)\}$ is also convex.

Generalizes to the maximum of any number of functions, $\max_{i=1}^{k} f_i(x)$, and also to the supremum of an infinite set of functions $\sup_{y} f_y(x)$.



$$\operatorname{epi} g = \operatorname{epi} f_1 \bigcap \operatorname{epi} f_2$$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Since distance to any one customer is convex in x, so is the worst-case distance.

Example: Robust Facility Location

Maximum Distance

- k customers located at $y_1, y_2, \ldots, y_k \in \mathbb{R}^n$
- If I place a facility at $x \in \mathbb{R}^n$, maximum distance to a customer is $g(x) = \max_i ||x y_i||$

Worth Noting

When a convex cost function is uncertain, minimizing the worst-case cost is also a convex optimization problem!

• A robust (in the worst-case sense) convex optimization problem is a convex optimization problem.

Other Examples

• Maximum eigenvalue of a symmetric matrix A is convex in A

 $\max\left\{v^{\mathsf{T}}Av:||v||=1\right\}$

• Sum of k largest components of a vector x is convex in x

$$\max\left\{\vec{\mathbf{1}}_{S}\cdot x:|S|=k\right\}$$

Minimization

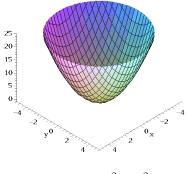
If f(x, y) is convex and C is convex and nonempty, then $g(x) = \inf_{y \in C} f(x, y)$ is convex.

Minimization

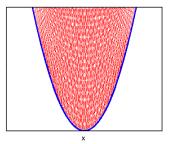
If f(x, y) is convex and C is convex and nonempty, then $g(x) = \inf_{y \in C} f(x, y)$ is convex.

Proof (for $\mathcal{C} = \mathbb{R}^k$)

epi g is the projection of epi f onto hyperplane y = 0.



$$f(x,y) = x^2 + y^2$$



 $g(x) = x^2$

Convexity-Preserving Operations

Example

Distance from a convex set $\ensuremath{\mathcal{C}}$

$$f(x,y) = \inf_{y \in \mathcal{C}} ||x - y||$$

Composition Rules

If $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$, then $f = h \circ g$ is convex if

- *g_i* are convex, and *h* is convex and nondecreasing in each argument.
- g_i are concave, and h is convex and nonincreasing in each argument.

Proof (n = k = 1)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

Perspective

If f is convex then g(x,t) = tf(x/t) is also convex.

Proof

epi g is inverse image of epi f under the perspective function.