CS675: Convex and Combinatorial Optimization Spring 2018 Convex Optimization Problems

Instructor: Shaddin Dughmi

2 Common Classes

- Interlude: Positive Semi-Definite Matrices
- 4 More Convex Optimization Problems

Recall: Convex Optimization Problem

A problem of minimizing a convex function (or maximizing a concave function) over a convex set.

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$

- $\mathcal{X} \subseteq \mathbb{R}^n$ is convex, and $f : \mathbb{R}^n \to \mathbb{R}$ is convex
- Terminology: decision variable(s), objective function, feasible set, optimal solution/value, *ε*-optimal solution/value

Instances typically formulated in the following standard form

minimize
$$f(x)$$

subject to $g_i(x) \le 0$, for $i \in C_1$.
 $a_i^{\mathsf{T}} x = b_i$, for $i \in C_2$.

- g_i is convex
- Terminology: equality constraints, inequality constraints, active/inactive at *x*, feasible/infeasible, unbounded

Instances typically formulated in the following standard form

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \quad \text{for } i \in \mathcal{C}_1. \\ & a_i^{\mathsf{T}} x = b_i, \quad \text{ for } i \in \mathcal{C}_2. \end{array}$$

- g_i is convex
- Terminology: equality constraints, inequality constraints, active/inactive at *x*, feasible/infeasible, unbounded
- In principle, every convex optimization problem can be formulated in this form (possibly implicitly)
 - Recall: every convex set is the intersection of halfspaces

Instances typically formulated in the following standard form

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \quad \text{for } i \in \mathcal{C}_1. \\ & a_i^{\mathsf{T}} x = b_i, \quad \text{ for } i \in \mathcal{C}_2. \end{array}$$

- g_i is convex
- Terminology: equality constraints, inequality constraints, active/inactive at *x*, feasible/infeasible, unbounded
- In principle, every convex optimization problem can be formulated in this form (possibly implicitly)
 - Recall: every convex set is the intersection of halfspaces
- When f(x) is immaterial (say f(x) = 0), we say this is convex feasibility problem

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

Proof

• Let x be locally optimal, and y be any other feasible point.

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

Proof

- Let x be locally optimal, and y be any other feasible point.
- The line segment from x to y is contained in the feasible set.

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

Proof

- Let x be locally optimal, and y be any other feasible point.
- The line segment from x to y is contained in the feasible set.
- By local optimality $f(x) \leq f(\theta x + (1 \theta)y)$ for θ sufficiently close to 1.

For a convex optimization problem, every locally optimal feasible solution is globally optimal.

Proof

- Let x be locally optimal, and y be any other feasible point.
- The line segment from x to y is contained in the feasible set.
- By local optimality $f(x) \leq f(\theta x + (1 \theta)y)$ for θ sufficiently close to 1.
- Jensen's inequality then implies that *y* is suboptimal.

$$f(x) \le f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
$$f(x) \le f(y)$$

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

Explicit Representation

A family of linear programs of the following form

$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \preceq b \\ & x \succeq 0 \end{array}$$

may be described by $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$.

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

Oracle Representation

At their most abstract, convex optimization problems of the following form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$

are described via a separation oracle for \mathcal{X} and epi f.

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

Oracle Representation

At their most abstract, convex optimization problems of the following form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}$

are described via a separation oracle for \mathcal{X} and epi f.

Given additional data about instances of the problem, namely a range [L, H] for its optimal value and a ball of volume V containing \mathcal{X} , the ellipsoid method returns an ϵ -optimal solution using only $\operatorname{poly}(n, \log(\frac{H-L}{\epsilon}), \log V)$ oracle calls.

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

In Between

Consider the following fractional relaxation of the Traveling Salesman Problem, described by a network (V, E) and distances d_e on $e \in E$.

$$\begin{split} & \min \sum_{e} d_{e} x_{e} \\ & \text{s.t.} \\ & \sum_{e \in \delta(S)} x_{e} \geq 2, \quad \forall S \subset V, S \neq \emptyset. \\ & x \succeq 0 \end{split}$$

Typically, by problem we mean a family of instances, each of which is described either explicitly via problem parameters, or given implicitly via an oracle, or something in between.

In Between

Consider the following fractional relaxation of the Traveling Salesman Problem, described by a network (V, E) and distances d_e on $e \in E$.

$$\begin{split} & \min \sum_e d_e x_e \\ & \text{s.t.} \\ & \sum_{e \in \delta(S)} x_e \geq 2, \quad \forall S \subset V, S \neq \emptyset. \\ & x \succeq 0 \end{split}$$

Representation of LP is implicit, in the form of a network. Using this representation, separation oracles can be implemented efficiently, and used as subroutines in the ellipsoid method.

Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem

Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem

Equivalence

Loosly speaking, two optimization problems are equivalent if an optimal solution to one can easily be "translated" into an optimal solution for the other.

Equivalence

- Next up: we look at some common classes of convex optimization problems
- Technically, not all of them will be convex in their natural representation
- However, we will show that they are "equivalent" to a convex optimization problem

Equivalence

Loosly speaking, two optimization problems are equivalent if an optimal solution to one can easily be "translated" into an optimal solution for the other.

Note

Deciding whether an optimization problem is equivalent to a tractable convex optimization problem is, in general, a black art honed by experience. There is no silver bullet.

Convex Optimization Basics

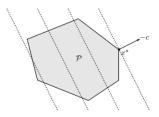
2 Common Classes

Interlude: Positive Semi-Definite Matrices

4 More Convex Optimization Problems

We have already seen linear programming

 $\begin{array}{ll} \text{minimize} & c^{\intercal}x\\ \text{subject to} & Ax \leq b \end{array}$



Linear Fractional Programming

Generalizes linear programming

$$\begin{array}{ll} \text{minimize} & \frac{c^\intercal x + d}{e^\intercal x + f} \\ \text{subject to} & Ax \leq b \\ & e^\intercal x + f > 0 \end{array}$$

• The objective is quasiconvex (in fact, quasilinear) over the halfspace where the denominator is nonnegative.

Linear Fractional Programming

Generalizes linear programming

minimize
$$\frac{c^{\mathsf{T}}x+d}{e^{\mathsf{T}}x+f}$$

subject to $Ax \leq b$
 $e^{\mathsf{T}}x+f > 0$

- The objective is quasiconvex (in fact, quasilinear) over the halfspace where the denominator is nonnegative.
- Can be reformulated as an equivalent linear program

• Change variables to $y = \frac{x}{e^{\tau}x+f}$ and $z = \frac{1}{e^{\tau}x+f}$

minimize
$$c^{\mathsf{T}}y + dz$$

subject to $Ay \le bz$
 $z \ge 0$
 $y = \frac{x}{e^{\mathsf{T}}x + f}$
 $z = \frac{1}{e^{\mathsf{T}}x + f}$

Linear Fractional Programming

Generalizes linear programming

minimize
$$\frac{c^{\mathsf{T}}x+d}{e^{\mathsf{T}}x+f}$$

subject to $Ax \leq b$
 $e^{\mathsf{T}}x+f > 0$

- The objective is quasiconvex (in fact, quasilinear) over the halfspace where the denominator is nonnegative.
- Can be reformulated as an equivalent linear program

1 Change variables to
$$y = \frac{x}{e^{\intercal}x+f}$$
 and $z = \frac{1}{e^{\intercal}x+f}$

2
$$(y,z)$$
 is a solution to the above iff $e^{\intercal}y + fz = 1$

minimize $c^{\mathsf{T}}y + dz$ subject to $Ay \leq bz$ $z \geq 0$ $y = \frac{x}{e^{\mathsf{T}}x + f}$ $z = e^{\mathsf{T}}x + f}$ $e^{\mathsf{T}}y + fz = 1$

- *n* products, *m* raw materials
- Every unit of product j uses a_{ij} units of raw material i
- There are b_i units of material i available
- Product *j* yields profit *c_j* dollars per unit, and requires an investment of *e_j* dollars per unit to produce, with *f* as a fixed cost
- Facility wants to maximize "Return rate on investment"

maximize
$$\frac{c^{\mathsf{T}}x}{e^{\mathsf{T}}x+f}$$

subject to $a_i^{\mathsf{T}}x \leq b_i$, for $i = 1, \dots, m$,
 $x_j \geq 0$, for $j = 1, \dots, n$.

Geometric Programming

Definition

• A monomial is a function $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ of the form

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n},$$

where $c \geq 0$, $a_i \in \mathbb{R}$.

• A posynomial is a sum of monomials.

Geometric Programming

Definition

• A monomial is a function $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ of the form

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n},$$

where $c \geq 0$, $a_i \in \mathbb{R}$.

• A posynomial is a sum of monomials.

A Geometric Program is an optimization problem of the following form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, & \text{for } i \in \mathcal{C}_1. \\ & h_i(x) = b_i, & \text{for } i \in \mathcal{C}_2. \\ & x \succeq 0 \end{array}$$

where f_i 's are posynomials, h_i 's are monomials, and $b_i > 0$ (wlog 1).

Geometric Programming

Definition

• A monomial is a function $f : \mathbb{R}^n_+ \to \mathbb{R}_+$ of the form

$$f(x) = cx_1^{a_1}x_2^{a_2}\dots x_n^{a_n},$$

where $c \geq 0$, $a_i \in \mathbb{R}$.

• A posynomial is a sum of monomials.

A Geometric Program is an optimization problem of the following form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad \text{for } i \in \mathcal{C}_1. \\ & h_i(x) = b_i, \quad \text{for } i \in \mathcal{C}_2. \\ & x \succeq 0 \end{array}$$

where f_i 's are posynomials, h_i 's are monomials, and $b_i > 0$ (wlog 1).

Interpretation

GP model volume/area minimization problems, subject to constraints.

Common Classes

Example: Designing a Suitcase

- A suitcase manufacturer is designing a suitcase
- Variables: *h*, *w*,*d*
- Want to minimize surface area 2(hw + hd + wd) (i.e. amount of material used)
- Have a target volume $hwd \ge 5$
- Practical/aesthetic constraints limit aspect ratio: $h/w \le 2$, $h/d \le 3$
- Constrained by airline to $h + w + d \le 7$

$$\begin{array}{ll} \mbox{minimize} & 2hw+2hd+2wd\\ \mbox{subject to} & h^{-1}w^{-1}d^{-1} \leq \frac{1}{5}\\ & hw^{-1} \leq 2\\ & hd^{-1} \leq 3\\ & h+w+d \leq 7\\ & h,w,d \geq 0 \end{array}$$

Example: Designing a Suitcase

- A suitcase manufacturer is designing a suitcase
- Variables: *h*, *w*,*d*
- Want to minimize surface area 2(hw + hd + wd) (i.e. amount of material used)
- Have a target volume $hwd \ge 5$
- Practical/aesthetic constraints limit aspect ratio: $h/w \le 2$, $h/d \le 3$
- Constrained by airline to $h + w + d \le 7$

$$\begin{array}{ll} \mbox{minimize} & 2hw+2hd+2wd\\ \mbox{subject to} & h^{-1}w^{-1}d^{-1} \leq \frac{1}{5}\\ & hw^{-1} \leq 2\\ & hd^{-1} \leq 3\\ & h+w+d \leq 7\\ & h,w,d \geq 0 \end{array}$$

More interesting applications involve optimal component layout in chip design.

Common Classes

Designing a Suitcase in Convex Form

$$\begin{array}{ll} \mbox{minimize} & 2hw+2hd+2wd\\ \mbox{subject to} & h^{-1}w^{-1}d^{-1} \leq \frac{1}{5}\\ & hw^{-1} \leq 2\\ & hd^{-1} \leq 3\\ & h+w+d \leq 7\\ & h,w,d \geq 0 \end{array}$$

Designing a Suitcase in Convex Form

$$\begin{array}{ll} \mbox{minimize} & 2hw+2hd+2wd\\ \mbox{subject to} & h^{-1}w^{-1}d^{-1} \leq \frac{1}{5}\\ & hw^{-1} \leq 2\\ & hd^{-1} \leq 3\\ & h+w+d \leq 7\\ & h,w,d \geq 0 \end{array}$$

Change of variables to $\tilde{h} = \log h$, $\tilde{w} = \log w$, $\tilde{d} = \log d$

 $\begin{array}{ll} \mbox{minimize} & 2e^{\widetilde{h}+\widetilde{w}}+2e^{\widetilde{h}+\widetilde{d}}+2e^{\widetilde{w}+\widetilde{d}} \\ \mbox{subject to} & e^{-\widetilde{h}-\widetilde{w}-\widetilde{d}} \leq \frac{1}{5} \\ & e^{\widetilde{h}-\widetilde{w}} \leq 2 \\ & e^{\widetilde{h}-\widetilde{d}} \leq 3 \\ & e^{\widetilde{h}}+e^{\widetilde{w}}+e^{\widetilde{d}} \leq 7 \end{array}$

Geometric Programs in Convex Form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, & \text{for } i \in \mathcal{C}_1. \\ & h_i(x) = b_i, & \text{for } i \in \mathcal{C}_2. \\ & x \succeq 0 \end{array}$$

where f_i 's are posynomials, h_i 's are monomials, and $b_i > 0$ (wlog 1).

• In their natural parametrization by $x_1, \ldots, x_n \in \mathbb{R}_+$, geometric programs are not convex optimization problems

Geometric Programs in Convex Form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad \text{for } i \in \mathcal{C}_1. \\ & h_i(x) = b_i, \quad \text{for } i \in \mathcal{C}_2. \\ & x \succeq 0 \end{array}$$

where f_i 's are posynomials, h_i 's are monomials, and $b_i > 0$ (wlog 1).

- In their natural parametrization by $x_1, \ldots, x_n \in \mathbb{R}_+$, geometric programs are not convex optimization problems
- However, the feasible set and objective function are convex in the variables $y_1, \ldots, y_n \in \mathbb{R}$ where $y_i = \log x_i$

Geometric Programs in Convex Form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad \text{for } i \in \mathcal{C}_1. \\ & h_i(x) = b_i, \quad \text{for } i \in \mathcal{C}_2. \\ & x \succeq 0 \end{array}$$

where f_i 's are posynomials, h_i 's are monomials, and $b_i > 0$ (wlog 1).

- Each monomial $cx_1^{a_1}x_2^{a_2}\dots x_k^{a_k}$ can be rewritten as a convex function $ce^{a_1y_1+a_2y_2+\dots+a_ky_k}$
- Therefore, each posynomial becomes the sum of these convex exponential functions
- Inequality constraints and objective become convex
- Equality constraint $cx_1^{a_1}x_2^{a_2}\dots x_k^{a_k} = b$ reduces to an affine constraint $a_1y_1 + a_2y_2\dots a_ky_k = \log \frac{b}{c}$

4 More Convex Optimization Problems

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Fact

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

Symmetric Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is square and $A_{ij} = A_{ji}$ for all i, j.

• We denote the cone of $n \times n$ symmetric matrices by S^n .

Fact

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if it is orthogonally diagonalizable.

- i.e. $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.
- The columns of Q are the (normalized) eigenvectors of A, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$
- Equivalently: As a linear operator, A scales the space along an orthonormal basis ${\cal Q}$
- The scaling factor λ_i along direction q_i may be negative, positive, or 0.

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$
- $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, where $\lambda_i \ge 0$.
- As a linear operator, ${\cal A}$ performs nonnegative scaling along an orthonormal basis Q

Positive Semi-Definite Matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if it is symmetric and moreover all its eigenvalues are nonnegative.

- We denote the cone of $n \times n$ positive semi-definite matrices by S^n_+
- We use $A \succeq 0$ as shorthand for $A \in S^n_+$
- $A = QDQ^{\mathsf{T}}$ where Q is an orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, where $\lambda_i \ge 0$.
- As a linear operator, A performs nonnegative scaling along an orthonormal basis ${\cal Q}$

Note

Positive definite, negative semi-definite, and negative definite defined similarly.

Geometric Intuition for PSD Matrices

- For A ≥ 0, let q₁,..., q_n be the orthonormal eigenbasis for A, and let λ₁,..., λ_n ≥ 0 be the corresponding eigenvalues.
- The linear operator $x \to Ax$ scales the q_i component of x by λ_i
- When applied to every x in the unit ball, the image of A is an ellipsoid centered at the origin with principal directions q_1, \ldots, q_n and corresponding diameters $2\lambda_1, \ldots, 2\lambda_n$
 - When A is positive definite (*i.e.* $\lambda_i > 0$), and therefore invertible, the ellipsoid is the set $\{y : y^T (AA^T)^{-1}y \le 1\}$

Useful Properties of PSD Matrices

- If $A \succeq 0$, then
 - $x^T A x \ge 0$ for all x
 - A has a positive semi-definite square root $A^{\frac{1}{2}}$
 - $A^{\frac{1}{2}} = Q \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) Q^{\mathsf{T}}$
 - $A = BB^T$ for some matrix B.
 - Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. A_{ij} is dot product of the *i*th and *j*th rows of *B*.
 - Interpretation: The quadratic form $x^T A x$ is the length of a linear transformation of x, namely $||Bx||_2^2$
 - The quadratic function $x^T A x$ is convex
 - A can be expressed as a sum of vector outer-products

• e.g.,
$$A = \sum_{i=1}^{n} v_i v_i^T$$
 for $\vec{v_i} = \sqrt{\lambda_i} \vec{q_i}$

Useful Properties of PSD Matrices

- If $A \succeq 0$, then
 - $x^T A x \ge 0$ for all x
 - A has a positive semi-definite square root $A^{\frac{1}{2}}$
 - $A^{\frac{1}{2}} = Q \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) Q^{\mathsf{T}}$
 - $A = BB^T$ for some matrix B.
 - Interpretation: PSD matrices encode the "pairwise similarity" relationships of a family of vectors. A_{ij} is dot product of the *i*th and *j*th rows of *B*.
 - Interpretation: The quadratic form $x^T A x$ is the length of a linear transformation of x, namely $||Bx||_2^2$
 - The quadratic function $x^T A x$ is convex
 - A can be expressed as a sum of vector outer-products

• e.g.,
$$A = \sum_{i=1}^{n} v_i v_i^T$$
 for $\vec{v_i} = \sqrt{\lambda_i} \vec{q_i}$

As it turns out, each of the above is also sufficient for $A \succeq 0$ (assuming A is symmetric).

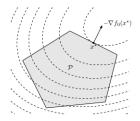
Convex Optimization Basics

- 2 Common Classes
- Interlude: Positive Semi-Definite Matrices
- 4 More Convex Optimization Problems

Quadratic Programming

Minimizing a convex quadratic function over a polyhedron.

 $\begin{array}{ll} \mbox{minimize} & x^{\intercal} P x + c^{\intercal} x + d \\ \mbox{subject to} & A x \leq b \end{array}$



• $P \succeq 0$

- Objective can be rewritten as $(x x_0)^{\mathsf{T}} P(x x_0)$ for some center x_0 (might need to change *d*, which is immaterial)
- Sublevel sets are scaled copies of an ellipsoid centered at x₀

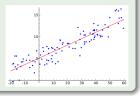
More Convex Optimization Problems

Constrained Least Squares

Given a set of measurements $(a_1, b_1), \ldots, (a_m, b_m)$, where $a_i \in \mathbb{R}^n$ is the *i*'th input and $b_i \in \mathbb{R}$ is the *i*'th output, fit a linear function minimizing mean square error, subject to known bounds on the linear coefficients.

minimize
$$||Ax - b||_2^2 = x^{\mathsf{T}}A^{\mathsf{T}}Ax - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$$

subject to $l_i \leq x_i \leq u_i$, for $i = 1, \dots, n$.



Distance Between Polyhedra

Given two polyhedra $Ax \leq b$ and $Cx \leq d$, find the distance between them.

minimize
$$||z||_2^2 = z^{\intercal} I z$$

subject to $z = y - x$
 $Ax \leq b$
 $By \leq d$

This is an umbrella term for problems of the following form

minimize $c^{\mathsf{T}}x$ subject to $Ax + b \in K$

Where *K* is a convex cone (e.g. \mathbb{R}^n_+ , positive semi-definite matrices, etc). Evidently, such optimization problems are convex.

This is an umbrella term for problems of the following form

minimize $c^{\mathsf{T}}x$ subject to $Ax + b \in K$

Where *K* is a convex cone (e.g. \mathbb{R}^n_+ , positive semi-definite matrices, etc). Evidently, such optimization problems are convex.

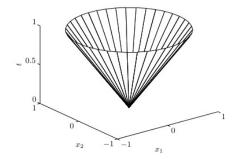
As shorthand, the cone containment constraint is often written using generalized inequalities

•
$$Ax + b \succeq_K 0$$

•
$$-Ax \preceq_K b$$

We will exhibit an example of a conic optimization problem with K as the second order cone

$$K = \{(x, t) : ||x||_2 \le t\}$$



Linear Program with Random Constraints

Consider the following optimization problem, where each a_i is a gaussian random variable with mean \overline{a}_i and covariance matrix Σ_i .

minimize $c^{\mathsf{T}}x$ subject to $a_i^{\mathsf{T}}x \leq b_i$ w.p. at least 0.9, for $i = 1, \ldots, m$.

• $u_i := a_i^{\mathsf{T}} x$ is a univariate normal r.v. with mean $\overline{u}_i := \overline{a}_i^{\mathsf{T}} x$ and stddev $\sigma_i := \sqrt{x^{\mathsf{T}} \Sigma_i x} = ||\Sigma_i^{\frac{1}{2}} x||_2$

Linear Program with Random Constraints

Consider the following optimization problem, where each a_i is a gaussian random variable with mean \overline{a}_i and covariance matrix Σ_i .

minimize $c^{\mathsf{T}}x$ subject to $a_i^{\mathsf{T}}x \leq b_i$ w.p. at least 0.9, for $i = 1, \ldots, m$.

- $u_i := a_i^{\mathsf{T}} x$ is a univariate normal r.v. with mean $\overline{u}_i := \overline{a}_i^{\mathsf{T}} x$ and stddev $\sigma_i := \sqrt{x^{\mathsf{T}} \Sigma_i x} = ||\Sigma_i^{\frac{1}{2}} x||_2$
- $u_i \leq b_i$ with probability $\phi(\frac{b_i \overline{u}_i}{\sigma_i})$, where ϕ is the CDF of the standard normal random variable.

Linear Program with Random Constraints

Consider the following optimization problem, where each a_i is a gaussian random variable with mean \overline{a}_i and covariance matrix Σ_i .

minimize $c^{\mathsf{T}}x$ subject to $a_i^{\mathsf{T}}x \leq b_i$ w.p. at least 0.9, for $i = 1, \ldots, m$.

- $u_i := a_i^{\mathsf{T}} x$ is a univariate normal r.v. with mean $\overline{u}_i := \overline{a}_i^{\mathsf{T}} x$ and stddev $\sigma_i := \sqrt{x^{\mathsf{T}} \Sigma_i x} = ||\Sigma_i^{\frac{1}{2}} x||_2$
- $u_i \leq b_i$ with probability $\phi(\frac{b_i \overline{u}_i}{\sigma_i})$, where ϕ is the CDF of the standard normal random variable.
- Since we want this probability to exceed 0.9, we require that $\frac{b_i - \overline{u}_i}{\sigma_i} \ge \phi^{-1}(0.9) \approx 1.3 \approx 1/0.77$ $||\Sigma_i^{\frac{1}{2}}x||_2 \le 0.77(b_i - \overline{a}_i^{\mathsf{T}}x)$

These are conic optimization problems where the cone in question is the set of positive semi-definite matrices.

minimize $c^{\intercal}x$ subject to $x_1F_1 + x_2F_2 \dots x_nF_n + G \succeq 0$ Where F_1, \dots, F_n are matrices, and \succeq refers to the positive

semi-definite cone S^n_+ .

These are conic optimization problems where the cone in question is the set of positive semi-definite matrices.

 $\begin{array}{ll} \mbox{minimize} & c^{\intercal}x\\ \mbox{subject to} & x_1F_1+x_2F_2\ldots x_nF_n+G\succeq 0 \end{array}$

Where F_1, \ldots, F_n are matrices, and \succeq refers to the positive semi-definite cone S^n_+ .

Examples

- Fitting a distribution, say a Gaussian, to observed data. Variable is a positive semi-definite covariance matrix.
- As a relaxation to combinatorial problems that encode pairwise relationships: e.g. finding the maximum cut of a graph.

Example: Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in E} \frac{1-x_i x_j}{2} \\ \text{subject to} & x_i \in \{-1,1\}, \quad \text{ for } i \in V. \end{array}$$

Example: Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

maximize
$$\sum_{(i,j)\in E} \frac{1-x_i x_j}{2}$$

subject to $x_i \in \{-1,1\}$, for $i \in V$.

Vector Program relaxation

maximize	$\sum_{(i,j)\in E} \frac{1-x_i \cdot x_j}{2}$	
subject to	$ x_i _2 = 1,$	for $i \in V$.
	$x_i \in \mathbb{R}^n$,	for $i \in V$.

Example: Max Cut Problem

Given an undirected graph G = (V, E), find a partition of V into $(S, V \setminus S)$ maximizing number of edges with exactly one end in S.

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in E} \frac{1-x_i x_j}{2} \\ \text{subject to} & x_i \in \{-1,1\}\,, \quad \text{ for } i \in V. \end{array}$$

Vector Program relaxation

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in E} \frac{1-x_i \cdot x_j}{2} \\ \text{subject to} & ||x_i||_2 = 1, & \text{for } i \in V. \\ & x_i \in \mathbb{R}^n, & \text{for } i \in V. \end{array}$$

SDP Relaxation

$$\begin{array}{ll} \mbox{maximize} & \sum_{(i,j)\in E} \frac{1-X_{ij}}{2} \\ \mbox{subject to} & X_{ii}=1, \\ & X\in S^n_+ \end{array} \mbox{ for } i\in V. \end{array}$$