CS675: Convex and Combinatorial Optimization Spring 2018 The Ellipsoid Algorithm

Instructor: Shaddin Dughmi

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP
- Inefficient in practice, has been surpassed by newer interior point methods.

- Originally developed in the mid 70s by ludin, Nemirovski, and Shor for use as a heuristic for convex optimization
- In 1979, Kachiyan shows that it yields a polynomial time algorithm for LP
- Inefficient in practice, has been surpassed by newer interior point methods.
- Theoretically most powerful, with deep consequences for complexity and optimization
 - Polynomial-time algorithm for linear programming
 - Polynomial-time algorithm for approximate convex optimization under mild conditions
 - Equivalence of separation and optimization

Convex Feasibility Problem

Given as input the following

- A description of a compact convex set $K \subseteq \mathbb{R}^n$
- An ellipsoid E(c, Q) (typically a ball) containing K
- A rational number R > 0 satisfying $vol(E) \le R$.
- A rational number r > 0 such that if K is nonempty, then vol(K) ≥ r.

Find a point $x \in K$ or declare that K is empty.

- Note: convex optimization reduces to checking feasibility by binary search
 - We will explain later how the parameters r, R, E figure into this
- Description of *K*: any description that admits an efficient implementation of a separation oracle

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $h^{\mathsf{T}}y < h^{\mathsf{T}}x$ for all $y \in K$.
- Equivalently, K is contained in the halfspace

$$H(h, x) = \{y : h^{\mathsf{T}}y < h^{\mathsf{T}}x\}$$

with x at its boundary.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $h^{\mathsf{T}}y < h^{\mathsf{T}}x$ for all $y \in K$.
- Equivalently, K is contained in the halfspace

$$H(h, x) = \{y : h^{\mathsf{T}}y < h^{\mathsf{T}}x\}$$

with x at its boundary.

Examples:

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $h^{\mathsf{T}}y < h^{\mathsf{T}}x$ for all $y \in K$.
- Equivalently, K is contained in the halfspace

$$H(h, x) = \{y : h^{\mathsf{T}}y < h^{\mathsf{T}}x\}$$

with x at its boundary.

Examples:

Explicitly written polytope Ay ≤ b: take h = a_i where the *i*th constraint is violated by x.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $h^{\mathsf{T}}y < h^{\mathsf{T}}x$ for all $y \in K$.
- Equivalently, K is contained in the halfspace

$$H(h, x) = \{y : h^{\mathsf{T}}y < h^{\mathsf{T}}x\}$$

with x at its boundary.

Examples:

- Explicitly written polytope Ay ≤ b: take h = a_i where the *i*th constraint is violated by x.
- Convex set given by a family of convex inequalities $f_i(y) \le 0$: Let $h = \nabla f_i(x)$ for some violated constraint.

An algorithm that takes as input $x \in \mathbb{R}^n$, and either certifies $x \in K$ or outputs a hyperplane separting x from K.

- i.e. a vector $h \in \mathbb{R}^n$ with $h^{\mathsf{T}}y < h^{\mathsf{T}}x$ for all $y \in K$.
- Equivalently, K is contained in the halfspace

$$H(h, x) = \{y : h^{\mathsf{T}}y < h^{\mathsf{T}}x\}$$

with x at its boundary.

Examples:

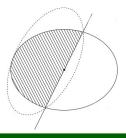
- Explicitly written polytope Ay ≤ b: take h = a_i where the *i*th constraint is violated by x.
- Convex set given by a family of convex inequalities $f_i(y) \le 0$: Let $h = \nabla f_i(x)$ for some violated constraint.
- The positive semi-definite cone S_n⁺: Let H = -vv^T, where v is an eigenvector X corresponding to a negative eigenvalue.

Recall:Ellipsoids

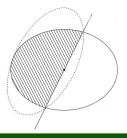
- Unit ball $B(0,1) = \{x \in \mathbb{R}^n : x^{\mathsf{T}}x \le 1\}.$
- Ellipsoid: the result of applying some affine transformation $x \rightarrow Lx + c$ to B(0, 1).
 - Gives the set $\left\{x:(x-c)^{\mathsf{T}}L^{-\mathsf{T}}L^{-1}(x-c)\leq 1\right\}$
- It is conventional to take Q = LL^T, which is symmetric PSD, and write the ellipsoid as

$$E(c,Q) = \left\{ x : (x-c)^{\mathsf{T}}Q^{-1}(x-c) \le 1 \right\}$$

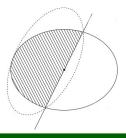
- Can calculate volume easily: $vol(E(c, Q)) = \sqrt{\det Q} vol(B(0, 1))$
- Note: since Q ≥ 0 has a PSD square root, can take L to be PSD as well



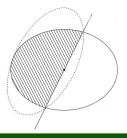
- Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- **2** Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output *c*.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid E ∩ {y : h^Ty ≤ h^Tc}
- Solution Let E' = E(c', Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- ② Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output *c*.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid E ∩ {y : h^Ty ≤ h^Tc}
- Solution Let E' = E(c', Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- **2** Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output *c*.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid E ∩ {y : h^Ty ≤ h^Tc}
- Solution Let E' = E(c', Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".



- Start with initial ellipsoid $E = E(c, Q) \supseteq K$
- **2** Using the separation oracle, check if the center $c \in K$.
 - If so, terminate and output *c*.
 - Otherwise, we get a separating hyperplane h such that K is contained in the half-ellipsoid E ∩ {y : h^Ty ≤ h^Tc}
- Solution Let E' = E(c', Q') be the minimum volume ellipsoid containing the half ellipsoid above.
- If $vol(E') \ge r$ then set E = E' and repeat (step 2), otherwise stop and return "empty".

Description of The Ellipsoid Method

Theorem

If the ellipsoid algorithm terminates, then it either outputs $x \in K$ or correctly declares that K is empty.

- Algorithm outputs some *x* only if it was certified in *K* by the separation oracle
- $E \supseteq K$ is maintained throughout the algorithm, by definition
- We are promised $\mathbf{vol}(K) < r$ only if $K = \emptyset$
- If algorithm outputs empty then $r > vol(E) \ge vol(K)$, and $K = \emptyset$.

Runtime

To prove that the ellipsoid method runs in polynomial time, we need the following lemma

Lemma

- The minimum volume ellipsoid E' containing half of another ellipsoid E can be computed in poly(n) operations.
- Moreover, the volume of E' is smaller than the volume of E by a factor of at least $e^{\frac{1}{2(n+1)}} \approx 1 + \frac{1}{2(n+1)}$.

This is tricky to show, but there is an explicit, easy-to-compute, closed form for the matrix and center of E' in terms of the matrix and center of E. (See notes for proof)

Theorem

The ellipsoid method terminates after $2(n+1) \ln \frac{R}{r}$ iterations. Moreover, each iteration can be implemented using poly(n) operations and a single call to the separation oracle.

- Volume of working ellipsoid starts off at R
- Decreases by a factor of $e^{\frac{1}{2(n+1)}}$ each iteration.
- After $2(n+1)\ln \frac{R}{r}$ interations, volume is less than r, triggering termination.

Theorem

The ellipsoid method terminates after $2(n+1) \ln \frac{R}{r}$ iterations. Moreover, each iteration can be implemented using poly(n) operations and a single call to the separation oracle.

- Volume of working ellipsoid starts off at R
- Decreases by a factor of $e^{\frac{1}{2(n+1)}}$ each iteration.
- After $2(n+1)\ln \frac{R}{r}$ interations, volume is less than r, triggering termination.
- In each iteration, we
 - Call the separation oracle (Assumed constant time)
 - Compute the minimum volume ellipsoid (poly(n) time by lemma)
 - Compute the volume of E' (reduces to determinant computation).