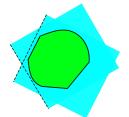
CS675: Convex and Combinatorial Optimization Spring 2018 Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi

2 Duality of Convex Sets

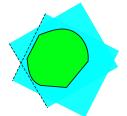
Duality Correspondances



There are two equivalent ways to represent a convex set

- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

Duality Correspondances

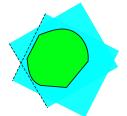


There are two equivalent ways to represent a convex set

- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Duality Correspondances



There are two equivalent ways to represent a convex set

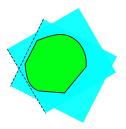
- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

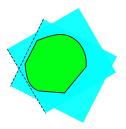
Definition

"Duality" is a woefully overloaded mathematical term for a relation that groups elements of a set into "dual" pairs.

Convexity and Duality



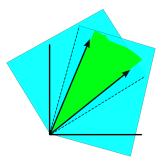
A closed convex set ${\it S}$ is the intersection of all closed halfspaces ${\cal H}$ containing it.



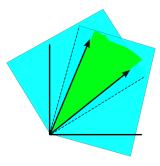
A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Proof

- Clearly, $S \subseteq \bigcap_{H \in \mathcal{H}} H$
- To prove equality, consider $x \notin S$
- By the separating hyperplane theorem, there is a hyperplane separating S from x
- Therefore there is $H \in \mathcal{H}$ with $x \notin H$, hence $x \notin \bigcap_{H \in \mathcal{H}} H$



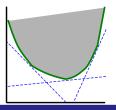
A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.



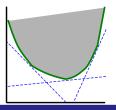
A closed convex cone K is the intersection of all closed homogeneous halfspaces \mathcal{H} containing it.

Proof

- For every non-homogeneous halfspace a^Tx ≤ b containing K, the smaller homogeneous halfspace a^Tx ≤ 0 contains K as well.
- Therefore, can discard non-homogeneous halfspaces when taking the intersection



A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.



A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Proof

epi f is convex

- Therefore epi f is the intersection of a family of halfspaces of the form $a^{\mathsf{T}}x t \leq b$, for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. (Why?)
- Each such halfspace constrains $(x, t) \in \operatorname{epi} f$ to $a^{\mathsf{T}}x b \leq t$
- f(x) is the lowest t s.t. $(x, t) \in epi f$
- Therefore, f(x) is the point-wise maximum of a^Tx b over all halfspaces

Convexity and Duality

Polar Duality of Convex Sets

One way of representing the all halfspaces containing a convex set.

Polar

Let $S \subseteq \mathbb{R}^n$ be a closed convex set containing the origin. The polar of S is defined as follows:

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

Note

- Every halfspace $a^{\mathsf{T}}x \leq b$ with $b \neq 0$ can be written as a "normalized" inequality $y^{\mathsf{T}}x \leq 1$, by dividing by *b*.
- S° can be thought of as the normalized representations of halfspaces containing S.

$$S^{\circ} = \{y : y^{\mathsf{T}}x \le 1 \text{ for all } x \in S\}$$

Properties of the Polar

- ${f O}$ S° is a closed convex set containing the origin
- **(a)** When 0 is in the interior of S, then S° is bounded.

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

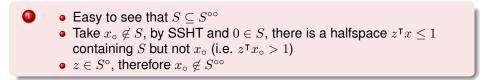
Properties of the Polar S^{oo} = S S^o is a closed convex set containing the origin When 0 is in the interior of S, then S^o is bounded.

Pollows from representation as intersection of halfspaces

S contains an ε-ball centered at the origin, so ||y|| ≤ 1/ε for all y ∈ S°.

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

Properties of the Polar \$S^{\circ\circ} = S\$ \$S^{\circ}\$ is a closed convex set containing the origin When 0 is in the interior of *S*, then S^{\circ} is bounded.



$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

Properties of the Polar $S^{\circ\circ} = S$

- ${f O}$ S° is a closed convex set containing the origin
- **③** When 0 is in the interior of S, then S° is bounded.

Note

When S is non-convex, $S^{\circ} = (convexhull(S))^{\circ}$, and $S^{\circ\circ} = convexhull(S)$.



The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

Norm Balls

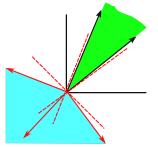
- The polar of the Euclidean unit ball is itself (we say it is self-dual)
- The polar of the 1-norm ball is the $\infty\text{-norm}$ ball
- More generally, the p-norm ball is dual to the q-norm ball, where $\frac{1}{p}+\frac{1}{q}=1$

Polytopes

Given a polytope *P* represented as $Ax \leq \vec{1}$, the polar P° is the convex hull of the rows of *A*.

- Facets of P correspond to vertices of P° .
- Dually, vertices of P correspond to facets of P° .

Polar Duality of Convex Cones



Polar duality takes a simplified form when applied to cones

Polar

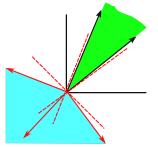
The polar of a closed convex cone K is given by $K^{\circ} = \{y: y^{\mathsf{T}}x \leq 0 \text{ for all } x \in K\}$

Note

- If halfspace $y^{\intercal}x \leq b$ contains K, then so does smaller $y^{\intercal}x \leq 0$.
- K° represents all homogeneous halfspaces containing K.

Duality of Convex Sets

Polar Duality of Convex Cones



Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone K is given by $K^{\circ} = \{y: y^{\mathsf{T}}x \leq 0 \text{ for all } x \in K\}$

Dual Cone

By convention, $K^* = -K^\circ$ is referred to as the dual cone of K. $K^* = \{y : y^{\mathsf{T}}x \ge 0 \text{ for all } x \in K\}$

Duality of Convex Sets

$$K^{\circ} = \{ y : y^{\mathsf{T}} x \le 0 \text{ for all } x \in K \}$$

Properties of the Polar Cone

- $\bigcirc K^{\circ\circ} = K$
- 2 K° is a closed convex cone

$$K^{\circ} = \{ y : y^{\mathsf{T}} x \le 0 \text{ for all } x \in K \}$$

Properties of the Polar Cone

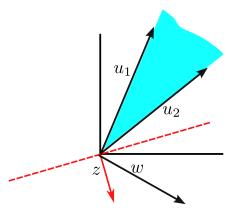
- $I K^{\circ \circ} = K$
- 2 K° is a closed convex cone

- Same as before
- Intersection of homogeneous halfspaces

- The polar of a subspace is its orthogonal complement
- The polar cone of the nonnegative orthant is the nonpositive orthant
 - Self-dual
- The polar of a polyhedral cone $Ax \preceq 0$ is the conic hull of the rows of A
- The polar of the cone of positive semi-definite matrices is the cone of negative semi-definite matrices
 - Self-dual

Recall: Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $z^{\mathsf{T}}x \leq 0$ for all $x \in K$, and $z^{\mathsf{T}}w > 0$.



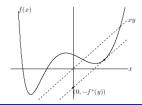
Equivalently: there is $z \in K^{\circ}$ with $z^{\mathsf{T}}w > 0$.

Duality of Convex Sets

Convexity and Duality

2 Duality of Convex Sets

Conjugation of Convex Functions



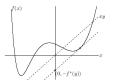
Conjugate

Let $f : \mathbb{R}^n \to \mathbb{R} \bigcup \{\infty\}$ be a convex function. The conjugate of f is $f^*(y) = \sup_x (y^{\mathsf{T}} x - f(x))$

Note

- $f^*(y)$ is the minimal value of β such that the affine function $y^T x \beta$ underestimates f(x) everywhere.
- Equivalently, the distance we need to lower the hyperplane $y^{\mathsf{T}}x t = 0$ in order to get a supporting hyperplane to $\operatorname{epi} f$.

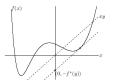
• $y^{\mathsf{T}}x - t = f^*(y)$ are the supporting hyperplanes of epi f



$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

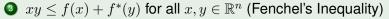
- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

3
$$xy \leq f(x) + f^*(y)$$
 for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)



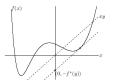
$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function



Supremum of affine functions of y

Output By definition of $f^*(y)$

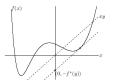


$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

3
$$xy \leq f(x) + f^*(y)$$
 for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

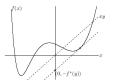
•
$$f^{**}(x) = \max_y y^{\mathsf{T}}x - f^*(y)$$
 when f is convex



$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

3 $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)



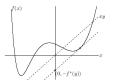
$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

3 $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

- $f^{**}(x) = \max_y y^{\mathsf{T}} x f^*(y)$ when f is convex
 - For fixed y, $f^*(y)$ is minimal β such that $y^{\mathsf{T}}x \beta$ underestimates f.

 Therefore f^{**}(x) is the maximum, over all y, of affine underestimates y^Tx - β of f



$$f^*(y) = \sup_x (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function

③ $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)

- $f^{**}(x) = \max_y y^{\mathsf{T}} x f^*(y)$ when f is convex
 - For fixed y, $f^*(y)$ is minimal β such that $y^{\mathsf{T}}x \beta$ underestimates f.
 - Therefore f^{**}(x) is the maximum, over all y, of affine underestimates y^Tx - β of f
 - By our characterization early in this lecture, this is equal to *f*.

- Affine function: f(x) = ax + b. Conjugate has $f^*(a) = -b$, and ∞ elsewhere
- $f(x) = x^2/2$ is self-conjugate
- Exponential: $f(x) = e^x$. Conjugate has $f^*(y) = y \log y y$ for $y \in \mathbb{R}_+$, and ∞ elsewhere.
- Quadratic: $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx$ with $Q \succeq 0$. Self conjugate.
- Log-sum-exp: $f(x) = \log(\sum_i e^{x_i})$. Conjugate has $f^*(y) = \sum_i y_i \log y_i$ for $y \succeq 0$ and $1^{\mathsf{T}}y = 1$, ∞ otherwise.