CS675: Convex and Combinatorial Optimization Spring 2018 Introduction to Matroid Theory

Instructor: Shaddin Dughmi

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - Independent set
 - ...

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - Independent set
 - ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - Independent set
 - ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular

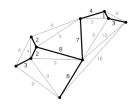
- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - Independent set
 - ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave and convex: submodular and supermodular (in no particular order!)

- Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets
 - Shortest paths
 - Max-weight matching
 - Independent set
 - ...
- Set system: Pair $(\mathcal{X}, \mathcal{I})$ where \mathcal{X} is a finite ground set and $\mathcal{I} \subseteq 2^{\mathcal{X}}$ are the feasible sets
- Objective: often "linear", referred to as modular
- Analogues of concave and convex: submodular and supermodular (in no particular order!)
- Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems
 - \bullet Related, directly or indirectly, to a large fraction of optimization problems in P
 - Also pops up in submodular/supermodular optimization problems

Outline

- Matroids and The Greedy Algorithm
- Basic Terminology and Properties
- The Matroid Polytope
- Matroid Intersection

Maximum Weight Forest Problem



Given a connected undirected graph G=(V,E), and weights $w_e\in\mathbb{R}$ on edges e, find a maximum weight acyclic subgraph (aka forest) of G.

- Slight generalization of minimum weight spanning tree
- We use n and m to denote |V| and |E|, respectively.

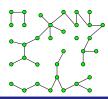
- $\mathbf{0} \ B \leftarrow \emptyset$
- Sort non-negative weight edges in decreasing order of weight
 - e_1, \ldots, e_m , with $w_1 \ge w_2 \ge \ldots \ge w_m \ge 0$
- \bigcirc For i=1 to m:
 - if $B \bigcup \{e_i\}$ is acyclic, add e_i to B.

The Greedy Algorithm

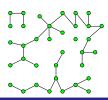
- Sort non-negative weight edges in decreasing order of weight
 - e_1, \ldots, e_m , with $w_1 \ge w_2 \ge \ldots \ge w_m \ge 0$
- \odot For i=1 to m:
 - if $B \cup \{e_i\}$ is acyclic, add e_i to B.

Theorem

The greedy algorithm outputs a maximum-weight forest.

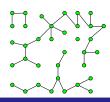


- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- ③ If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \cup \{e\}$ is acyclic

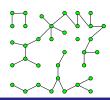


- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- **③** If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \mid J\{e\}$ is acyclic

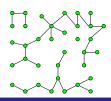
(1) and (2) are trivial, so let's prove (3)



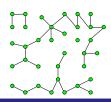
- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- **③** If A,B are acyclic, and |B|>|A|, then there is $e\in B\setminus A$ such that $A\cup\{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 - Induction



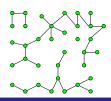
- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- **③** If A,B are acyclic, and |B|>|A|, then there is $e\in B\setminus A$ such that $A\cup\{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C).
 - Induction
 - When |B| > |A|, this means #components(B) < #components(A)



- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- ③ If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \cup \{e\}$ is acyclic
 - Sub-lemma: if C is acyclic, then |C| = n #components(C). • Induction
 - When |B| > |A|, this means #components(B) < #components(A)
 - ullet Can't be that all $e \in B$ are "inside" connected components of A



- The empty set is acyclic
- 2 If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
- ③ If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \cup \{e\}$ is acyclic
- Sub-lemma: if C is acyclic, then |C| = n #components(C). • Induction
- When |B| > |A|, this means #components(B) < #components(A)
- Can't be that all $e \in B$ are "inside" connected components of A
- Some $e \in B$ must "go between" connected components of A.



- The empty set is acyclic
- ② If A is an acyclic set of edges, and $B \subseteq A$, then B is also acyclic.
 - ullet Contrapositive: if B cyclic then so is A
- **③** If A, B are acyclic, and |B| > |A|, then there is $e \in B \setminus A$ such that $A \cup \{e\}$ is acyclic
 - Inductively: can extend A by adding |B|-|A| elements from $B\setminus A$
 - \bullet Sub-lemma: if C is acyclic, then |C|=n-#components(C).
 - Induction
 - When |B| > |A|, this means #components(B) < #components(A)
 - Can't be that all $e \in B$ are "inside" connected components of A
 - Some $e \in B$ must "go between" connected components of A.

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

• i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \cap \{e_1, \dots, e_i\}$

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

- i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \cap \{e_1, \dots, e_i\}$
- Assume true for step i-1, and consider step i

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

- i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \cap \{e_1, \dots, e_i\}$
- Assume true for step i-1, and consider step i
- If $e_i \notin B_i$, then $B_{i-1} \bigcup \{e_i\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^*$, then $e_i \notin B_{i-1}^*$ (Property 2). So take $B_i^* = B_{i-1}^*$.

Going back to proving the algorithm correct.

Inductive Hypothesis (i)

There is a maximum-weight acyclic forest B_i^* which "agrees" with the algorithm's choices on edges e_1, \ldots, e_i .

- i.e. if B_i denotes the algorithm's choice up to iteration i, then $B_i = B_i^* \cap \{e_1, \dots, e_i\}$
- Assume true for step i-1, and consider step i
- If $e_i \notin B_i$, then $B_{i-1} \bigcup \{e_i\}$ is cyclic. Since $B_{i-1} \subseteq B_{i-1}^*$, then $e_i \notin B_{i-1}^*$ (Property 2). So take $B_i^* = B_{i-1}^*$.
- If $e_i \in B_i$ and $e_i \notin B_{i-1}^*$, build B_i^* by repeatedly extending B_i using B_{i-1}^* (property 3)
 - Recall that $B_i = B_{i-1} \cup \{e_i\}$ agrees with B_{i-1}^* on e_1, \dots, e_{i-1} .
 - $B_i^* = B_{i-1}^* \bigcup \{e_i\} \setminus \{e_k\}$ for some k > i
 - ullet B_i^* has weight no less than B_{i-1}^* , so optimal.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

- $\emptyset \in \mathcal{I}$
- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- $\textbf{3} \quad \text{If } A,B \in \mathcal{I} \text{ and } |B| > |A| \text{, then } \exists \ x \in B \setminus A \text{ such that } A \bigcup \{x\} \in \mathcal{I} \text{ (Exchange Property)}$

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

- $\emptyset \in \mathcal{I}$
- ② If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- $\textbf{ If } A,B\in\mathcal{I} \text{ and } |B|>|A| \text{, then } \exists \ x\in B\setminus A \text{ such that } A\bigcup\{x\}\in\mathcal{I} \text{ (Exchange Property)}$
 - Three conditions above are called the matroid axioms
 - $A \in \mathcal{I}$ is called an independent set of the matroid.

To prove optimality of the greedy algorithm, all we needed was the following.

Matroids

A set system $M = (\mathcal{X}, \mathcal{I})$ is a matroid if

- $\mathbf{0} \quad \emptyset \in \mathcal{I}$
- ② If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ (Downward Closure)
- $\textbf{ If } A,B\in\mathcal{I} \text{ and } |B|>|A| \text{, then } \exists \ x\in B\setminus A \text{ such that } A\bigcup\{x\}\in\mathcal{I} \text{ (Exchange Property)}$
 - Three conditions above are called the matroid axioms
 - $A \in \mathcal{I}$ is called an independent set of the matroid.
 - The matroid whose independent sets are acyclic subgraphs is called a graphic matroid
 - Other examples abound!

Example: Linear Matroid

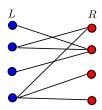
- \mathcal{X} is a finite set of vectors $\{v_1, \dots, v_m\} \subseteq \mathbb{R}^n$
- $S \in \mathcal{I}$ iff the vectors in S are linearly independent
- Downward closure: If a set of vectors is linearly independent, then every subset of it is also
- ullet Exchange property: Can always extend a low-dimension independent set S by adding vectors from a higher dimension independent set T

Example: Uniform Matroid

- \mathcal{X} is an arbitrary finite set $\{1, \ldots, n\}$.
- $S \in \mathcal{I}$ iff $|S| \leq k$.
- Downward closure: If a set S has $|S| \le k$ then the same holds for $T \subset S$.
- Exchange property: If $|S| < |T| \le k$, then there is an element in $T \setminus S$, and we can add it to S while preserving independence.

Example: Partition Matroid

- \mathcal{X} is the disjoint union of classes X_1, \dots, X_m
- Each class X_i has an upperbound k_i .
- $S \in \mathcal{I}$ iff $|S \cap X_i| \le k_i$ for all j
- This is the "disjoint union" of a number of uniform matroids



Example: Transversal Matroid

- Described by a bipartite graph $E \subseteq L \times R$
- \bullet $\mathcal{X} = L$
- $S \in \mathcal{I}$ iff there is a bipartite matching which matches S
- Downward closure: If we can match S, then we can match $T \subseteq S$.
- Exchange property: If |T| > |S| is matchable, then an augmenting path/alternating path extends the matching of S to some $x \in T \setminus S$.

The Greedy Algorithm

- $\ensuremath{\mathbf{2}}$ Sort nonnegative elements of $\ensuremath{\mathcal{X}}$ in decreasing order of weight
 - $\{1, \ldots, n\}$ with $w_1 \ge w_2, \ge \ldots \ge w_n \ge 0$.
- For i=1 to n:
 - if $B \cup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

We already saw the "if" direction. We will skip "only if".

- $\ensuremath{ 2 \hspace{-0.8mm} \raisebox{.4pt}{$\scriptstyle \circ$}}$ Sort nonnegative elements of $\ensuremath{\mathcal{X}}$ in decreasing order of weight
 - $\{1, \ldots, n\}$ with $w_1 \ge w_2, \ge \ldots \ge w_n \ge 0$.
- **3** For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

- $\textbf{ Sort nonnegative elements of } \mathcal{X} \text{ in decreasing order of weight }$
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- **3** For i = 1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.
 - To implement this, we need an independence oracle for step 3
 - A subroutine which checks whether $S \in \mathcal{I}$ or not.
 - Runs in time $O(n \log n) + nT$, where T is runtime of the independence oracle.

- $oldsymbol{2}$ Sort nonnegative elements of ${\mathcal X}$ in decreasing order of weight
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- For i=1 to n:
 - if $B \cup \{i\} \in \mathcal{I}$, add i to B.
 - To implement this, we need an independence oracle for step 3
 - A subroutine which checks whether $S \in \mathcal{I}$ or not.
 - Runs in time $O(n \log n) + nT$, where T is runtime of the independence oracle.
 - For most "natural" matroids, independence oracle is easy to implement efficiently
 - Graphic matroid
 - Linear matroid
 - Uniform/partition matroid
 - Transversal matroid

Outline

- Matroids and The Greedy Algorithm
- Basic Terminology and Properties
- The Matroid Polytope
- Matroid Intersection

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

• An independent set is a set $A \in \mathcal{I}$.

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of $S \subseteq \mathcal{X}$ in \mathcal{M} is maximal independent subset of S
 - I.e. a base of the matroid after deleting \overline{S} .

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- A base of \mathcal{M} is a maximal independent set
- A base of S ⊆ X in M is maximal independent subset of S
 I.e. a base of the matroid after deleting S̄.
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

Independent Sets, Bases, and Circuits

Consider a matroid $\mathcal{M} = (\mathcal{X}, \mathcal{I})$.

- An independent set is a set $A \in \mathcal{I}$.
- ullet A base of ${\mathcal M}$ is a maximal independent set
- A base of S ⊆ X in M is maximal independent subset of S
 I.e. a base of the matroid after deleting S̄.
- A circuit $S \subseteq \mathcal{X}$ is a minimal dependent subset of \mathcal{X}

What are these for:

- Graphic matroid
- Linear matroid
- Uniform matroid
- Partition matroid
- Transversal matroid

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S=\mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of $S \subseteq \mathcal{X}$ in \mathcal{M} is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M} .
- The function $rank_{\mathcal{M}}(S): 2^{\mathcal{X}} \to \mathbb{N}$ is called the rank function of \mathcal{M} .

Lemma

For every $S \subseteq \mathcal{X}$, all bases of S in \mathcal{M} have the same cardinality.

- Special case of $S = \mathcal{X}$: all bases of \mathcal{M} have the same cardinality.
- Should remind you of vector space dimension
- Follows directly from the exchange property.

The following analogue of vector space dimension is well-defined.

Rank

- The Rank of $S \subseteq \mathcal{X}$ in \mathcal{M} is the size of the maximal independent subsets (i.e. bases) of S.
- The rank of \mathcal{M} is the size of the bases of \mathcal{M} .
- The function $rank_{\mathcal{M}}(S): 2^{\mathcal{X}} \to \mathbb{N}$ is called the rank function of \mathcal{M} .

E.g.: Graphic matroid, linear matroid, transversal matroid

Span

Span

Given $S \subseteq \mathcal{X}$, $span(S) = \{i \in \mathcal{X} : rank(S) = rank(S \bigcup \{i\})\}$

- i.e. S itself, plus the elements which would form a circuit if added to a base of S
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Span

Span

Given $S \subseteq \mathcal{X}$, $span(S) = \{i \in \mathcal{X} : rank(S) = rank(S \bigcup \{i\})\}$

- ullet i.e. S itself, plus the elements which would form a circuit if added to a base of S
- e.g.: Linear matroid, graphic matroid, uniform matroid.

Observation

 $i \in \{1,\dots,n\}$ is selected by the greedy algorithm iff $i \not\in span(\{1,\dots,i-1\})$

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B\subseteq\mathcal{X}$, we define $\mathcal{M}\setminus B=(\mathcal{X}',\mathcal{I}')$ with $\mathcal{X}'=\mathcal{X}\setminus B$, $\mathcal{I}'=\left\{S\subseteq\mathcal{X}':S\in\mathcal{I}\right\}$
 - Graphic: deleting edges from the graph

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B\subseteq\mathcal{X}$, we define $\mathcal{M}\setminus B=(\mathcal{X}',\mathcal{I}')$ with $\mathcal{X}'=\mathcal{X}\setminus B$, $\mathcal{I}'=\{S\subseteq\mathcal{X}':S\in\mathcal{I}\}$
 - Graphic: deleting edges from the graph
- Disjoint union: Given $M_1=(\mathcal{X}_1,\mathcal{I}_2)$ and $M_2=(\mathcal{X}_2,\mathcal{I}_2)$ with $\mathcal{X}_1 \bigcap \mathcal{X}_2=\emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

Graphic: combining two node-disjoint graphs

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B\subseteq\mathcal{X}$, we define $\mathcal{M}\setminus B=(\mathcal{X}',\mathcal{I}')$ with $\mathcal{X}'=\mathcal{X}\setminus B$, $\mathcal{I}'=\{S\subseteq\mathcal{X}':S\in\mathcal{I}\}$
 - Graphic: deleting edges from the graph
- Disjoint union: Given $M_1=(\mathcal{X}_1,\mathcal{I}_2)$ and $M_2=(\mathcal{X}_2,\mathcal{I}_2)$ with $\mathcal{X}_1 \cap \mathcal{X}_2=\emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

- Graphic: combining two node-disjoint graphs
- Contraction: Given $B \subseteq \mathcal{X}$, let $M/B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = \mathcal{X} \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : \mathcal{B} \bigcup S \in \mathcal{I} \right\}$$

- i.e. Think of B as always being included
- Graphic: contract the connected components of B

Given $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, consider the following operations:

- Deletion: For $B\subseteq\mathcal{X}$, we define $\mathcal{M}\setminus B=(\mathcal{X}',\mathcal{I}')$ with $\mathcal{X}'=\mathcal{X}\setminus B$, $\mathcal{I}'=\{S\subseteq\mathcal{X}':S\in\mathcal{I}\}$
 - Graphic: deleting edges from the graph
- Disjoint union: Given $M_1=(\mathcal{X}_1,\mathcal{I}_2)$ and $M_2=(\mathcal{X}_2,\mathcal{I}_2)$ with $\mathcal{X}_1 \cap \mathcal{X}_2=\emptyset$, we define

$$M_1 \oplus M_2 = (\mathcal{X}_1 \bigcup \mathcal{X}_2, \left\{ A_1 \bigcup A_2 : A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \right\})$$

- Graphic: combining two node-disjoint graphs
- Contraction: Given $B \subseteq \mathcal{X}$, let $M/B = (\mathcal{X}', \mathcal{I}')$ with $\mathcal{X}' = \mathcal{X} \setminus B$,

$$\mathcal{I}' = \left\{ S \subseteq X' : \mathcal{B} \bigcup S \in \mathcal{I} \right\}$$

- i.e. Think of B as always being included
- Graphic: contract the connected components of B
- Others: truncation, dual, union...

Matroids as an Algebra of Tractable Discrete Problems

 Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"

Matroids as an Algebra of Tractable Discrete Problems

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure

Matroids as an Algebra of Tractable Discrete Problems

- Optimization over matroids is "easy", in the same way that optimization over convex sets is "easy"
- Operations preserving set convexity are analogous to operations preserving matroid structure
- Arguably, matroids and submodular functions are discrete analogues of convex sets and convex functions, respectively.
 - Less exhaustive

Outline

- Matroids and The Greedy Algorithn
- Basic Terminology and Properties
- The Matroid Polytope
- Matroid Intersection

Viewing Matroids Polyhedrally

• As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron

Viewing Matroids Polyhedrally

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M} = (\mathcal{X}, \mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
 - The polytope is "solvable", and admits a polytime separation oracle

Viewing Matroids Polyhedrally

- As is often the case with tractable discrete problems, we can view their feasible set as a polyhedron
- For $\mathcal{M}=(\mathcal{X},\mathcal{I})$, the convex hull of independent sets can be written as a polytope in a natural way
 - The polytope is "solvable", and admits a polytime separation oracle
- This perspective will be crucial for more advanced applications of matroids
 - Optimization of linear functions over matroid intersections
 - Optimization of submodular functions over matroids

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets \mathcal{I}

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

- Assigns a variable x_i to every element i of the ground set
- Each feasible x is a fractional subset of \mathcal{X}
 - $0 \le x_i \le 1$ since the rank of a singleton is at most 1.
- The 0-1 indicator vector x_I for independent set $I \in \mathcal{I}$ is in the above polytope
- In fact, we will show that $\mathcal{P}(\mathcal{M})$ is precisely the convex hull of independent sets \mathcal{I}

• Note: polytope has $2^{|\mathcal{X}|}$ constraints.

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{x_I : I \in \mathcal{I}\}$$

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{x_I : I \in \mathcal{I}\}$$

• It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convexhull \{x_I : I \in \mathcal{I}\}$

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{x_I : I \in \mathcal{I}\}$$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convex hull \{x_I : I \in \mathcal{I}\}$
- To show that $\mathcal{P}(\mathcal{M}) \subseteq convexhull\ \{x_I : I \in \mathcal{I}\}$, we will show that every vertex of $\mathcal{P}(\mathcal{M})$ equals x_I for some $I \in \mathcal{I}$.

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$
$$x_i \ge 0, \quad \text{for } i \in \mathcal{X}.$$

Theorem

$$\mathcal{P}(\mathcal{M}) = convexhull \{x_I : I \in \mathcal{I}\}$$

- It is clear that $\mathcal{P}(\mathcal{M}) \supseteq convexhull \{x_I : I \in \mathcal{I}\}$
- To show that $\mathcal{P}(\mathcal{M}) \subseteq convexhull \{x_I : I \in \mathcal{I}\}$, we will show that every vertex of $\mathcal{P}(\mathcal{M})$ equals x_I for some $I \in \mathcal{I}$.
- Recall: suffices to show that every linear function w^Tx is maximized over $\mathcal{P}(\mathcal{M})$ at some x_I for $I \in \mathcal{I}$.

Recall: The Greedy Algorithm

- $\ensuremath{ 2 \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm}$
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- \bullet For i=1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

Recall: The Greedy Algorithm

- $\ensuremath{ 2 \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm} \raisebox{.4pt}{$ \hspace{-0.8mm}}\raisebox{.4pt}{$ \hspace{-0.8mm}$
 - $\{1, ..., n\}$ with $w_1 \ge w_2, \ge ... \ge w_n \ge 0$.
- \bullet For i=1 to n:
 - if $B \bigcup \{i\} \in \mathcal{I}$, add i to B.

Theorem

The greedy algorithm returns the maximum weight set for every choice of weights if and only if the set system $(\mathcal{X}, \mathcal{I})$ is a matroid.

- We can think of the greedy algorithm as computing the indicator vector $x^* = x_B \in \mathcal{P}(\mathcal{M})$
- We will show that x^* maximizes $w^{\mathsf{T}}x$ over $x \in \mathcal{P}(\mathcal{M})$.

- $i \in \{1, \dots, n\}$ selected by greedy algorithm iff $i \not \in span(\{1, \dots, i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.

- $i \in \{1, \dots, n\}$ selected by greedy algorithm iff $i \not \in span(\{1, \dots, i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.
 - Therefore, $x_i^* = rank[1:i] rank[1:i-1]$ for nonneg-weight i, and $x_i^* = 0$ for negative-weight i.

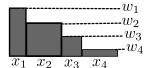
$$\sum_{i \in \mathcal{X}} w_i x_i^* = \sum_{i=1}^n w_i x_i^* = \sum_{i=1}^n w_i (rank[1:i] - rank[1:i-1])$$

- $i \in \{1, \dots, n\}$ selected by greedy algorithm iff $i \notin span(\{1, \dots, i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.
 - Therefore, $x_i^* = rank[1:i] rank[1:i-1]$ for nonneg-weight i, and $x_i^* = 0$ for negative-weight i.

$$\sum_{i \in \mathcal{X}} w_i x_i^* = \sum_{i=1}^n w_i x_i^* = \sum_{i=1}^n w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i \in \mathcal{X}} w_i x_i \le \sum_{i=1}^n w_i x_i =$$

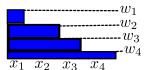


- $i \in \{1, \dots, n\}$ selected by greedy algorithm iff $i \not \in span(\{1, \dots, i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.
 - Therefore, $x_i^* = rank[1:i] rank[1:i-1]$ for nonneg-weight i, and $x_i^* = 0$ for negative-weight i.

$$\sum_{i \in \mathcal{X}} w_i x_i^* = \sum_{i=1}^n w_i x_i^* = \sum_{i=1}^n w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i \in \mathcal{X}} w_i x_i \le \sum_{i=1}^n w_i x_i = \sum_{i=1}^n (w_i - w_{i+1}) x(1:i)$$



- $i \in \{1,\dots,n\}$ selected by greedy algorithm iff $i \not\in span(\{1,\dots,i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.
 - Therefore, $x_i^* = rank[1:i] rank[1:i-1]$ for nonneg-weight i, and $x_i^* = 0$ for negative-weight i.

$$\sum_{i \in \mathcal{X}} w_i x_i^* = \sum_{i=1}^n w_i x_i^* = \sum_{i=1}^n w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i \in \mathcal{X}} w_i x_i \le \sum_{i=1}^n w_i x_i = \sum_{i=1}^n (w_i - w_{i+1}) x(1:i)$$

$$\le \sum_{i=1}^n (w_i - w_{i+1}) rank(1:i)$$

- $i \in \{1, \dots, n\}$ selected by greedy algorithm iff $i \not \in span(\{1, \dots, i-1\})$
 - i.e. if rank[1:i] rank[1:i-1] = 1.
 - Therefore, $x_i^* = rank[1:i] rank[1:i-1]$ for nonneg-weight i, and $x_i^* = 0$ for negative-weight i.

$$\sum_{i \in \mathcal{X}} w_i x_i^* = \sum_{i=1}^n w_i x_i^* = \sum_{i=1}^n w_i (rank[1:i] - rank[1:i-1])$$

• Consider an arbitrary $x \in \mathcal{P}(\mathcal{M})$

$$\sum_{i \in \mathcal{X}} w_i x_i \le \sum_{i=1}^n w_i x_i = \sum_{i=1}^n (w_i - w_{i+1}) x(1:i)$$

$$\le \sum_{i=1}^n (w_i - w_{i+1}) rank(1:i)$$

$$= \sum_{i=1}^{n} w_i(rank[1:i] - rank[1:i-1])$$

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{ for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{ for } i \in \mathcal{X}. \end{split}$$

• The 0-1 indicator vector x_B for a base B of \mathcal{M} is in above polytope

The Matroid Polytope 23/30

The Matroid Base Polytope

- The matroid polytope is the convex hull of independent sets
 - · Graphic: convex hull of forests
- What if we wish to consider only "full-rank" sets?
 - Graphic: spanning trees

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

```
\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.
\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M})
x_i \ge 0, \quad \text{for } i \in \mathcal{X}.
```

- The 0-1 indicator vector x_B for a base B of \mathcal{M} is in above polytope
- In fact, we will show that $\mathcal{P}_{base}(\mathcal{M})$ is precisely the convex hull of bases of \mathcal{M}

The Matroid Polytope 23/30

Polytope $\mathcal{P}_{\mathit{base}}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{ for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{ for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{ for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{ for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

As before, one direction is obvious:

$$\mathcal{P}_{base}(\mathcal{M}) \supseteq convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$$

The Matroid Polytope

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{ for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{ for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

- As before, one direction is obvious: $\mathcal{P}_{base}(\mathcal{M}) \supseteq convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$
 - For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

- As before, one direction is obvious:
 - $\mathcal{P}_{base}(\mathcal{M}) \supseteq convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$
 - For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$
 - Since $x \in \mathcal{P}(\mathcal{M})$, x is a convex combination of independent sets I_1, \ldots, I_k of \mathcal{M} .

The Matroid Polytope 24/30

Polytope $\mathcal{P}_{base}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

$$\begin{split} &\sum_{i \in S} x_i \leq rank_{\mathcal{M}}(S), & \text{ for } S \subseteq \mathcal{X}. \\ &\sum_{i \in \mathcal{X}} x_i = rank(\mathcal{M}) \\ &x_i \geq 0, & \text{ for } i \in \mathcal{X}. \end{split}$$

Theorem

 $\mathcal{P}_{base}(\mathcal{M}) = convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$

- As before, one direction is obvious:
 - $\mathcal{P}_{base}(\mathcal{M}) \supseteq convexhull \{x_B : B \text{ is a base of } \mathcal{M}\}$ For the other direction, take $x \in \mathcal{P}_{base}(\mathcal{M})$
 - Since $x \in \mathcal{P}(\mathcal{M})$, x is a convex combination of independent sets I_1, \ldots, I_k of \mathcal{M} .
 - Since $||x||_1 = rank(\mathcal{M})$, and $||x_{I_\ell}||_1 \leq rank(\mathcal{M})$ for all ℓ , it must be that $||x_{I_1}||_1 = ||x_{I_2}||_1 = \ldots = ||x_{I_k}||_1 = rank(\mathcal{M})$

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

```
\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.
x_i \ge 0, \quad \text{for } i \in \mathcal{X}.
```

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n + nT)$ time, where T is runtime of independence oracle
 - ullet By integrality, same as finding max-weight independent set of \mathcal{M} .

The Matroid Polytope 25/30

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M} = (\mathcal{X}, \mathcal{I})$

```
\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.
x_i \ge 0, \quad \text{for } i \in \mathcal{X}.
```

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n\log n + nT)$ time, where T is runtime of independence oracle
 - \bullet By integrality, same as finding max-weight independent set of $\mathcal{M}.$
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$ in $\operatorname{poly}(n,T)$ time.

The Matroid Polytope 25/30

Solvability of Matroid Polytopes

Polytope $\mathcal{P}(\mathcal{M})$ for $\mathcal{M}=(\mathcal{X},\mathcal{I})$

$$\sum_{i \in S} x_i \le rank_{\mathcal{M}}(S), \quad \text{for } S \subseteq \mathcal{X}.$$

$$x_i \ge 0, \qquad \qquad \text{for } i \in \mathcal{X}.$$

- When given an independence oracle for \mathcal{M} , we can maximize linear functions over $\mathcal{P}(\mathcal{M})$ in $O(n \log n + nT)$ time, where T is runtime of independence oracle
 - ullet By integrality, same as finding max-weight independent set of \mathcal{M} .
- Therefore, by equivalence of separation and optimization, can also implement a separation oracle for $\mathcal{P}(\mathcal{M})$ in $\operatorname{poly}(n,T)$ time.
- A more direct proof: reduces to submodular function minimization

• $rank_{\mathcal{M}}$ is a submodular set function.

The Matroid Polytope 25/30

Outline

- Matroids and The Greedy Algorithm
- Basic Terminology and Properties
- 3 The Matroid Polytope
- Matroid Intersection

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

• i.e. a set is feasible if it is independent in both matroids

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable

- Optimization of linear functions over matroids is tractable
- Matroid operations provide an algebra for constructing new matroids from old
- We will look at one operation on matroids which does not produce a matroid, but nevertheless produces a solvable problem.

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

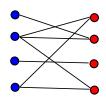
- i.e. a set is feasible if it is independent in both matroids
- In general, does not produce a matroid
- Nevertheless, it will turn out that maximizing linear functions over a matroid intersection is tractable

 However, maximizing linear functions over the intersection of 3 or more matroids is NP-hard

Examples

Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.



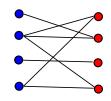
Examples

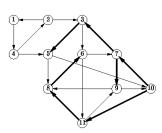
Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Arborescence

Given a directed graph G, a set of edges is an r-arborescence if it is a tree directed away from the root r.





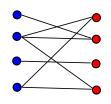
Examples

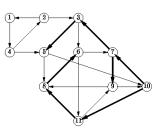
Bipartite Matching

Given a bipartite graph G, a set of edges F is a bipartite matching if and only if each node is incident on at most one edge in F.

Arborescence

Given a directed graph G, a set of edges is an r-arborescence if it is a tree directed away from the root r.





Others: colorful spanning trees, orientations, ...

Matroid Intersection

Given matroids $\mathcal{M}_1=(\mathcal{X},\mathcal{I}_1)$ and $\mathcal{M}_2=(\mathcal{X},\mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2=(\mathcal{X},\mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over $\mathcal{M}_1 \cap \mathcal{M}_2$ is equivalent to optimizing a linear function over convexhull $\{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$.
- As it turns out, this is a solvable polytope.

Theorem

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) = convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

Matroid Intersection

Given matroids $\mathcal{M}_1=(\mathcal{X},\mathcal{I}_1)$ and $\mathcal{M}_2=(\mathcal{X},\mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2=(\mathcal{X},\mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over $\mathcal{M}_1 \cap \mathcal{M}_2$ is equivalent to optimizing a linear function over convexhull $\{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$.
- As it turns out, this is a solvable polytope.

Theorem

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) = convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

One direction is obvious:

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

Matroid Intersection

Given matroids $\mathcal{M}_1=(\mathcal{X},\mathcal{I}_1)$ and $\mathcal{M}_2=(\mathcal{X},\mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2=(\mathcal{X},\mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over $\mathcal{M}_1 \cap \mathcal{M}_2$ is equivalent to optimizing a linear function over convexhull $\{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$.
- As it turns out, this is a solvable polytope.

Theorem

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) = convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

- One direction is obvious:
- $\mathcal{P}(M_1) \cap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$
- The other direction is not so obvious

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over $\mathcal{M}_1 \cap \mathcal{M}_2$ is equivalent to optimizing a linear function over convexhull $\{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$.
- As it turns out, this is a solvable polytope.

Theorem

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) = convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

- One direction is obvious:
- $\mathcal{P}(M_1) \cap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$
- The other direction is not so obvious
 - It is conceivable that $\mathcal{P}(\mathcal{M}_1) \cap \mathcal{P}(\mathcal{M}_2)$ has fractional vertices

Matroid Intersection

Given matroids $\mathcal{M}_1 = (\mathcal{X}, \mathcal{I}_1)$ and $\mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_2)$ on the same ground set, we define the set system $\mathcal{M}_1 \cap \mathcal{M}_2 = (\mathcal{X}, \mathcal{I}_1 \cap \mathcal{I}_2)$.

- Optimizing a modular function over $\mathcal{M}_1 \cap \mathcal{M}_2$ is equivalent to optimizing a linear function over $convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$.
- As it turns out, this is a solvable polytope.

Theorem

$$\mathcal{P}(M_1) \cap \mathcal{P}(M_2) = convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$$

- One direction is obvious:
- $\mathcal{P}(M_1) \cap \mathcal{P}(M_2) \supseteq convexhull \{x_I : I \in \mathcal{I}_1 \cap \mathcal{I}_2\}$
- The other direction is not so obvious
 - It is conceivable that $\mathcal{P}(\mathcal{M}_1) \cap \mathcal{P}(\mathcal{M}_2)$ has fractional vertices
- Nevertheless, it is true but hard to prove, so we will skip it.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \cap \mathcal{M}_2$

```
 \begin{array}{ll} \text{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \text{subject to} & & \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & x_i \geq 0, \qquad \qquad \text{for } i \in \mathcal{X}. \end{array}
```

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \cap \mathcal{M}_2$

```
 \begin{array}{ll} \text{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \text{subject to} & & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & x_i \geq 0, \qquad \qquad \text{for } i \in \mathcal{X}. \end{array}
```

Theorem

Given independence oracles to both matroids \mathcal{M}_1 and \mathcal{M}_2 , there is an algorithm for finding the maximum weight set in $\mathcal{M}_1 \cap \mathcal{M}_2$ which runs in $\operatorname{poly}(n)$ time.

Optimization over Matroid Intersections

Optimization over Matroid Intersection $\mathcal{M}_1 \cap \mathcal{M}_2$

```
 \begin{array}{ll} \text{maximize} & \sum_{i \in \mathcal{X}} w_i x_i \\ \text{subject to} & & \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_1}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & \sum_{i \in S} x_i \leq rank_{\mathcal{M}_2}(S), \quad \text{for } S \subseteq \mathcal{X}. \\ & x_i \geq 0, & \text{for } i \in \mathcal{X}. \end{array}
```

Theorem

Given independence oracles to both matroids \mathcal{M}_1 and \mathcal{M}_2 , there is an algorithm for finding the maximum weight set in $\mathcal{M}_1 \cap \mathcal{M}_2$ which runs in $\operatorname{poly}(n)$ time.

Proof: Using equivalence of separation and optimization, and the fact that all coefficients in the LP have poly(n) bits.

NP-hardness of 3-way Matroid Intersection

By a reduction from Hamiltonian Path in directed graphs