
CS675: Convex and Combinatorial Optimization
Spring 2018

The Simplex Algorithm

Instructor: Shaddin Dughmi



Algorithms for Convex Optimization

We will look at 2 algorithms in detail: Simplex and Ellipsoid.
If there is time, we might also look at interior point methods (e.g.
gradient descent and variants). These are important in practice.



History and Basics of the Simplex Algorithm

First methodical procedure for solving linear programs
Developed by George Dantzig in 1947
Considered one of the most influential algorithms of the 20th
century

Really a family of algorithms, parametrized by a “pivot rule”
Efficient in practice, leading to conjectures that it runs in
polynomial time
In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules
This spurred development of the Ellipsoid method, interior point
methods, . . .



History and Basics of the Simplex Algorithm

First methodical procedure for solving linear programs
Developed by George Dantzig in 1947
Considered one of the most influential algorithms of the 20th
century
Really a family of algorithms, parametrized by a “pivot rule”

Efficient in practice, leading to conjectures that it runs in
polynomial time
In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules
This spurred development of the Ellipsoid method, interior point
methods, . . .



History and Basics of the Simplex Algorithm

First methodical procedure for solving linear programs
Developed by George Dantzig in 1947
Considered one of the most influential algorithms of the 20th
century
Really a family of algorithms, parametrized by a “pivot rule”
Efficient in practice, leading to conjectures that it runs in
polynomial time
In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules

This spurred development of the Ellipsoid method, interior point
methods, . . .



History and Basics of the Simplex Algorithm

First methodical procedure for solving linear programs
Developed by George Dantzig in 1947
Considered one of the most influential algorithms of the 20th
century
Really a family of algorithms, parametrized by a “pivot rule”
Efficient in practice, leading to conjectures that it runs in
polynomial time
In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules
This spurred development of the Ellipsoid method, interior point
methods, . . .



Outline

1 Description of The Simplex Algorithm

2 Properties

3 Initialization



Linear Programming

We consider a standard form LP written as follows for convenience

maximize cᵀx
subject to Ax � b

minimize yᵀb
subject to yᵀA = cᵀ

y � 0

We use n to denote the number of variables, and m to denote the
number of constraints.

Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
We assume we are given a starting vertex x0 as input, and want to
compute optimal vertex x∗

This is Phase II
Phase I, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Degeneracy: a vertex with > n tight inequalities
We will mostly assume this away to save ourselves a headache

Incidentally, algorithm will produce optimal dual y∗ as well.

Description of The Simplex Algorithm 3/12



Linear Programming

We consider a standard form LP written as follows for convenience

maximize cᵀx
subject to Ax � b

minimize yᵀb
subject to yᵀA = cᵀ

y � 0

We use n to denote the number of variables, and m to denote the
number of constraints.
Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities

We assume we are given a starting vertex x0 as input, and want to
compute optimal vertex x∗

This is Phase II
Phase I, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Degeneracy: a vertex with > n tight inequalities
We will mostly assume this away to save ourselves a headache

Incidentally, algorithm will produce optimal dual y∗ as well.

Description of The Simplex Algorithm 3/12



Linear Programming

We consider a standard form LP written as follows for convenience

maximize cᵀx
subject to Ax � b

minimize yᵀb
subject to yᵀA = cᵀ

y � 0

We use n to denote the number of variables, and m to denote the
number of constraints.
Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
We assume we are given a starting vertex x0 as input, and want to
compute optimal vertex x∗

This is Phase II
Phase I, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Degeneracy: a vertex with > n tight inequalities
We will mostly assume this away to save ourselves a headache

Incidentally, algorithm will produce optimal dual y∗ as well.

Description of The Simplex Algorithm 3/12



Linear Programming

We consider a standard form LP written as follows for convenience

maximize cᵀx
subject to Ax � b

minimize yᵀb
subject to yᵀA = cᵀ

y � 0

We use n to denote the number of variables, and m to denote the
number of constraints.
Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
We assume we are given a starting vertex x0 as input, and want to
compute optimal vertex x∗

This is Phase II
Phase I, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Degeneracy: a vertex with > n tight inequalities
We will mostly assume this away to save ourselves a headache

Incidentally, algorithm will produce optimal dual y∗ as well.

Description of The Simplex Algorithm 3/12



Linear Programming

We consider a standard form LP written as follows for convenience

maximize cᵀx
subject to Ax � b

minimize yᵀb
subject to yᵀA = cᵀ

y � 0

We use n to denote the number of variables, and m to denote the
number of constraints.
Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
We assume we are given a starting vertex x0 as input, and want to
compute optimal vertex x∗

This is Phase II
Phase I, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Degeneracy: a vertex with > n tight inequalities
We will mostly assume this away to save ourselves a headache

Incidentally, algorithm will produce optimal dual y∗ as well.
Description of The Simplex Algorithm 3/12



Recall: Physical Interpretation of LP

Apply force field c to a ball inside bounded polytope Ax ≤ b.

Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball for some yi ≥ 0

Since the ball is still, cT =
∑

i yiai = yTA.
At optimality, only the walls adjacent to the ball push
(Complementary Slackness)

Necessary and sufficient for optimality, given dual-feasible y

Description of The Simplex Algorithm 4/12



Recall: Physical Interpretation of LP

Apply force field c to a ball inside bounded polytope Ax ≤ b.
Eventually, ball will come to rest against the walls of the polytope.

Wall aix ≤ bi applies some force −yiai to the ball for some yi ≥ 0

Since the ball is still, cT =
∑

i yiai = yTA.
At optimality, only the walls adjacent to the ball push
(Complementary Slackness)

Necessary and sufficient for optimality, given dual-feasible y

Description of The Simplex Algorithm 4/12



Recall: Physical Interpretation of LP

Apply force field c to a ball inside bounded polytope Ax ≤ b.
Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball for some yi ≥ 0

Since the ball is still, cT =
∑

i yiai = yTA.
At optimality, only the walls adjacent to the ball push
(Complementary Slackness)

Necessary and sufficient for optimality, given dual-feasible y

Description of The Simplex Algorithm 4/12



Recall: Physical Interpretation of LP

Apply force field c to a ball inside bounded polytope Ax ≤ b.
Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball for some yi ≥ 0

Since the ball is still, cT =
∑

i yiai = yTA.

At optimality, only the walls adjacent to the ball push
(Complementary Slackness)

Necessary and sufficient for optimality, given dual-feasible y

Description of The Simplex Algorithm 4/12



Recall: Physical Interpretation of LP

Apply force field c to a ball inside bounded polytope Ax ≤ b.
Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball for some yi ≥ 0

Since the ball is still, cT =
∑

i yiai = yTA.
At optimality, only the walls adjacent to the ball push
(Complementary Slackness)

Necessary and sufficient for optimality, given dual-feasible y
Description of The Simplex Algorithm 4/12



Informal Description

Starts at initial vertex x = x0
While x is not optimal, move to a neighbouring vertex x′ with
cx′ > cx.

Either c is in the cone defined by tight constraints at x, in which
case x is optimal by complementary slackness
Or else can improve cx by moving along an edge (1-d face)

Description of The Simplex Algorithm 5/12



Informal Description

Starts at initial vertex x = x0
While x is not optimal, move to a neighbouring vertex x′ with
cx′ > cx.

Either c is in the cone defined by tight constraints at x, in which
case x is optimal by complementary slackness
Or else can improve cx by moving along an edge (1-d face)

Description of The Simplex Algorithm 5/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

Description of The Simplex Algorithm 6/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

Let T be set of tight rows. yᵀTAT = cᵀ

Gaussian elimination

Description of The Simplex Algorithm 6/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

y is a dual satisfying complementary slackness with x
Therefore both are optimal

Description of The Simplex Algorithm 6/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

Chosen so that moving in direction d preserves tightness of
T \ {i}, and loosens i.
AT is full-rank, therefore null(AT\{i}) is a 1-dimensional subspace
which is not normal to ai
Choose d ∈ null(AT\{i}) appropriately.
Moving in direction d improves objective: cᵀd = yᵀAd = yiaid > 0

Description of The Simplex Algorithm 6/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

i.e. Ad ≤ 0

Description of The Simplex Algorithm 6/12



Simplex Method
Input: vertex x = x0

Output: Optimal vertex x∗ and complementary dual y∗, or
unbounded

Repeat the following:
1 Write cᵀ = yᵀA, where yi 6= 0 only for n tight constraints aix = bi.
2 If y ≥ 0 then stop and return (x, y), else
3 Choose i with yi < 0, and let ~d be s.t. AT\{i}d = 0 and aid = −1.
4 If x+ λd feasible for all λ ≥ 0, stop and return unbounded, else
5 x← x+ λd, for largest λ ≥ 0 maintaining feasibility

λ = min
{
bj−ajx
ajd

: j ∈ [m], ajd > 0
}

j achieving this minimum is a new tight constraint, replacing i.
By nondegeneracy assumption, λ > 0

Description of The Simplex Algorithm 6/12



Outline

1 Description of The Simplex Algorithm

2 Properties

3 Initialization



Correctness

Claim
If the simplex algorithm terminates, then it correctly outputs either an
optimal primal/dual pair or unbounded.

Primal feasibility of x is maintained throughout
Returns (x, y) only if y is dual feasible and satisfies
complementary slackness

x and y are both optimal

Returns unbounded only if there is a direction d with cᵀd > 0 and
Ad ≤ 0.

Properties 7/12



Termination in the Absence of Degeneracy

Claim
In the absence of degenerate vertices, the simplex algorithm
terminates in a finite number of steps, at most

(
m
n

)
≤ 2m.

There are at most
(
m
n

)
distinct vertices in the polyhedron

In the absence of degeneracy, the simplex algorithm does not
repeat a vertex

In each iteration, moves along an edge in direction d, in total λd
We saw: cᵀd > 0, and λ > 0.
Objective strictly improves each iteration

Properties 8/12



Pivot Rules

Note
The algorithm we presented was not fully specified

When multiple neighboring vertices are improving, which one
should we choose so as to terminate as quickly as possible?
In the presence of degeneracy, how should we identify the next
(geometric) vertex so as to guarantee termination?

We maintain n tight and linearly independent constraints T , to be
thought of as an algebraic representation of a vertex (aka a basic
feasible solution (BFS))
When many algebraic representations are possible of a single
geometric vertex, unclear how to identify the next geometric vertex.

Properties 9/12



Pivot Rules

Both concerns are addressed by the use of a pivot rule, which
determines the order in which we examine algebraic vertices.

Pivot rule
A rule for selecting which i leaves T , and which j enters T , when
multiple choices are possible either because of multiple improving
neighbors or degeneracy. Examples:

Bland’s rule: Choose lowest indexed i, then lowest indexed j
Lexicographic: Maintain an order over rows, and move from T to
the lexicographically smallest possible T ′.
Perturbation: perturb entries of b by a small value to remove
degeneracy. This perturbation can be purely symbolic.

Properties 9/12



Runtime and Termination

Many pivot rules, like the ones we mentioned, have been shown to
never cycle over algebraic vertices

Guarantees termination in general, even in the presence of
degeneracies
See book and notes for proofs.

However, no pivot rules have been shown to guarantee a
polynomial number of pivots

Even if no degeneracies.

In 1972, Klee and Minty exhibited a family of examples that lead to
exponential worst-case runtime for some widely-used pivot rules

Properties 10/12



Runtime and Termination

Nevertheless, one explanation as to the efficiency of the simplex
algorithm in practice is through smoothed complexity

Theorem (Spielman & Teng ’01)
The simplex algorithm has polynomial smoothed complexity.

Model of input:
A, b, c chosen arbitrarily (worst case)
Then subjected to small gaussian noise with stddev σ (relative to
largest entry of A, b, c)
Interpretation: measurement error

More optimistic than worst case, but not quite as optimistic as
average case.
Expected runtime is polynomial in n, m and 1

σ

Properties 10/12



Runtime and Termination

Open Question
Is there a pivot rule which guarantees a polynomial number of pivots of
the simplex algorithm in the worst case?

Why is this important?
Would yield a strongly polynomial algorithm for LP
If true, resolves in the affirmative a classic open question in
polyhedral combinatorics

Polynomial Hirsch Conjecture: Is the diameter of the edge-vertex
graph of an m-facet polytope in n-dimensional space bounded by a
polynomial in n and m?

Properties 10/12



Outline

1 Description of The Simplex Algorithm

2 Properties

3 Initialization



Initialization

Solving a Linear Program via the Simplex Method
Phase I: Find a vertex x0.
Phase II: Run the simplex algorithm starting from x0

So far, we have looked only at phase II
For phase I, we pose a different LP whose optimal solution is a
vertex, if one exists

Initialization 11/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin < 0

We write a new LP with a variable z measuring how far we are
from feasibility
If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.
An optimal vertex of new LP (with z = 0) will correspond to some
vertex x0 of original LP
We need a starting vertex for new LP, this is easier!

Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin < 0

We write a new LP with a variable z measuring how far we are
from feasibility

If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.
An optimal vertex of new LP (with z = 0) will correspond to some
vertex x0 of original LP
We need a starting vertex for new LP, this is easier!

Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin < 0

We write a new LP with a variable z measuring how far we are
from feasibility
If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.

An optimal vertex of new LP (with z = 0) will correspond to some
vertex x0 of original LP
We need a starting vertex for new LP, this is easier!

Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin < 0

We write a new LP with a variable z measuring how far we are
from feasibility
If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.
An optimal vertex of new LP (with z = 0) will correspond to some
vertex x0 of original LP

We need a starting vertex for new LP, this is easier!
Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

We need a starting vertex for new LP, this is easier!
Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12



Phase I

maximize cᵀx
subject to Ax � b

x � 0

minimize z

subject to Ax− z~1 � b
x � 0
z ≥ 0

We need a starting vertex for new LP, this is easier!
Let x′0 = 0, and z0 = −bmin

Running simplex on new LP with starting vertex (x′0, z0), we get
starting vertex x0 for original LP.

Initialization 12/12


	Description of The Simplex Algorithm
	Properties
	Initialization

