CS675: Convex and Combinatorial Optimization
Spring 2018

The Simplex Algorithm

Instructor: Shaddin Dughmi

Algorithms for Convex Optimization

@ We will look at 2 algorithms in detail: Simplex and Ellipsoid.

@ If there is time, we might also look at interior point methods (e.g.
gradient descent and variants). These are important in practice.

History and Basics of the Simplex Algorithm

@ First methodical procedure for solving linear programs
@ Developed by George Dantzig in 1947

@ Considered one of the most influential algorithms of the 20th
century

History and Basics of the Simplex Algorithm

@ First methodical procedure for solving linear programs
@ Developed by George Dantzig in 1947

@ Considered one of the most influential algorithms of the 20th
century

@ Really a family of algorithms, parametrized by a “pivot rule”

History and Basics of the Simplex Algorithm

@ First methodical procedure for solving linear programs

@ Developed by George Dantzig in 1947

@ Considered one of the most influential algorithms of the 20th
century

@ Really a family of algorithms, parametrized by a “pivot rule”

@ Efficient in practice, leading to conjectures that it runs in
polynomial time

@ In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules

History and Basics of the Simplex Algorithm

@ First methodical procedure for solving linear programs

@ Developed by George Dantzig in 1947

@ Considered one of the most influential algorithms of the 20th
century

@ Really a family of algorithms, parametrized by a “pivot rule”

@ Efficient in practice, leading to conjectures that it runs in
polynomial time

@ In 1972, Klee and Minty exhibited worst-case examples that take
exponential time, at least for some of the most popular simplex
pivot rules

@ This spurred development of the Ellipsoid method, interior point
methods, ...

a Description of The Simplex Algorithm

Linear Programming

We consider a standard form LP written as follows for convenience

maximize cTz
subjectto Az <b

@ We use n to denote the number of variables, and m to denote the
number of constraints.

Description of The Simplex Algorithm 3/12

Linear Programming

We consider a standard form LP written as follows for convenience

maximize cTz
subjectto Az <b

@ We use n to denote the number of variables, and m to denote the
number of constraints.

@ Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities

Description of The Simplex Algorithm 3/12

Linear Programming

We consider a standard form LP written as follows for convenience

maximize cTz
subjectto Az <b

@ We use n to denote the number of variables, and m to denote the
number of constraints.
@ Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
@ We assume we are given a starting vertex z as input, and want to
compute optimal vertex z*
@ This is Phase Il
e Phase [, finding an initial vertex, involves solving another LP. We
will come back to this at the end.

Description of The Simplex Algorithm 3/12

Linear Programming

We consider a standard form LP written as follows for convenience

maximize cTz
subjectto Az <b

@ We use n to denote the number of variables, and m to denote the
number of constraints.
@ Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
@ We assume we are given a starting vertex z as input, and want to
compute optimal vertex z*
e Thisis Phase Il
e Phase [, finding an initial vertex, involves solving another LP. We
will come back to this at the end.
@ Degeneracy: a vertex with > n tight inequalities
o We will mostly assume this away to save ourselves a headache

Description of The Simplex Algorithm 3/12

Linear Programming

We consider a standard form LP written as follows for convenience

maximize cTx minimize yTb
subjectto Ax < subjectto yTA =T
y=0

@ We use n to denote the number of variables, and m to denote the
number of constraints.
@ Recall: optimal occurs at a vertex and corresponds to n
linearly-independent tight inequalities
@ We assume we are given a starting vertex z as input, and want to
compute optimal vertex z*
e Thisis Phase Il
e Phase [, finding an initial vertex, involves solving another LP. We
will come back to this at the end.
@ Degeneracy: a vertex with > n tight inequalities
o We will mostly assume this away to save ourselves a headache
@ Incidentally, algorithm will produce optimal dual y* as well.

Description of The Simplex Algorithm 3/12

Recall: Physical Interpretation of LP

(L

@ Apply force field ¢ to a ball inside bounded polytope Ax < b.

Description of The Simplex Algorithm 4/12

Recall: Physical Interpretation of LP

@ Apply force field ¢ to a ball inside bounded polytope Ax < b.
@ Eventually, ball will come to rest against the walls of the polytope.

Description of The Simplex Algorithm 4/12

Recall: Physical Interpretation of LP

—Y1a

—Y202

@ Apply force field ¢ to a ball inside bounded polytope Az < b.
@ Eventually, ball will come to rest against the walls of the polytope.
@ Wall a;x < b; applies some force —y;a; to the ball for some y; > 0

Description of The Simplex Algorithm 4/12

Recall: Physical Interpretation of LP

Yy1ay

Y202

@ Apply force field ¢ to a ball inside bounded polytope Az < b.

@ Eventually, ball will come to rest against the walls of the polytope.
@ Wall a;x < b; applies some force —y;a; to the ball for some y; > 0
@ Since the ball is still, ¢ = 3", y;a; = yT A.

Description of The Simplex Algorithm 4/12

Recall: Physical Interpretation of LP

Yy1ay

Y202

@ Apply force field ¢ to a ball inside bounded polytope Ax < b.
@ Eventually, ball will come to rest against the walls of the polytope.
@ Wall a;x < b; applies some force —y;a; to the ball for some y; > 0
@ Since the ball is still, ¢ = 3", y;a; = yT A.
@ At optimality, only the walls adjacent to the ball push
(Complementary Slackness)
o Necessary and sufficient for optimality, given dual-feasible y

Description of The Simplex Algorithm 4/12

Informal Description

@ Starts at initial vertex r = xg

@ While z is not optimal, move to a neighbouring vertex =’ with
cx' > cx.

Description of The Simplex Algorithm 5/12

Informal Description

@ Starts at initial vertex r = xg
@ While z is not optimal, move to a neighbouring vertex =’ with
cx' > cx.

e Either cis in the cone defined by tight constraints at «, in which
case z is optimal by complementary slackness
@ Or else can improve cx by moving along an edge (1-d face)

Description of The Simplex Algorithm 5/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
@ If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
@ = <+ x + \d, for largest A > 0 maintaining feasibility

Description of The Simplex Algorithm 6/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
@ If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
@ = <+ x + \d, for largest A > 0 maintaining feasibility

@ Let T be set of tight rows. yl. A = ¢T
@ Gaussian elimination

Description of The Simplex Algorithm 6/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
© If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
@ = <+ x + \d, for largest A > 0 maintaining feasibility

@ y is a dual satisfying complementary slackness with z
@ Therefore both are optimal

Description of The Simplex Algorithm 6/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
@ If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
@ = <+ x + \d, for largest A > 0 maintaining feasibility

@ Chosen so that moving in direction d preserves tightness of
T\ {i}, and loosens i.

@ Aris full-rank, therefore null(Ar\ ;) is a 1-dimensional subspace
which is not normal to q;

@ Choose d € null(Ar\ ;) appropriately.

@ Moving in direction d improves objective: ¢Td = yTAd = y;a;d > 0
Description of The Simplex Algorithm 6/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
@ If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
@ = <+ x + \d, for largest A > 0 maintaining feasibility

@ie Ad<0

Description of The Simplex Algorithm 6/12

Simplex Method

@ Input: vertex z = z
@ Output: Optimal vertex z* and complementary dual y*, or
unbounded
Repeat the following:

@ Write ¢ = yT A, where y; # 0 only for n tight constraints a;z = b;.
@ If y > 0 then stop and return (z,y), else
© Choose i with y; < 0, and let d be s.t. Ap\;3d =0 and a;d = —1.
Q If z + \d feasible for all A\ > 0, stop and return unbounded, else
© » <« x + \d, for largest A > 0 maintaining feasibility

— min J b—%mT . ,
°)\—mln{ od J€ [m],ajd>0}
@ j achieving this minimum is a new tight constraint, replacing .
@ By nondegeneracy assumption, A > 0

Description of The Simplex Algorithm 6/12

e Properties

Correctness

If the simplex algorithm terminates, then it correctly outputs either an
optimal primal/dual pair or unbounded.

@ Primal feasibility of = is maintained throughout
@ Returns (z,y) only if y is dual feasible and satisfies
complementary slackness
@ z and y are both optimal
@ Returns unbounded only if there is a direction d with ¢Td > 0 and
Ad < 0.

Properties 712

Termination in the Absence of Degeneracy

In the absence of degenerate vertices, the simplex algorithm
terminates in a finite number of steps, at most (") < 2.

@ There are at most (") distinct vertices in the polyhedron
@ In the absence of degeneracy, the simplex algorithm does not
repeat a vertex
@ In each iteration, moves along an edge in direction d, in total Ad
o We saw: ¢Td > 0, and A > 0.
o Objective strictly improves each iteration

Properties 8/12

Pivot Rules

Note
The algorithm we presented was not fully specified

@ When multiple neighboring vertices are improving, which one
should we choose so as to terminate as quickly as possible?

@ In the presence of degeneracy, how should we identify the next
(geometric) vertex so as to guarantee termination?

e We maintain n tight and linearly independent constraints 7', to be
thought of as an algebraic representation of a vertex (aka a basic
feasible solution (BFS))

e When many algebraic representations are possible of a single
geometric vertex, unclear how to identify the next geometric vertex.

Properties

1 A\ \ \ N 9/12

Pivot Rules

Both concerns are addressed by the use of a pivot rule, which
determines the order in which we examine algebraic vertices.

A rule for selecting which i leaves T', and which j enters T, when
multiple choices are possible either because of multiple improving
neighbors or degeneracy. Examples:

@ Bland’s rule: Choose lowest indexed 7, then lowest indexed j

@ Lexicographic: Maintain an order over rows, and move from 7" to
the lexicographically smallest possible 7".

@ Perturbation: perturb entries of b by a small value to remove
degeneracy. This perturbation can be purely symbolic.

Properties 9/12

Runtime and Termination

@ Many pivot rules, like the ones we mentioned, have been shown to
never cycle over algebraic vertices

o Guarantees termination in general, even in the presence of
degeneracies
e See book and notes for proofs.

@ However, no pivot rules have been shown to guarantee a
polynomial number of pivots

e Even if no degeneracies.

@ In 1972, Klee and Minty exhibited a family of examples that lead to
exponential worst-case runtime for some widely-used pivot rules

Properties 10/12

Runtime and Termination

Nevertheless, one explanation as to the efficiency of the simplex
algorithm in practice is through smoothed complexity

Theorem (Spielman & Teng '01)
The simplex algorithm has polynomial smoothed complexity.

@ Model of input:

e A, b, c chosen arbitrarily (worst case)

e Then subjected to small gaussian noise with stddev o (relative to
largest entry of A, b,)
o Interpretation: measurement error

@ More optimistic than worst case, but not quite as optimistic as
average case.

@ Expected runtime is polynomial in n, m and %

Properties 10/12

Runtime and Termination

Open Question

Is there a pivot rule which guarantees a polynomial number of pivots of
the simplex algorithm in the worst case?

Why is this important?
@ Would yield a strongly polynomial algorithm for LP

@ If true, resolves in the affirmative a classic open question in
polyhedral combinatorics
e Polynomial Hirsch Conjecture: Is the diameter of the edge-vertex
graph of an m-facet polytope in n-dimensional space bounded by a
polynomial in n and m?

Properties 10/12

@ Initialization

Initialization

Solving a Linear Program via the Simplex Method
@ Phase I: Find a vertex x.
@ Phase II: Run the simplex algorithm starting from z

@ So far, we have looked only at phase I

@ For phase I, we pose a different LP whose optimal solution is a
vertex, if one exists

Initialization 11/12

maximize ¢’z
subjectto Az <b
x>0

o If z = 0 is feasible, then it is a vertex and we are done, otherwise
bmin <0

Initialization 12/12

maximize ¢z minimize 2
subjectto Az <b subjectto Az — 21 <b
z>=0 x>0
z>0

o If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin <0

@ We write a new LP with a variable z measuring how far we are
from feasibility

Initialization 12/12

maximize ¢z minimize 2
subjectto Az <b subjectto Az — 21 <b
z>=0 x>0
z>0

@ If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin <0

@ We write a new LP with a variable z measuring how far we are
from feasibility

@ If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.

Initialization 12/12

maximize ¢z minimize 2
subjectto Az <b subjectto Az — 21 <b
z>=0 x>0
z>0

@ If x = 0 is feasible, then it is a vertex and we are done, otherwise
bmin <0

@ We write a new LP with a variable z measuring how far we are
from feasibility

@ If original LP is feasible, then an optimal solution of the new LP will
have z = 0 and yield a feasible solution for original LP.

@ An optimal vertex of new LP (with z = 0) will correspond to some
vertex z(of original LP

Initialization 12/12

maximize ¢z minimize 2
subjectto Az <b subjectto Az — 21 <b
z>=0 x>0
- z>0

@ We need a starting vertex for new LP, this is easier!
o Let ZZ?6 = 0, and zZ0 = —bmin

Initialization 12/12

maximize ¢z minimize 2
subjectto Az <b subjectto Az — 21 <b
z>=0 x>0
z>0

@ We need a starting vertex for new LP, this is easier!
o Leta| =0,and zp = —bmin
@ Running simplex on new LP with starting vertex (xj, zo), we get
starting vertex x for original LP.

Initialization 12/12

	Description of The Simplex Algorithm
	Properties
	Initialization

