
CS675: Convex and Combinatorial Optimization
Spring 2018

Submodular Function Optimization

Instructor: Shaddin Dughmi

Outline

1 Introduction to Submodular Functions

2 Unconstrained Submodular Minimization
Definition and Examples
The Convex Closure and the Lovasz Extension
Wrapping up

3 Monotone Submodular Maximization s.t. a Matroid Constraint
Definition and Examples
Warmup: Cardinality Constraint
General Matroid Constraints

Introduction

We saw how matroids form a class of feasible sets over which
optimization of modular objectives is tractable
If matroids are discrete analogues of convex sets, then
submodular functions are discrete analogues of convex/concave
functions

Submodular functions behave like convex functions sometimes
(minimization) and concave other times (maximization)

Today we will introduce submodular functions, go through some
examples, and mention some of their properties

Introduction to Submodular Functions 1/53

Set Functions

A set function takes as input a set, and outputs a real number
Inputs are subsets of some ground set X
f : 2X → R

We will focus on set functions where X is finite, and denote
n = |X|

Equivalently: map points in the hypercube {0, 1}n to the real
numbers

Can be plotted as 2n points in n+ 1 dimensional space

Introduction to Submodular Functions 2/53

Set Functions

A set function takes as input a set, and outputs a real number
Inputs are subsets of some ground set X
f : 2X → R

We will focus on set functions where X is finite, and denote
n = |X|
Equivalently: map points in the hypercube {0, 1}n to the real
numbers

Can be plotted as 2n points in n+ 1 dimensional space

Introduction to Submodular Functions 2/53

Set Functions

We have already seen modular set functions
There is a weight wi for each i ∈ X, and a constant c, such that
f(S) = c+

∑
i∈S wi for all sets S ⊆ X.

Discrete analogue of affine functions

Direct definition of modularity: f(A) + f(B) = f(A ∩B) + f(A ∪B)

Supmodular/supermodular functions are weak analogues to
convex/concave functions (in no particular order!)
Other possibly useful properties a set function may have:

Monotone increasing or decreasing
Nonnegative: f(A) ≥ 0 for all S ⊆ X
Normalized: f(∅) = 0.

Introduction to Submodular Functions 3/53

Set Functions

We have already seen modular set functions
There is a weight wi for each i ∈ X, and a constant c, such that
f(S) = c+

∑
i∈S wi for all sets S ⊆ X.

Discrete analogue of affine functions
Direct definition of modularity: f(A) + f(B) = f(A ∩B) + f(A ∪B)

Supmodular/supermodular functions are weak analogues to
convex/concave functions (in no particular order!)
Other possibly useful properties a set function may have:

Monotone increasing or decreasing
Nonnegative: f(A) ≥ 0 for all S ⊆ X
Normalized: f(∅) = 0.

Introduction to Submodular Functions 3/53

Set Functions

We have already seen modular set functions
There is a weight wi for each i ∈ X, and a constant c, such that
f(S) = c+

∑
i∈S wi for all sets S ⊆ X.

Discrete analogue of affine functions
Direct definition of modularity: f(A) + f(B) = f(A ∩B) + f(A ∪B)

Supmodular/supermodular functions are weak analogues to
convex/concave functions (in no particular order!)

Other possibly useful properties a set function may have:
Monotone increasing or decreasing
Nonnegative: f(A) ≥ 0 for all S ⊆ X
Normalized: f(∅) = 0.

Introduction to Submodular Functions 3/53

Set Functions

We have already seen modular set functions
There is a weight wi for each i ∈ X, and a constant c, such that
f(S) = c+

∑
i∈S wi for all sets S ⊆ X.

Discrete analogue of affine functions
Direct definition of modularity: f(A) + f(B) = f(A ∩B) + f(A ∪B)

Supmodular/supermodular functions are weak analogues to
convex/concave functions (in no particular order!)
Other possibly useful properties a set function may have:

Monotone increasing or decreasing
Nonnegative: f(A) ≥ 0 for all S ⊆ X
Normalized: f(∅) = 0.

Introduction to Submodular Functions 3/53

Submodular Functions

Definition 1
A set function f : 2X → R is submodular if and only if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

“Uncrossing” two sets reduces
their total function value

A
B

≥
A

B

Introduction to Submodular Functions 4/53

Submodular Functions

Definition 2
A set function f : 2X → R is submodular if and only if

f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X and i 6∈ B.

The marginal value of an
additional element exhibits
“diminishing marginal returns”
Should remind of concavity:
second “derivative” is negative

A

B

i

Introduction to Submodular Functions 5/53

Supermodular Functions

Definition 0
A set function f : 2X → R is supermodular if and only if −f is
submodular.

Definition 1
A set function f : 2X → R is supermodular if and only if

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

Definition 2
A set function f : 2X → R is supermodular if and only if

f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X and i 6∈ B.

Introduction to Submodular Functions 6/53

Supermodular Functions

Definition 0
A set function f : 2X → R is supermodular if and only if −f is
submodular.

Definition 1
A set function f : 2X → R is supermodular if and only if

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

Definition 2
A set function f : 2X → R is supermodular if and only if

f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X and i 6∈ B.

Introduction to Submodular Functions 6/53

Supermodular Functions

Definition 0
A set function f : 2X → R is supermodular if and only if −f is
submodular.

Definition 1
A set function f : 2X → R is supermodular if and only if

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

for all A,B ⊆ X.

Definition 2
A set function f : 2X → R is supermodular if and only if

f(B ∪ {i})− f(B) ≥ f(A ∪ {i})− f(A))

for all A ⊆ B ⊆ X and i 6∈ B.

Introduction to Submodular Functions 6/53

Examples

Many common examples are monotone, normalized, and submodular.

Coverage Functions
In general: X is a family of sets, and f(S) is the “size” (cardinality
or measure) of

⋃
A∈S A

Discrete special case: X the left hand side of a graph, and f(S) is
the total number of neighbors of S.

The following two are examples of coverage functions

Probability
X is a set of probability events, and f(S) is the probability at least one
of them occurs.

Sensor Coverage
X is a family of locations in space you can place sensors, and f(S) is
the total area covered if you place sensors at locations S ⊆ X.

Introduction to Submodular Functions 7/53

Examples

Many common examples are monotone, normalized, and submodular.

Coverage Functions
In general: X is a family of sets, and f(S) is the “size” (cardinality
or measure) of

⋃
A∈S A

Discrete special case: X the left hand side of a graph, and f(S) is
the total number of neighbors of S.

The following two are examples of coverage functions

Probability
X is a set of probability events, and f(S) is the probability at least one
of them occurs.

Sensor Coverage
X is a family of locations in space you can place sensors, and f(S) is
the total area covered if you place sensors at locations S ⊆ X.

Introduction to Submodular Functions 7/53

Examples

Social Influence
X is the family of nodes in a social network
A meme, idea, or product is adopted at a set of nodes S
The idea propagates through the network through some random
diffusion process

Many different models

f(S) is the expected number of nodes in the network which end
up adopting the idea.

Utility Functions
When X is a set of goods, f(S) can represent the utility of an agent for
a bundle of these goods. Utilities which exhibit diminishing marginal
returns are natural in many settings.

Introduction to Submodular Functions 8/53

Examples

Social Influence
X is the family of nodes in a social network
A meme, idea, or product is adopted at a set of nodes S
The idea propagates through the network through some random
diffusion process

Many different models

f(S) is the expected number of nodes in the network which end
up adopting the idea.

Utility Functions
When X is a set of goods, f(S) can represent the utility of an agent for
a bundle of these goods. Utilities which exhibit diminishing marginal
returns are natural in many settings.

Introduction to Submodular Functions 8/53

Examples

Entropy
X is a set of random variables, and f(S) is the entropy of the joint
distribution of a subset of them S.

Matroid Rank
The rank function of a matroid is monotone, submodular, and
normalized.

Clustering Quality
X is the set of nodes in a graph G, and f(S) = E(S) is the internal
connectedness of cluster S.

Supermodular

Introduction to Submodular Functions 9/53

Examples

Entropy
X is a set of random variables, and f(S) is the entropy of the joint
distribution of a subset of them S.

Matroid Rank
The rank function of a matroid is monotone, submodular, and
normalized.

Clustering Quality
X is the set of nodes in a graph G, and f(S) = E(S) is the internal
connectedness of cluster S.

Supermodular

Introduction to Submodular Functions 9/53

Examples

Entropy
X is a set of random variables, and f(S) is the entropy of the joint
distribution of a subset of them S.

Matroid Rank
The rank function of a matroid is monotone, submodular, and
normalized.

Clustering Quality
X is the set of nodes in a graph G, and f(S) = E(S) is the internal
connectedness of cluster S.

Supermodular

Introduction to Submodular Functions 9/53

Examples

There are fewer examples of non-monotone submodular/supermodular
functions, which are nontheless fundamental.

Graph Cuts
X is the set of nodes in a graph G, and f(S) is the number of edges
crossing the cut (S,X \ S).

Submodular
Non-monotone.

Graph Density

X is the set of nodes in a graph G, and f(S) = E(S)
|S| where E(S) is the

number of edges with both endpoints in S.
Non-monotone
Neither submodular nor supermodular
However, maximizing it reduces to maximizing supermodular
function E(S)− α|S| for various α > 0 (binary search)

Introduction to Submodular Functions 10/53

Examples

There are fewer examples of non-monotone submodular/supermodular
functions, which are nontheless fundamental.

Graph Cuts
X is the set of nodes in a graph G, and f(S) is the number of edges
crossing the cut (S,X \ S).

Submodular
Non-monotone.

Graph Density

X is the set of nodes in a graph G, and f(S) = E(S)
|S| where E(S) is the

number of edges with both endpoints in S.
Non-monotone
Neither submodular nor supermodular

However, maximizing it reduces to maximizing supermodular
function E(S)− α|S| for various α > 0 (binary search)

Introduction to Submodular Functions 10/53

Examples

There are fewer examples of non-monotone submodular/supermodular
functions, which are nontheless fundamental.

Graph Cuts
X is the set of nodes in a graph G, and f(S) is the number of edges
crossing the cut (S,X \ S).

Submodular
Non-monotone.

Graph Density

X is the set of nodes in a graph G, and f(S) = E(S)
|S| where E(S) is the

number of edges with both endpoints in S.
Non-monotone
Neither submodular nor supermodular
However, maximizing it reduces to maximizing supermodular
function E(S)− α|S| for various α > 0 (binary search)

Introduction to Submodular Functions 10/53

Equivalence of Both Definitions

Definition 1

f(A)+ f(B) ≥ f(A∩B)+ f(A∪B)

A
B

Definition 2

f(B∪{i})−f(B) ≤ f(A∪{i})−f(A))

A

B

i

Introduction to Submodular Functions 11/53

Equivalence of Both Definitions

Definition 1

f(A)+ f(B) ≥ f(A∩B)+ f(A∪B)

A
B

Definition 2

f(B∪{i})−f(B) ≤ f(A∪{i})−f(A))

A

B

i

Definition 1⇒ Definition 2
To prove (2), let A′ = A

⋃
{i} and B′ = B and apply (1)

f(A ∪ {i}) + f(B) = f(A′) + f(B′)

≥ f(A′ ∩B′) + f(A′ ∪B′)
= f(A) + f(B ∪ {i})

Introduction to Submodular Functions 11/53

Equivalence of Both Definitions

Definition 1

f(A)+ f(B) ≥ f(A∩B)+ f(A∪B)

A
B

Definition 2

f(B∪{i})−f(B) ≤ f(A∪{i})−f(A))

A

B

i

Definition 2⇒ Definition 1
To prove (1), start with A = B = A

⋂
B and repeatedly add

elements to one but not the other
At each step, (2) implies that the LHS of inequality (1) increases
more than the RHS

Introduction to Submodular Functions 11/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular

Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular

Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular

Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Operations Preserving Submodularity

Nonnegative-weighted combinations (a.k.a. conic combinations):
If f1, . . . , fk are submodular, and w1, . . . , wk ≥ 0, then
g(S) =

∑
iwifi(S) is also submodular

Special case: adding or subtracting a modular function

Restriction: If f is a submodular function on X, and T ⊆ X, then
g(S) = f(S ∩ T) is submodular
Contraction (a.k.a conditioning): If f is a submodular function on
X, and T ⊆ X, then fT (S) = f(S ∪ T) is submodular
Reflection: If f is a submodular function on X, then
f(S) = f(X \ S) is also submodular
Others: Dilworth trucation, convolution with modular functions, . . .

Note
The minimum or maximum of two submodular functions is not
necessarily submodular

Introduction to Submodular Functions 12/53

Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S).

Introduction to Submodular Functions 13/53

Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S).

Introduction to Submodular Functions 13/53

Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common
These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S).

Introduction to Submodular Functions 13/53

Outline

1 Introduction to Submodular Functions

2 Unconstrained Submodular Minimization
Definition and Examples
The Convex Closure and the Lovasz Extension
Wrapping up

3 Monotone Submodular Maximization s.t. a Matroid Constraint
Definition and Examples
Warmup: Cardinality Constraint
General Matroid Constraints

Recall: Optimizing Submodular Functions

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Unconstrained Submodular Minimization 14/53

Recall: Optimizing Submodular Functions

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Unconstrained Submodular Minimization 14/53

Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

minimize f(S)
subject to S ⊆ X

We denote n = |X|
We assume f(S) is a rational number with at most b bits

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.

Unconstrained Submodular Minimization 15/53

Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

minimize f(S)
subject to S ⊆ X

We denote n = |X|
We assume f(S) is a rational number with at most b bits

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.

Unconstrained Submodular Minimization 15/53

Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

minimize f(S)
subject to S ⊆ X

We denote n = |X|
We assume f(S) is a rational number with at most b bits

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.

Unconstrained Submodular Minimization 15/53

Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

minimize f(S)
subject to S ⊆ X

We denote n = |X|
We assume f(S) is a rational number with at most b bits

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating f(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.

Note: weakly polynomial. There are strongly polytime algorithms.
Unconstrained Submodular Minimization 15/53

Examples

Minimum Cut
Given a graph G = (V,E), find a set S ⊆ V minimizing the number of
edges crossing the cut (S, V \ S).

G may be directed or undirected.
Extends to hypergraphs.

Densest Subgraph
Given an undirected graph G = (V,E), find a set S ⊆ V maximizing
the average internal degree.

Reduces to supermodular maximization via binary search for the
right density.

Unconstrained Submodular Minimization 16/53

Examples

Minimum Cut
Given a graph G = (V,E), find a set S ⊆ V minimizing the number of
edges crossing the cut (S, V \ S).

G may be directed or undirected.
Extends to hypergraphs.

Densest Subgraph
Given an undirected graph G = (V,E), find a set S ⊆ V maximizing
the average internal degree.

Reduces to supermodular maximization via binary search for the
right density.

Unconstrained Submodular Minimization 16/53

Continuous Extensions of a Set Function

Recall
A set function f on X = {1, . . . , n} can be thought of as a map from the
vertices {0, 1}n of the n-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function
Given a set function f : {0, 1}n → R, an extension of f to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = f(x) for
every x ∈ {0, 1}n.

Long story short. . .
We will exhibit an extension which is convex when f is submodular,
and can be minimized efficiently. We will then show that minimizing it
yields a solution to the submodular minimization problem.

Unconstrained Submodular Minimization 17/53

Continuous Extensions of a Set Function

Recall
A set function f on X = {1, . . . , n} can be thought of as a map from the
vertices {0, 1}n of the n-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function
Given a set function f : {0, 1}n → R, an extension of f to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = f(x) for
every x ∈ {0, 1}n.

Long story short. . .
We will exhibit an extension which is convex when f is submodular,
and can be minimized efficiently. We will then show that minimizing it
yields a solution to the submodular minimization problem.

Unconstrained Submodular Minimization 17/53

Continuous Extensions of a Set Function

Recall
A set function f on X = {1, . . . , n} can be thought of as a map from the
vertices {0, 1}n of the n-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function
Given a set function f : {0, 1}n → R, an extension of f to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = f(x) for
every x ∈ {0, 1}n.

Long story short. . .
We will exhibit an extension which is convex when f is submodular,
and can be minimized efficiently. We will then show that minimizing it
yields a solution to the submodular minimization problem.

Unconstrained Submodular Minimization 17/53

The Convex Closure

Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.

Unconstrained Submodular Minimization 18/53

The Convex Closure

Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.

Geometric Intuition
What you would get by placing a blanket under the plot of f and pulling
up.

f(∅) = 0
f({1}) = f({2}) = 1
f({1, 2}) = 1

f−(x1, x2) = max(x1, x2)

Unconstrained Submodular Minimization 18/53

The Convex Closure

Convex Closure
Given a set function f : {0, 1}n → R, the convex closure
f− : [0, 1]n → R of f is the point-wise greatest convex function
under-estimating f on {0, 1}n.

Claim
The convex closure exists for any set function.

Proof
If g1, g2 : [0, 1]n → R are convex under-estimators of f , then so is
max {g1, g2}
Holds for infinite set of convex under-estimators
Therefore f− = max {g : g is a convex underestimator of f} is the
point-wise greatest convex underestimator of f .

Unconstrained Submodular Minimization 18/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Interpretation
The minimum expected value of f over all distributions on {0, 1}n
with expectation x.
Equivalently: the minimum expected value of f for a random set
S ⊆ X including each i ∈ X with probability xi.
The upper bound on f−(x) implied by applying Jensen’s inequality
to every convex combination of {0, 1}n.

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Implication
f− is an extension of f .
f−(x) has no “integrality gap”

For every x ∈ [0, 1]n, there is a random integer vector y ∈ {0, 1}n
such that Ey f(y) = f−(x).
Therefore, there is an integer vector y such that f(y) ≤ f−(x).

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

f(∅) = 0
f({1}) = f({2}) = 1
f({1, 2}) = 1

When x1 ≤ x2
f−(x1, x2) = x1f({1, 2})

+ (x2 − x1)f({2})
+ (1− x2)f(∅)

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Proof
OPT (x) is at least f−(x) for every x: By Jensen’s inequality

To show that OPT (x) is equal to f−(x), suffices to show that it is
a convex under-estimate of f
Under-estimate: OPT (x) = f(x) for x ∈ {0, 1}n

Convex: The value of a minimization LP is convex in its right hand
side constants (check)

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Proof
OPT (x) is at least f−(x) for every x: By Jensen’s inequality
To show that OPT (x) is equal to f−(x), suffices to show that it is
a convex under-estimate of f

Under-estimate: OPT (x) = f(x) for x ∈ {0, 1}n

Convex: The value of a minimization LP is convex in its right hand
side constants (check)

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Proof
OPT (x) is at least f−(x) for every x: By Jensen’s inequality
To show that OPT (x) is equal to f−(x), suffices to show that it is
a convex under-estimate of f
Under-estimate: OPT (x) = f(x) for x ∈ {0, 1}n

Convex: The value of a minimization LP is convex in its right hand
side constants (check)

Unconstrained Submodular Minimization 19/53

Claim
The value of the convex closure f− at x ∈ [0, 1]n is the solution of the
following optimization problem:

minimize
∑

y∈{0,1}n λyf(y)

subject to
∑

y∈{0,1}n λyy = x∑
y∈{0,1}n λy = 1

λy ≥ 0, for y ∈ {0, 1}n .

Proof
OPT (x) is at least f−(x) for every x: By Jensen’s inequality
To show that OPT (x) is equal to f−(x), suffices to show that it is
a convex under-estimate of f
Under-estimate: OPT (x) = f(x) for x ∈ {0, 1}n

Convex: The value of a minimization LP is convex in its right hand
side constants (check)

Unconstrained Submodular Minimization 19/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Proof

f−(y) = f(y) for every y ∈ {0, 1}n

Therefore minx∈[0,1]n f
−(x) ≤ miny∈{0,1}n f(y)

For every x, f−(x) is the expected value of f(y), for a random
variable y ∈ {0, 1}n with expectation x.
Therefore, minx∈[0,1]n f

−(x) ≥ miny∈{0,1}n f(y)

Unconstrained Submodular Minimization 20/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Proof
f−(y) = f(y) for every y ∈ {0, 1}n

Therefore minx∈[0,1]n f
−(x) ≤ miny∈{0,1}n f(y)

For every x, f−(x) is the expected value of f(y), for a random
variable y ∈ {0, 1}n with expectation x.
Therefore, minx∈[0,1]n f

−(x) ≥ miny∈{0,1}n f(y)

Unconstrained Submodular Minimization 20/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Proof
f−(y) = f(y) for every y ∈ {0, 1}n

Therefore minx∈[0,1]n f
−(x) ≤ miny∈{0,1}n f(y)

For every x, f−(x) is the expected value of f(y), for a random
variable y ∈ {0, 1}n with expectation x.
Therefore, minx∈[0,1]n f

−(x) ≥ miny∈{0,1}n f(y)

Unconstrained Submodular Minimization 20/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Good News?
We reduced minimizing set function f to minimizing a convex function
f− over a convex set [0, 1]n. Are we done?

Problem
In general, it is hard to evaluate f− efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f− is in fact equivalent to
another extension which is easier to evaluate.

Unconstrained Submodular Minimization 20/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Good News?
We reduced minimizing set function f to minimizing a convex function
f− over a convex set [0, 1]n. Are we done?

Problem
In general, it is hard to evaluate f− efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f− is in fact equivalent to
another extension which is easier to evaluate.

Unconstrained Submodular Minimization 20/53

Using the Convex Closure

Fact
The minimum of f− is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Good News?
We reduced minimizing set function f to minimizing a convex function
f− over a convex set [0, 1]n. Are we done?

Problem
In general, it is hard to evaluate f− efficiently, let alone its derivative.
This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f− is in fact equivalent to
another extension which is easier to evaluate.

Unconstrained Submodular Minimization 20/53

Chain Distributions

Chain Distribution
A chain distribution on the ground set X is a distribution over S ⊆ X
who’s support forms a chain in the inclusion order.

DL(x) is the distribution given by
the following process:

Sort x1 ≥ x2 . . . ≥ xn
Let Si = {1, . . . , i}
Let Pr[Si] = xi − xi+1

Unconstrained Submodular Minimization 21/53

Chain Distributions

Chain Distribution with Given Marginals
Fix the ground set X = {1, . . . , n}. The chain distribution with
marginals x ∈ [0, 1]n is the unique chain distribution DL(x) satisfying
PrS∼DL(x)[i ∈ S] = xi for all i ∈ X.

DL(x) is the distribution given by
the following process:

Sort x1 ≥ x2 . . . ≥ xn
Let Si = {1, . . . , i}
Let Pr[Si] = xi − xi+1

Unconstrained Submodular Minimization 21/53

Chain Distributions

Chain Distribution with Given Marginals
Fix the ground set X = {1, . . . , n}. The chain distribution with
marginals x ∈ [0, 1]n is the unique chain distribution DL(x) satisfying
PrS∼DL(x)[i ∈ S] = xi for all i ∈ X.

Pr[S1] = x1 - x2
Pr[S4] = x4

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

DL(x) is the distribution given by
the following process:

Sort x1 ≥ x2 . . . ≥ xn
Let Si = {1, . . . , i}
Let Pr[Si] = xi − xi+1

Unconstrained Submodular Minimization 21/53

Chain Distributions

Chain Distribution with Given Marginals
Fix the ground set X = {1, . . . , n}. The chain distribution with
marginals x ∈ [0, 1]n is the unique chain distribution DL(x) satisfying
PrS∼DL(x)[i ∈ S] = xi for all i ∈ X.

Pr[S1] = x1 - x2
Pr[S4] = x4

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

DL(x) is the distribution given by
the following process:

Sort x1 ≥ x2 . . . ≥ xn
Let Si = {1, . . . , i}
Let Pr[Si] = xi − xi+1

Unconstrained Submodular Minimization 21/53

The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

fL(x) = E
S∼DL(x)

f(S)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals x.

Observations
fL is an extension, since the chain distribution with marginals
y ∈ {0, 1}n is the point distribution at y.

fL(x) is the expected value of f on some distribution on {0, 1}n
with marginals x, therefore fL(x) ≥ f−(x).
Together, those imply: if fL is convex, then fL = f−.

Unconstrained Submodular Minimization 22/53

The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

fL(x) = E
S∼DL(x)

f(S)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals x.

Observations
fL is an extension, since the chain distribution with marginals
y ∈ {0, 1}n is the point distribution at y.
fL(x) is the expected value of f on some distribution on {0, 1}n
with marginals x, therefore fL(x) ≥ f−(x).

Together, those imply: if fL is convex, then fL = f−.

Unconstrained Submodular Minimization 22/53

The Lovasz Extension

Definition
The Lovasz extension of a set function f is defined as follows.

fL(x) = E
S∼DL(x)

f(S)

i.e. the Lovasz extension at x is the expected value of a set drawn from
the unique chain distribution with marginals x.

Observations
fL is an extension, since the chain distribution with marginals
y ∈ {0, 1}n is the point distribution at y.
fL(x) is the expected value of f on some distribution on {0, 1}n
with marginals x, therefore fL(x) ≥ f−(x).
Together, those imply: if fL is convex, then fL = f−.

Unconstrained Submodular Minimization 22/53

Equivalence of the Convex Closure and Lovasz
Extension

Theorem
If f is submodular, then fL = f−.

Converse holds: if f not submodular, then fL not convex. (won’t prove)

Intuition
Recall: f−(x) evaluates f on the “lowest” distribution with
marginals x
It turns out that, when f is submodular, this lowest distribution is
the chain distribution DL(x).
Contingent on marginals x, submodularity implies that cost is
minimized by “packing” as many elements together as possible

diminishing marginal returns

This gives the chain distribution

Unconstrained Submodular Minimization 23/53

Equivalence of the Convex Closure and Lovasz
Extension

Theorem
If f is submodular, then fL = f−.

Converse holds: if f not submodular, then fL not convex. (won’t prove)

Intuition
Recall: f−(x) evaluates f on the “lowest” distribution with
marginals x
It turns out that, when f is submodular, this lowest distribution is
the chain distribution DL(x).

Contingent on marginals x, submodularity implies that cost is
minimized by “packing” as many elements together as possible

diminishing marginal returns

This gives the chain distribution

Unconstrained Submodular Minimization 23/53

Equivalence of the Convex Closure and Lovasz
Extension

Theorem
If f is submodular, then fL = f−.

Converse holds: if f not submodular, then fL not convex. (won’t prove)

Intuition
Recall: f−(x) evaluates f on the “lowest” distribution with
marginals x
It turns out that, when f is submodular, this lowest distribution is
the chain distribution DL(x).
Contingent on marginals x, submodularity implies that cost is
minimized by “packing” as many elements together as possible

diminishing marginal returns

This gives the chain distribution

Unconstrained Submodular Minimization 23/53

It suffices to show that the chain distribution with marginals x is in fact
the “lowest” distribution with marginals x.

Proof (Special case)

Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.
“uncrossing” implies that replacing them with A

⋂
B and A

⋃
B,

with probability 0.5 each, gives a chain distribution with lower
expected value of f .

A B

1
2
f(A)+ 1

2
f(B) ≥ 1

2
f(A
⋂

B)+ 1
2
f(A
⋃

B)

Pr[A
⋂

B] = 1
2

Pr[A
⋃

B] = 1
2

Unconstrained Submodular Minimization 24/53

It suffices to show that the chain distribution with marginals x is in fact
the “lowest” distribution with marginals x.

Proof (Special case)
Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.

“uncrossing” implies that replacing them with A
⋂
B and A

⋃
B,

with probability 0.5 each, gives a chain distribution with lower
expected value of f .

A B
Pr[B] = 1

2Pr[A] = 1
2

1
2
f(A)+ 1

2
f(B)

A B

1
2
f(A)+ 1

2
f(B) ≥ 1

2
f(A
⋂

B)+ 1
2
f(A
⋃

B)

Pr[A
⋂

B] = 1
2

Pr[A
⋃

B] = 1
2

Unconstrained Submodular Minimization 24/53

It suffices to show that the chain distribution with marginals x is in fact
the “lowest” distribution with marginals x.

Proof (Special case)
Consider a distribution D on two “crossing” sets A and B, with
probability 0.5 each.
“uncrossing” implies that replacing them with A

⋂
B and A

⋃
B,

with probability 0.5 each, gives a chain distribution with lower
expected value of f .

A B

1
2
f(A)+ 1

2
f(B) ≥ 1

2
f(A
⋂

B)+ 1
2
f(A
⋃

B)

Pr[A
⋂

B] = 1
2

Pr[A
⋃

B] = 1
2

Unconstrained Submodular Minimization 24/53

Proof (Slightly Less Special Case)

Consider a distribution D on two “crossing” sets A and B, with
probabilities p ≤ q.
Can “uncross” a probability mass of p of each, decreasing the
expected value of f
Now a chain distribution

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 25/53

Proof (Slightly Less Special Case)
Consider a distribution D on two “crossing” sets A and B, with
probabilities p ≤ q.

Can “uncross” a probability mass of p of each, decreasing the
expected value of f
Now a chain distribution

A B
Pr[A] = p Pr[B] = q

pf(A)+ qf(B)

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 25/53

Proof (Slightly Less Special Case)
Consider a distribution D on two “crossing” sets A and B, with
probabilities p ≤ q.
Can “uncross” a probability mass of p of each, decreasing the
expected value of f

Now a chain distribution

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 25/53

Proof (Slightly Less Special Case)
Consider a distribution D on two “crossing” sets A and B, with
probabilities p ≤ q.
Can “uncross” a probability mass of p of each, decreasing the
expected value of f
Now a chain distribution

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 25/53

Proof (General Case)

Consider a distribution D which includes two “crossing” sets A
and B in its support
Can “uncross” a probability mass of min(Pr[A],Pr[B]) of each,
decreasing expected value of f
Makes it closer to being a chain distribution

The bounded potential function ES∼D[|S|2] increases

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 26/53

Proof (General Case)
Consider a distribution D which includes two “crossing” sets A
and B in its support

Can “uncross” a probability mass of min(Pr[A],Pr[B]) of each,
decreasing expected value of f
Makes it closer to being a chain distribution

The bounded potential function ES∼D[|S|2] increases

A B
Pr[A] = p Pr[B] = q

pf(A)+ qf(B)

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 26/53

Proof (General Case)
Consider a distribution D which includes two “crossing” sets A
and B in its support
Can “uncross” a probability mass of min(Pr[A],Pr[B]) of each,
decreasing expected value of f

Makes it closer to being a chain distribution
The bounded potential function ES∼D[|S|2] increases

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 26/53

Proof (General Case)
Consider a distribution D which includes two “crossing” sets A
and B in its support
Can “uncross” a probability mass of min(Pr[A],Pr[B]) of each,
decreasing expected value of f
Makes it closer to being a chain distribution

The bounded potential function ES∼D[|S|2] increases

A B
Pr[A

⋂
B] = p

pf(A)+ qf(B) ≥ pf(A
⋂

B)+ pf(A
⋃

B)+(q − p)f(B)

Pr[A
⋃

B] = p

Pr[B] = q − p

Unconstrained Submodular Minimization 26/53

Minimizing the Lovasz Extension

Because fL = f−, we know the following:

Fact
The minimum of fL is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Therefore, minimizing f reduces to the following convex optimization
problem

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Unconstrained Submodular Minimization 27/53

Minimizing the Lovasz Extension

Because fL = f−, we know the following:

Fact
The minimum of fL is equal to the minimum of f , and moreover is
attained at minimizers y ∈ {0, 1}n of f .

Therefore, minimizing f reduces to the following convex optimization
problem

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Unconstrained Submodular Minimization 27/53

Recall: Solvability of Convex Optimization

Weak Solvability
An algorithm weakly solves our optimization problem if it takes in
approximation parameter ε > 0, runs in poly(n, log 1

ε) time, and returns
x ∈ [0, 1]n which is ε-optimal:

fL(x) ≤ min
y∈[0,1]n

fL(y) + ε[max
y∈[0,1]n

fL(y)− min
y∈[0,1]n

fL(y)]

Unconstrained Submodular Minimization 28/53

Recall: Solvability of Convex Optimization

Polynomial Solvability of CP
In order to weakly minimize fL, we need the following operations to
run in poly(n) time:

1 Compute a starting ellipsoid E ⊇ [0, 1]n with
vol(E)

vol([0,1]n) = O(exp(n)).

2 A separation oracle for the feasible set [0, 1]n

3 A first order oracle for fL: evaluates fL(x) and a subgradient of
fL at x.

1 and 2 are trivial.

Unconstrained Submodular Minimization 28/53

Recall: Solvability of Convex Optimization

Polynomial Solvability of CP
In order to weakly minimize fL, we need the following operations to
run in poly(n) time:

1 Compute a starting ellipsoid E ⊇ [0, 1]n with
vol(E)

vol([0,1]n) = O(exp(n)).

2 A separation oracle for the feasible set [0, 1]n

3 A first order oracle for fL: evaluates fL(x) and a subgradient of
fL at x.

1 and 2 are trivial.

Unconstrained Submodular Minimization 28/53

First order Oracle for fL

Pr[S1] = x1 - x2
Pr[S4] = x4

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

Recall: the chain distribution with marginals x
Sort x1 ≥ x2 . . . ≥ xn
Let Si = {x1, . . . , xi}
Let Pr[Si] = xi − xi+1

Can evaluate fL(x) =
∑

i f(Si)(xi − xi+1)

fL is peicewise linear, so can compute a sub-gradient.

Unconstrained Submodular Minimization 29/53

First order Oracle for fL

Pr[S1] = x1 - x2
Pr[S4] = x4

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

Recall: the chain distribution with marginals x
Sort x1 ≥ x2 . . . ≥ xn
Let Si = {x1, . . . , xi}
Let Pr[Si] = xi − xi+1

Can evaluate fL(x) =
∑

i f(Si)(xi − xi+1)

fL is peicewise linear, so can compute a sub-gradient.

Unconstrained Submodular Minimization 29/53

First order Oracle for fL

Pr[S1] = x1 - x2
Pr[S4] = x4

4321

Pr[S3] = x3 - x4Pr[S2] = x2 - x3

Recall: the chain distribution with marginals x
Sort x1 ≥ x2 . . . ≥ xn
Let Si = {x1, . . . , xi}
Let Pr[Si] = xi − xi+1

Can evaluate fL(x) =
∑

i f(Si)(xi − xi+1)

fL is peicewise linear, so can compute a sub-gradient.
Unconstrained Submodular Minimization 29/53

Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).
min f(S) ≤ fL(x∗) < min2 f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗

Unconstrained Submodular Minimization 30/53

Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).

min f(S) ≤ fL(x∗) < min2 f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗

Unconstrained Submodular Minimization 30/53

Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).
min f(S) ≤ fL(x∗) < min2 f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗

Unconstrained Submodular Minimization 30/53

Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).
min f(S) ≤ fL(x∗) < min2 f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗

Unconstrained Submodular Minimization 30/53

Recovering an Optimal Set

We can get an ε-optimal solution x∗ to the optimization problem in
poly(n, log 1

ε) time.

Minimizing the Lovasz Extension

minimize fL(x)
subject to x ∈ [0, 1]n

Set ε < 2−b, runtime is poly(n, b).
min f(S) ≤ fL(x∗) < min2 f(S)

fL(x∗) is the expectation f over a distribution of sets
It must include an optimal set in its support

We can identify this set by examining the chain distribution with
marginals x∗

Unconstrained Submodular Minimization 30/53

Outline

1 Introduction to Submodular Functions

2 Unconstrained Submodular Minimization
Definition and Examples
The Convex Closure and the Lovasz Extension
Wrapping up

3 Monotone Submodular Maximization s.t. a Matroid Constraint
Definition and Examples
Warmup: Cardinality Constraint
General Matroid Constraints

Recall: Optimizing Submodular Functions

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Monotone Submodular Maximization s.t. a Matroid Constraint 31/53

Recall: Optimizing Submodular Functions

Maximization Minimization
Unconstrained NP-hard Polynomial time

1
2 approximation via convex opt

Constrained Usually NP-hard Usually NP-hard to apx.
1− 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constraints)

Monotone Submodular Maximization s.t. a Matroid Constraint 31/53

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.

We denote n = |X|

Representation
As before, we work in the value oracle and independence oracle
models. Namely, we assume we have access to a subroutine
evaluating f(S), and a subroutine for checking whether S ∈ I, each in
constant time.

Monotone Submodular Maximization s.t. a Matroid Constraint 32/53

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.
We denote n = |X|

Representation
As before, we work in the value oracle and independence oracle
models. Namely, we assume we have access to a subroutine
evaluating f(S), and a subroutine for checking whether S ∈ I, each in
constant time.

Monotone Submodular Maximization s.t. a Matroid Constraint 32/53

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

Non-decreasing: f(S) ≤ f(T) for S ⊆ T
Normalized: f(∅) = 0.
We denote n = |X|

Representation
As before, we work in the value oracle and independence oracle
models. Namely, we assume we have access to a subroutine
evaluating f(S), and a subroutine for checking whether S ∈ I, each in
constant time.

Monotone Submodular Maximization s.t. a Matroid Constraint 32/53

Examples

Maximum Coverage
X is the left hand side of a graph, and f(S) is the total number of
neighbors of S.

Can think of i ∈ X as a set, and f(S) as the total “coverage” of S.
Goal is to cover as much of the RHS as possible with k LHS nodes.

Monotone Submodular Maximization s.t. a Matroid Constraint 33/53

Social Influence
X is the family of nodes in a social network
A meme, idea, or product is adopted at a set of nodes S
f(S) is the expected number of nodes in the network which end
up adopting the idea.
Goal is to obtain maximum influence subject to a constraint

Cardinality
Transversal
. . .

Monotone Submodular Maximization s.t. a Matroid Constraint 34/53

Combinatorial Allocation
G is a set of goods
fi(B) is submodular utility of agent i ∈ N for bundle B ⊆ G
Allocation: A partition (B1, . . . , Bn) of G among agents.
Aggregate utility is

∑
i fi(Bi).

Let X = G×N be the set of good/agent pairs
Allocations correspond to subsets S of X in which at most one
“copy” of each good is chosen

Partition matroid constraint
f(S) =

∑
i∈N fi({j ∈ G : (j, i) ∈ S})

Submodular

Monotone Submodular Maximization s.t. a Matroid Constraint 35/53

Combinatorial Allocation
G is a set of goods
fi(B) is submodular utility of agent i ∈ N for bundle B ⊆ G
Allocation: A partition (B1, . . . , Bn) of G among agents.
Aggregate utility is

∑
i fi(Bi).

Let X = G×N be the set of good/agent pairs
Allocations correspond to subsets S of X in which at most one
“copy” of each good is chosen

Partition matroid constraint
f(S) =

∑
i∈N fi({j ∈ G : (j, i) ∈ S})

Submodular

Monotone Submodular Maximization s.t. a Matroid Constraint 35/53

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage subject to a cardinality constraint
(Feige ’98)

Goal
An algorithm in the value oracle and independence oracle models
which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Monotone Submodular Maximization s.t. a Matroid Constraint 36/53

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage subject to a cardinality constraint
(Feige ’98)

Goal
An algorithm in the value oracle and independence oracle models
which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.

Monotone Submodular Maximization s.t. a Matroid Constraint 36/53

Complexity

Theorem
Maximizing a submodular function subject to a matroid constraint is
NP-hard, and NP-hard to approximate to within any better than a factor
of 1− 1/e.

Holds even for max coverage subject to a cardinality constraint
(Feige ’98)

Goal
An algorithm in the value oracle and independence oracle models
which

Runs in time poly(n)

Returns a feasible set S∗ ∈ I satisfying
f(S∗) ≥ (1− 1/e)maxS∈I f(S).

Holds for arbitrary matroid, but much simpler for uniform matroids.
Monotone Submodular Maximization s.t. a Matroid Constraint 36/53

Subject to a Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X with |X| = n, and an integer
k ≤ n

maximize f(S)
subject to |S| ≤ k

k-uniform matroid constraint

Monotone Submodular Maximization s.t. a Matroid Constraint 37/53

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm
1 S ← ∅
2 While |S| ≤ k

Choose e ∈ X maximizing f(S
⋃
{e})

S ← S
⋃
{e}

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Monotone Submodular Maximization s.t. a Matroid Constraint 38/53

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm
for maximizing modular functions over a matroid.

The Greedy Algorithm
1 S ← ∅
2 While |S| ≤ k

Choose e ∈ X maximizing f(S
⋃
{e})

S ← S
⋃
{e}

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Monotone Submodular Maximization s.t. a Matroid Constraint 38/53

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T) + fA(S ∩ T)

Monotone Submodular Maximization s.t. a Matroid Constraint 39/53

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial

Monotone:
Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T) + fA(S ∩ T)

Monotone Submodular Maximization s.t. a Matroid Constraint 39/53

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T) + fA(S ∩ T)

Monotone Submodular Maximization s.t. a Matroid Constraint 39/53

Contraction/Conditioning

Let f : 2X → R and A ⊆ X. Define fA(S) = f(A
⋃
S)− f(A).

Lemma
If f is monotone and submodular, then fA is monotone, submodular,
and normalized for any A.

Proof
Normalized: trivial
Monotone:

Let S ⊆ T
fA(S) = f(S ∪A)− f(A) ≤ f(T ∪A)− f(A) = fA(T).

Submodular:

fA(S) + fA(T) = f(S ∪A)− f(A) + f(T ∪A)− f(A)
≥ f(S ∪ T ∪A)− f(A) + f((S ∩ T) ∪A)− f(A)
= fA(S ∪ T) + fA(S ∩ T)

Monotone Submodular Maximization s.t. a Matroid Constraint 39/53

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Monotone Submodular Maximization s.t. a Matroid Constraint 40/53

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Monotone Submodular Maximization s.t. a Matroid Constraint 40/53

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Monotone Submodular Maximization s.t. a Matroid Constraint 40/53

Lemma
If f is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that f({j}) ≥ 1

|A|f(A).

Proof
If A1, A2 partition A, then

f(A1) + f(A2) ≥ f(A1 ∪A2) + f(A1 ∩A2) = f(A)

Applying recursively, we get∑
j∈A

f({j}) ≥ f(A)

Therefore, maxj∈A f({j}) ≥ 1
|A|f(A)

Monotone Submodular Maximization s.t. a Matroid Constraint 40/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm

Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .

We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration

After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
Let S be the working set in the algorithm
Let S∗ be optimal solution with f(S∗) = OPT .
We will show that the suboptimality OPT − f(S) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its original
value

OPT − f(S) ≤ 1

e
OPT

(1− 1/e)OPT ≤ f(S)

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})

By our lemmas, there is j′ ∈ S∗ s.t.

fS(
{
j′
}
) ≥ 1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j′ ∈ S∗ s.t.

fS(
{
j′
}
) ≥ 1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j′ ∈ S∗ s.t.

fS(
{
j′
}
) ≥ 1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j′ ∈ S∗ s.t.

fS(
{
j′
}
) ≥ 1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

Theorem
The greedy algorithm is a (1− 1/e) approximation algorithm for
maximizing a monotone, normalized, and submodular function subject
to a cardinality constraint.

Proof
By definition, in each iteration f(S) increases by maxj fS({j})
By our lemmas, there is j′ ∈ S∗ s.t.

fS(
{
j′
}
) ≥ 1

|S∗|
fS(S

∗)

=
1

k
(f(S ∪ S∗)− f(S))

≥ 1

k
(OPT − f(S))

Therefore, suboptimality decreases by factor of 1− 1
k , as needed.

Monotone Submodular Maximization s.t. a Matroid Constraint 41/53

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is now only a 1/2 approximation
Partition matroid with parts {a} and {b, c} and budgets 1
f(a) = f(b) = 1, f(c) = f(ac) = 1 + ε, f(ab) = f(bc) = f(abc) = 2

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Monotone Submodular Maximization s.t. a Matroid Constraint 42/53

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is now only a 1/2 approximation
Partition matroid with parts {a} and {b, c} and budgets 1
f(a) = f(b) = 1, f(c) = f(ac) = 1 + ε, f(ab) = f(bc) = f(abc) = 2

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Monotone Submodular Maximization s.t. a Matroid Constraint 42/53

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is now only a 1/2 approximation
Partition matroid with parts {a} and {b, c} and budgets 1
f(a) = f(b) = 1, f(c) = f(ac) = 1 + ε, f(ab) = f(bc) = f(abc) = 2

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Monotone Submodular Maximization s.t. a Matroid Constraint 42/53

From Uniform to Arbitrary Matroid

Problem Definition
Given a non-decreasing and normalized submodular function
f : 2X → R+ on a finite ground set X, and a matroid M = (X, I)

maximize f(S)
subject to S ∈ I

The discrete greedy algorithm is now only a 1/2 approximation
Partition matroid with parts {a} and {b, c} and budgets 1
f(a) = f(b) = 1, f(c) = f(ac) = 1 + ε, f(ab) = f(bc) = f(abc) = 2

Nevertheless, a continuous greedy algorithm gives 1− 1/e

Approach resembles that for minimization
Define a continous extension of f
Optimize continuous extension over matroid polytope
Extract an integer point

Monotone Submodular Maximization s.t. a Matroid Constraint 42/53

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Monotone Submodular Maximization s.t. a Matroid Constraint 43/53

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Monotone Submodular Maximization s.t. a Matroid Constraint 43/53

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f

Not concave (or convex) in general
Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Monotone Submodular Maximization s.t. a Matroid Constraint 43/53

The Multilinear Extension

Multilinear Extension
Given a set function f : {0, 1}n → R, its multilinear extension
F : [0, 1]n → R evaluated at x ∈ [0, 1]n gives the expected value of f(S)
for the random set S which includes each i independently with
probability xi.

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
i 6=S

(1− xi)

For each point x, evaluates f on the independent distribution D(x)

Clearly an extension of f
Not concave (or convex) in general

Recall f with f(∅) = 0 and f({1}) = f({2}) = f({1, 2}) = 1
F (x) = 1− (1− x1)(1− x2)

Monotone Submodular Maximization s.t. a Matroid Constraint 43/53

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F (0) = 0

Follows from the fact that F is an extension of f

Nondecreasing
When f is monotone non-decreasing, F (x) ≤ F (y) whenever x � y
component-wise.

Increasing the probability of selecting each element increases the
expected value.

Monotone Submodular Maximization s.t. a Matroid Constraint 44/53

Easy Properties of the Multilinear Extension

Normalized
When f is normalized, F (0) = 0

Follows from the fact that F is an extension of f

Nondecreasing
When f is monotone non-decreasing, F (x) ≤ F (y) whenever x � y
component-wise.

Increasing the probability of selecting each element increases the
expected value.

Monotone Submodular Maximization s.t. a Matroid Constraint 44/53

Up-concavity

Even though F is not concave, it is concave in “upwards” directions.

Up-concavity

Assume f is submodular. For every ~a ∈ [0, 1]n and ~d ∈ [0, 1]n satisfying
d � 0, the function g(t) = F (~a+ ~d t) is a concave function of t ∈ R.

Proof Sketch

By multivariate chain rule: d2g
dt2

= dT (52F)d

The Hessian 52F is not negative semi-definite, so can’t conclude
that g is concave for arbitrary directions d
Multilinearity implies second partial derivatives ∂2F

∂x2i
are zero

Submodularity implies mixed derivatives ∂2F
∂xi∂xj

are nonpositive
Diminishing marginal returns + coupling argument

Therefore d2g
dt2

= dT (52F)d ≤ 0 for ~d � 0

Monotone Submodular Maximization s.t. a Matroid Constraint 45/53

Cross-convexity

Nevertheless, F is convex in “cross” directions.

Cross-convexity

Assume f is submodular. For every a ∈ [0, 1]n and ~d = ei − ej for some
i, j ∈ X, the function g(t) = F (~a+ ~d t) is a convex function of t ∈ R.

Trading off one item’s probability for another’s gives convex curve
Follows from submodularity: as we “remove” j, the marginal
benefit of “adding” i increases

Xj=1 Xi=1ε

Monotone Submodular Maximization s.t. a Matroid Constraint 46/53

Cross-convexity

Nevertheless, F is convex in “cross” directions.

Cross-convexity

Assume f is submodular. For every a ∈ [0, 1]n and ~d = ei − ej for some
i, j ∈ X, the function g(t) = F (~a+ ~d t) is a convex function of t ∈ R.

Proof
d2g
dt2

= dT (52F)d = ∂2F
∂x2i

+ ∂2F
∂x2j
− 2 ∂2F

∂xi∂xj

By multilinearity, ∂
2F
∂x2i

= ∂2F
∂x2j

= 0

We already argued that submodularity implies ∂2F
∂xi∂xj

≤ 0

Monotone Submodular Maximization s.t. a Matroid Constraint 46/53

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}

Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Would we be done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Monotone Submodular Maximization s.t. a Matroid Constraint 47/53

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}

D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Would we be done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Monotone Submodular Maximization s.t. a Matroid Constraint 47/53

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Would we be done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Monotone Submodular Maximization s.t. a Matroid Constraint 47/53

Algorithm Outline

Step A: Continuous Greedy Algorithm
Computes a 1− 1/e approximation to the following continuous
(non-convex) optimization problem.

maximize F (x)
subject to x ∈ P(M)

i.e. Computes x∗ s.t. F (x∗) ≥ (1− 1/e)max {F (x) : x ∈ P(M)}
Note: max {F (x) : x ∈ P(M)} ≥ max {f(S) : S ∈ I}
D(x∗) is a distribution over sets with expected value at least
(1− 1/e) of our target
Would we be done?

No! D(x∗) may be mostly supported on infeasible sets (i.e. not
independent in matroidM).

Monotone Submodular Maximization s.t. a Matroid Constraint 47/53

Algorithm Outline

Step B: Pipage Rounding
“Rounds” x∗ to some vertex y∗ of the matroid polytope (i.e. an
independent set) satisfying

f(y∗) = F (y∗) ≥ F (x∗)

A-priori, not obvious that such a y∗ exists

Monotone Submodular Maximization s.t. a Matroid Constraint 48/53

Algorithm Outline

Step B: Pipage Rounding
“Rounds” x∗ to some vertex y∗ of the matroid polytope (i.e. an
independent set) satisfying

f(y∗) = F (y∗) ≥ F (x∗)

A-priori, not obvious that such a y∗ exists

Monotone Submodular Maximization s.t. a Matroid Constraint 48/53

Step A: Continuous Greedy Algorithm

The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F , and solvable
downwards-closed polytope P ⊆ Rn+.
Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

Position at time t given by x(t).
Discretized to time steps of ε, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particle is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Monotone Submodular Maximization s.t. a Matroid Constraint 49/53

Step A: Continuous Greedy Algorithm

The following “continuous” descent algorithm works for an
arbitrary nondecreasing and up-concave function F , and solvable
downwards-closed polytope P ⊆ Rn+.
Continuously moves a particle inside the matroid polytope,
starting at 0, for a total of 1 time unit.

Position at time t given by x(t).
Discretized to time steps of ε, which we will assume to be
arbitrarily small for convenience of analysis, but may be taken to
be 1/ poly(n) in the actual implementation.

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particle is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Monotone Submodular Maximization s.t. a Matroid Constraint 49/53

Step A: Continuous Greedy Algorithm

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particle is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Monotone Submodular Maximization s.t. a Matroid Constraint 49/53

Step A: Continuous Greedy Algorithm

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

I.e. When the particle is at x, it moves in direction y maximizing
the linear function 5F (x) · y over y ∈ P

The direction is actually a vertex of our matroid polytope
This is NOT gradient descent

Observe: Algorithm forms a convex combination of 1
ε vertices of

the polytope P, each with weight ε.
x(1) ∈ P.

Monotone Submodular Maximization s.t. a Matroid Constraint 49/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt

= 5F (x(t)) · d~x
dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt

= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)

≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]

≥ F (max(xopt, x(t)))− F (x(t))

≥ OPT − F (x(t))
Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
Denote y(t) = argmaxy∈P 5F (x(t)) · y

d~x
dt = y(t)

Let xopt be the vertex of P(M) maximizing F (x).
F (xopt) = f(xopt) = OPT

dF (x(t))

dt
= 5F (x(t)) · d~x

dt
= 5F (x(t)) · y(t)
≥ 5F (x(t)) · [xopt − x(t)]+

= 5F (x(t)) · [max(xopt, x(t))− x(t)]
≥ F (max(xopt, x(t)))− F (x(t))
≥ OPT − F (x(t))

Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Proof Sketch
v(t) = F (x(t)) satisfies dv

dt ≥ OPT − v.

Differential equation dv
dt = OPT − v with boundary condition

v(0) = 0 has a unique solution

v(t) = OPT (1− e−t)

v(1) ≥ OPT (1− 1/e)

Monotone Submodular Maximization s.t. a Matroid Constraint 50/53

Implementation Details

Continuous Greedy Algorithm (F ,P, ε)
1 x(0)← ~0

2 For t ∈ [0, ε, 2ε, . . . , 1− ε]
x(t+ ε)← x(t) + ε argmaxy∈P {5F (x(t)) · y}

3 Return x(1)

5F (x) is not readily available, but can be estimated “accurately
enough” using poly(n) random samples from D(x), w.h.p.
Step 2 can be implemented because P is solvable
Discretization: Taking ε = 1/O(n2) is “fine enough”
Both the above introduce error into the approximation guarantee,
yielding 1− 1/e− 1/O(n) w.h.p
This can be shaved off to 1− 1/e with some additional “tricks”.

Monotone Submodular Maximization s.t. a Matroid Constraint 51/53

The following algorithm takes x in matroid base polytope
Pbase(M), and non-decreasing cross-convex function F , and
outputs integral y with F (y) ≥ F (x)

PipageRounding (M,x, F)
While x contains a fractional entry

1 Let T be a minimum-size tight set containing a fractional entry
i.e. x(T) = rankM(T), i ∈ T for some i with xi ∈ (0, 1), and |T | is
as small as possible.

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Monotone Submodular Maximization s.t. a Matroid Constraint 52/53

The following algorithm takes x in matroid base polytope
Pbase(M), and non-decreasing cross-convex function F , and
outputs integral y with F (y) ≥ F (x)

PipageRounding (M,x, F)
While x contains a fractional entry

1 Let T be a minimum-size tight set containing a fractional entry
i.e. x(T) = rankM(T), i ∈ T for some i with xi ∈ (0, 1), and |T | is
as small as possible.

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Theorem
On input x ∈ Pbase(M), Pipage rounding terminates in O(n2)
iterations, and outputs a matroid vertex y with f(y) = F (y) ≥ F (x).

Monotone Submodular Maximization s.t. a Matroid Constraint 52/53

PipageRounding (M,x, F)
While x contains a fractional entry

1 Let T be a minimum-size tight set containing a fractional entry
i.e. x(T) = rankM(T), i ∈ T for some i with xi ∈ (0, 1), and |T | is
as small as possible.

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 1
T is a subset of every other tight set containing i, because tight
sets form a lattice

A lattice is a family of sets closed under intersection and union.
Proof:

Tight sets are the minimizers of the set function rankM(S)− x(S)
This set function is submodular.
Minimizers of a submodular function form a lattice (implied by
submodular inequality).Monotone Submodular Maximization s.t. a Matroid Constraint 52/53

PipageRounding (M,x, F)
While x contains a fractional entry

1 Let T be a minimum-size tight set containing a fractional entry
i.e. x(T) = rankM(T), i ∈ T for some i with xi ∈ (0, 1), and |T | is
as small as possible.

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 2
Since rank is integer valued, any tight set containing fractional
variable should have another.

Monotone Submodular Maximization s.t. a Matroid Constraint 52/53

PipageRounding (M,x, F)
While x contains a fractional entry

1 Let T be a minimum-size tight set containing a fractional entry
i.e. x(T) = rankM(T), i ∈ T for some i with xi ∈ (0, 1), and |T | is
as small as possible.

2 Let j ∈ T be such that j 6= i and xj is fractional.
3 Let x(µ) = x+ µ(ei − ej), and maximize F (x(µ)) subject to
x(µ) ∈ P(M).

4 x← x(µ).

Step 3+4
Either the number of fractional variables decreases,
or a smaller tight set containing xi or xj is created.

Why smaller? T remains tight, and if R is a new
tight set then by lattice property so is T

⋂
R

Therefore this terminates in O(n2) iterations
F (x) does not decrease by definition

Xj=1 Xi=1ε

Monotone Submodular Maximization s.t. a Matroid Constraint 52/53

To summarize

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Theorem
On input x, Pipage rounding terminates in O(n2) iterations, and
outputs a matroid vertex y with f(y) = F (y) ≥ F (x)

Efficient implementation of continuous greedy algorithm follows
from matroid optimization and basic sampling/concentration
bounds
Efficient implementation of Pipage rounding will be on HW

Together, these imply a polynomial-time 1− 1/e approximation
algorithm for monotone submodular maximization subject to a matroid
constraint

Monotone Submodular Maximization s.t. a Matroid Constraint 53/53

To summarize

Theorem
Let F be nondecreasing and up-concave, and P be a downwards
closed polytope. In the limit as ε→ 0, the continuous greedy algorithm
outputs a 1− 1/e approximation to maximizing F (x) over P.

Theorem
On input x, Pipage rounding terminates in O(n2) iterations, and
outputs a matroid vertex y with f(y) = F (y) ≥ F (x)

Efficient implementation of continuous greedy algorithm follows
from matroid optimization and basic sampling/concentration
bounds
Efficient implementation of Pipage rounding will be on HW

Together, these imply a polynomial-time 1− 1/e approximation
algorithm for monotone submodular maximization subject to a matroid
constraint

Monotone Submodular Maximization s.t. a Matroid Constraint 53/53

	Introduction to Submodular Functions
	Unconstrained Submodular Minimization
	Definition and Examples
	The Convex Closure and the Lovasz Extension
	Wrapping up

	Monotone Submodular Maximization s.t. a Matroid Constraint
	Definition and Examples
	Warmup: Cardinality Constraint
	General Matroid Constraints

