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A Brief History

The forefather of convex optimization problems, and the most
ubiquitous.
Developed by Kantorovich during World War II (1939) for planning
the Soviet army’s expenditures and returns. Kept secret.
Discovered a few years later by George Dantzig, who in 1947
developed the simplex method for solving linear programs
John von Neumann developed LP duality in 1947, and applied it to
game theory
Polynomial-time algorithms: Ellipsoid method (Khachiyan 1979),
interior point methods (Karmarkar 1984).

Linear Programming Basics 1/41



LP General Form

minimize (or maximize) cᵀx
subject to aᵀi x ≤ bi, for i ∈ C1.

aᵀi x ≥ bi, for i ∈ C2.
aᵀi x = bi, for i ∈ C3.

Decision variables: x ∈ Rn

Parameters:
c ∈ Rn defines the linear objective function
ai ∈ Rn and bi ∈ R define the i’th constraint.

Note
For the inner product (a.k.a. dot product) of vectors u and v I often
write uᵀv, but we can also write 〈u, v〉 or u · v. Whatever you prefer, or
looks most elegant to you.
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Standard Form

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

Every LP can be transformed to this form
minimizing cᵀx is equivalent to maximizing −cᵀx
≥ constraints can be flipped by multiplying by −1

Each equality constraint can be replaced by two inequalities
Uconstrained variable xj can be replaced by x+j − x

−
j , where both

x+j and x−j are constrained to be nonnegative.
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Geometric View
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Geometric View
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A 2-D example

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0
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Application: Optimal Production

n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.
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Terminology

Hyperplane: The region defined by a linear equality
Halfspace: The region defined by a linear inequality aᵀi x ≤ bi.
Polyhedron: The intersection of a set of linear inequalities

Feasible region of an LP is a polyhedron
Polytope: Bounded polyhedron

Equivalently: convex hull of a finite set of points
Vertex: A point x is a vertex of polyhedron P if 6 ∃y 6= 0 with
x+ y ∈ P and x− y ∈ P
Face of P : The intersection with P of a hyperplane H disjoint from
the interior of P
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Basic Facts about LPs and Polyhedrons

Fact
Feasible regions of LPs (i.e. polyhedrons) are convex

Fact
Set of optimal solutions of an LP is convex

In fact, a face of the polyhedron
intersection of P with hyperplane cᵀx = OPT

Fact
A feasible point x is a vertex if and only if n linearly independent
constraints are tight (i.e., satisfied with equality) at x.
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Basic Facts about LPs and Polyhedrons

Fact
An LP either has an optimal solution, or is unbounded or infeasible
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Fundamental Theorem of LP
If an LP in standard form has an optimal solution, then it has a vertex
optimal solution.

Proof
Assume not, and take a non-vertex optimal solution x with the
maximum number of tight constraints
There is y 6= 0 s.t. x± y are feasible
y is perpendicular to the objective function and the tight
constraints at x.

i.e. cᵀy = 0, and aᵀi y = 0 whenever the i’th constraint is tight for x.

Can choose y s.t. yj < 0 for some j
Let α be the largest constant such that x+ αy is feasible

Such an α exists

An additional constraint becomes tight at x+ αy, a contradiction.
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Counting non-zero Variables

Corollary
If an LP in standard form has an optimal solution, then there is an
optimal solution with at most m non-zero variables.

maximize cᵀx
subject to aᵀi x ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

e.g. for optimal production with n products and m raw materials,
there is an optimal plan with at most m products.
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Fundamental Theorem of LP (General Version)
If an LP has an optimal solution, and moreover it’s feasible region
includes no lines, then it has a vertex optimal solution.

Essentially the same proof (exercise)
In addition to LPs in standard form, applies to LPs with a bounded
feasible region (i.e., feasible region is a polytope), among others.
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Linear Programming Duality

Primal LP

maximize cᵀx
subject to Ax � b

Dual LP

minimize bᵀy
subject to Aᵀy = c

y � 0

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

yi is the dual variable corresponding to primal constraint Aix ≤ bi
AT

j y = cj is the dual constraint corresponding to primal variable xj
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Linear Programming Duality: Standard Form, and
Visualization

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize bᵀy
subject to Aᵀy � c

y � 0

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

yi is the dual variable corresponding to primal constraint Aix ≤ bi
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Interpretation 1: Economic Interpretation

Recall the Optimal Production problem from last lecture
n products, m raw materials
Every unit of product j uses aij units of raw material i
There are bi units of material i available
Product j yields profit cj per unit
Facility wants to maximize profit subject to available raw materials

Primal LP

max
∑n

j=1 cjxj
s.t.

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Dual variable yi is a proposed price per unit of raw material i
Dual price vector is feasible if facility has incentive to sell materials
Buyer wants to spend as little as possible to buy materials
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Interpretation 2: Finding the Best Upperbound

Consider the simple LP from last lecture

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0

We found that the optimal solution was at (23 ,
2
3), with an optimal

value of 4/3.

What if, instead of finding the optimal solution, we saught to find
an upperbound on its value by combining inequalities?

Each inequality implies an upper bound of 2
Multiplying each by 1

3 and summing gives x1 + x2 ≤ 4/3.
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Interpretation 2: Finding the Best Upperbound

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Multiplying each row i by yi and summing gives the inequality

yTAx ≤ yT b

When yTA ≥ cT , the right hand side of the inequality is an upper
bound on cTx for every feasible x.

cTx ≤ yTAx ≤ yT b

The dual LP can be thought of as trying to find the best
upperbound on the primal that can be achieved this way.
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Interpretation 3: Physical Forces

Apply force field c to a ball inside bounded polytope Ax � b.

Eventually, ball will come to rest against the walls of the polytope.
Wall aix ≤ bi applies some force −yiai to the ball
Since the ball is still, cT =

∑
i yiai = yTA.

Dual can be thought of as trying to minimize “work”
∑

i yibi to
bring ball back to origin by moving polytope
We will see that, at optimality, only the walls adjacent to the ball
push (Complementary Slackness)
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Duality is an Inversion

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize bᵀy
subject to Aᵀy � c

y � 0

Duality is an Inversion
Given a primal LP in standard form, the dual of its dual is itself.
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Correspondance Between Variables and Constraints

Primal LP

max
∑n

j=1 cjxj
s.t.

yi :

∑n
j=1 aijxj ≤ bi, for i ∈ [m].

xj ≥ 0, for j ∈ [n].

Dual LP

min
∑m

i=1 biyi
s.t.

xj :

∑m
i=1 aijyi ≥ cj , for j ∈ [n].

yi ≥ 0, for i ∈ [m].

The i’th primal constraint gives rise to the i’th dual variable yi
The j’th primal variable xj gives rise to the j’th dual constraint
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Syntactic Rules

Primal LP

max cᵀx
s.t.
yi : aix ≤ bi, for i ∈ C1.
yi : aix = bi, for i ∈ C2.

xj ≥ 0, for j ∈ D1.
xj ∈ R, for j ∈ D2.

Dual LP

min bᵀy
s.t.
xj : aᵀj y ≥ cj , for j ∈ D1.

xj : aᵀj y = cj , for j ∈ D2.

yi ≥ 0, for i ∈ C1.
yi ∈ R, for i ∈ C2.

Rules of Thumb
Lenient constraint (i.e. inequality)⇒ stringent dual variable (i.e.
nonnegative)
Stringent constraint (i.e. equality)⇒ lenient dual variable (i.e.
unconstrained)
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Weak Duality
Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

Theorem (Weak Duality)
For every primal feasible x and dual feasible y, we have cᵀx ≤ bᵀy.

Corollary
If primal and dual both feasible and bounded,
OPT (Primal) ≤ OPT (Dual)

If primal is unbounded, dual is infeasible
If dual is unbounded, primal is infeasible
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For every primal feasible x and dual feasible y, we have cᵀx ≤ bᵀy.

Corollary
If x∗ is primal feasible, and y∗ is dual feasible, and cᵀx∗ = bᵀy∗, then
both are optimal.
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Interpretation of Weak Duality

Economic Interpretation
If selling the raw materials is more profitable than making any
individual product, then total money collected from sale of raw
materials would exceed profit from production.

Upperbound Interpretation
Self explanatory

Physical Interpretation
Work required to bring ball back to origin by pulling polytope is at least
potential energy difference between origin and primal optimum.
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Proof of Weak Duality

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

cᵀx ≤ yᵀAx ≤ yᵀb
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Strong Duality

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize bᵀy
subject to Aᵀy � c

y � 0

Theorem (Strong Duality)
If either the primal or dual is feasible and bounded, then so is the other
and OPT (Primal) = OPT (Dual).
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Interpretation of Strong Duality

Economic Interpretation
Buyer can offer prices for raw materials that would make facility
indifferent between production and sale.

Upperbound Interpretation
The method of scaling and summing inequalities yields a tight
upperbound on the primal optimal value.

Physical Interpretation
There is an assignment of forces to the walls of the polytope that
brings ball back to the origin without wasting energy.
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Informal Proof of Strong Duality

Recall the physical interpretation of duality

When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y � 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yᵀAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!

Weak and Strong Duality 27/41



Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y � 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yᵀAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!

Weak and Strong Duality 27/41



Informal Proof of Strong Duality

Recall the physical interpretation of duality
When ball is stationary at x, we expect force c to be neutralized
only by constraints that are tight. i.e. force multipliers y � 0 s.t.

yᵀA = c
yi(bi − aix) = 0

yᵀb− cᵀx = yᵀb− yᵀAx =
∑
i

yi(bi − aix) = 0

We found a primal and dual solution that are equal in value!
Weak and Strong Duality 27/41



Outline

1 Linear Programming Basics

2 Duality and Its Interpretations

3 Properties of Duals

4 Weak and Strong Duality

5 Formal Proof of Strong Duality of LP

6 Consequences of Duality

7 More Examples of Duality



Separating Hyperplane Theorem
If A,B ⊆ Rn are disjoint convex sets, then there is a hyperplane
separating them. That is, there is a ∈ Rn and b ∈ R such that aᵀx ≤ b
for every x ∈ A and aᵀy ≥ b for every y ∈ B. Moreover, if both A and B
are closed and at least one of them is compact, then there is a
hyperplane strictly separating them (i.e. aTx < b for x ∈ A and aT y > b
for y ∈ B).
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Definition
A convex cone is a convex subset of Rn which is closed under
nonnegative scaling and convex combinations.

Definition
The convex cone generated by vectors u1, . . . , um ∈ Rn is the set of all
nonnegative-weighted sums of these vectors (also known as conic
combinations).

Cone(u1, . . . , um) =

{
m∑
i=1

αiui : αi ≥ 0 ∀i

}
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The following follows from the separating hyperplane Theorem (try to
prove it).

Farkas’ Lemma
Let C be the convex cone generated by vectors u1, . . . , um ∈ Rn, and
let w ∈ Rn. Exactly one of the following is true:

w ∈ C
There is z ∈ Rn such that z · ui ≤ 0 for all i, and z · w > 0.
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Equivalently: Theorem of the Alternative
Exactly one of the following is true for U = [u1, . . . , um] and w

The system Uz = w, z � 0 has a solution
The system Uᵀz � 0, zᵀw > 0 has a solution.
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Formal Proof of Strong Duality
Primal LP

maximize cᵀx
subject to Ax � b

Dual LP
minimize bᵀy
subject to Aᵀy = c

y � 0

Given v ∈ R, by Farkas’ Lemma exactly one of the following is true

1 The system
(
Aᵀ 0
bᵀ 1

)
z =

(
c
v

)
, z � 0 has a solution.

Let y ∈ Rm
+ and δ ∈ R+ be such that z =

(
y
δ

)
Implies dual is feasible and OPT (dual) ≤ v

2 The system
(
A b
0 1

)
z � 0, zᵀ

(
c
v

)
> 0 has a solution.

Let z =

(
z1
z2

)
, where z1 ∈ Rn and z2 ∈ R with z2 ≤ 0

A When z2 6= 0, x = −z1/z2 is primal feasible and cTx > v
B When z2 = 0, primal is either infeasible or unbounded, and dual is

infeasible (prove it)
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Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

Let si = (b−Ax)i be the i’th primal slack variable
Let tj = (Aᵀy − c)j be the j’th dual slack variable

Complementary Slackness
Feasible x and y are optimal if and
only if

xjtj = 0 for all j = 1, . . . , n

yisi = 0 for all i = 1, . . . ,m

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Consequences of Duality 31/41



Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

Let si = (b−Ax)i be the i’th primal slack variable
Let tj = (Aᵀy − c)j be the j’th dual slack variable

Complementary Slackness
Feasible x and y are optimal if and
only if

xjtj = 0 for all j = 1, . . . , n

yisi = 0 for all i = 1, . . . ,m

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Consequences of Duality 31/41



Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

Let si = (b−Ax)i be the i’th primal slack variable
Let tj = (Aᵀy − c)j be the j’th dual slack variable

Complementary Slackness
Feasible x and y are optimal if and
only if

xjtj = 0 for all j = 1, . . . , n

yisi = 0 for all i = 1, . . . ,m

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Consequences of Duality 31/41



Interpretation of Complementary Slackness

Economic Interpretation
Given an optimal primal production vector x and optimal dual offer
prices y,

Facility produces only products for which it is indifferent between
sale and production.
Only raw materials that are binding constraints on production are
priced greater than 0

Physical Interpretation
Only walls adjacent to the balls equilibrium position push back on it.
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Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax � b

x � 0

s � 0

Dual LP

minimize yᵀb
subject to Aᵀy � c

y � 0

t � 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.

Consequences of Duality 33/41



Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax+ s = b

x � 0
s � 0

Dual LP

minimize yᵀb
subject to Aᵀy − t = c

y � 0
t � 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.

Consequences of Duality 33/41



Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax+ s = b

x � 0
s � 0

Dual LP

minimize yᵀb
subject to Aᵀy − t = c

y � 0
t � 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.

Consequences of Duality 33/41



Proof of Complementary Slackness

Primal LP

maximize cᵀx
subject to Ax+ s = b

x � 0
s � 0

Dual LP

minimize yᵀb
subject to Aᵀy − t = c

y � 0
t � 0

Can equivalently rewrite LP using slack variables

yᵀb− cᵀx = yᵀ(Ax+ s)− (yᵀA− tᵀ)x = yᵀs+ tᵀx

Gap between primal and dual objectives is 0 if and only if
complementary slackness holds.

Consequences of Duality 33/41



Recovering Primal from Dual

Will encounter LPs where the dual is easier to solve than primal
Complementary slackness allows us to recover the primal optimal
from the dual optimal, and vice versa.

Assuming non-degeneracy: At every vertex of primal [dual] there
are exactly n [m] tight constraints which are linearly independent.

Primal LP
(n variables, m+ n constraints)

maximize cᵀx
subject to Ax � b

x � 0

Dual LP
(m variables, m+ n constraints)

minimize yᵀb
subject to Aᵀy � c

y � 0

Let y be dual optimal. By non-degeneracy:
Exactly m of the m+ n dual constraints are tight at y
Exactly n dual constraints are loose

n loose dual constraints impose n tight primal constraints
Assuming non-degeneracy, solving the linear equation yields a
unique primal optimum solution x.
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Sensitivity Analysis

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize yᵀb
subject to Aᵀy � c

y � 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b
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x � 0

Dual LP
minimize yᵀb
subject to Aᵀy � c

y � 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b

Sensitivity Analysis
Let OPT = OPT (A, c, b) be the optimal value of the above LP. Let x
and y be the primal and dual optima.

∂OPT
∂cj

= xj when x is the unique primal optimum.
∂OPT
∂bi

= yi when y is the unique dual optimum.
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Sensitivity Analysis

Primal LP
maximize cᵀx
subject to Ax � b

x � 0

Dual LP
minimize yᵀb
subject to Aᵀy � c

y � 0

Sometimes, we want to examine how the optimal value of our LP
changes with its parameters c and b

Economic Interpretation of Sensitivity Analysis
A small increase δ in cj increases profit by δ · xj
A small increase δ in bi increases profit by δ · yi

yi measures the “marginal value” of resource i for production
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Shortest Path

Given a directed network G = (V,E) where edge e has length `e ∈ R+,
find the minimum cost path from s to t.

s t

1 11

2

2 2

2

3

3
30

5
0

1

Primal LP
min

∑
e∈E `exe

s.t.
∑
e→v

xe −
∑
v→e

xe = δv, ∀v ∈ V.

xe ≥ 0, ∀e ∈ E.

Dual LP
max yt − ys
s.t. yv − yu ≤ `e, ∀(u, v) ∈ E.

Where δv = −1 if v = s, 1 if v = t, and 0 otherwise.

Interpretation of Dual
Stretch s and t as far apart as possible, subject to edge lengths.
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Maximum Weighted Bipartite Matching

Set B of buyers, and set G of goods. Buyer i has value wij for good j,
and interested in at most one good. Find maximum value assignment
of goods to buyers.

Primal LP
max

∑
i,j
wijxij

s.t.
∑
j∈G

xij ≤ 1, ∀i ∈ B.∑
i∈B

xij ≤ 1, ∀j ∈ G.

xij ≥ 0, ∀i ∈ B, j ∈ G.

Dual LP
min

∑
i∈B

ui +
∑
j∈G

pj

s.t. ui + pj ≥ wij , ∀i ∈ B, j ∈ G.
ui ≥ 0, ∀i ∈ B.
pj ≥ 0, ∀j ∈ G.

Interpretation of Dual
pj is price of good j
ui is utility of buyer i
Complementary Slackness:

A buyer i only grabs goods j maximizing wij − pj
Only fully assigned goods have non-zero price
A buyer witn nonzero utility must receive an item
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2-Player Zero-Sum Games

Rock-Paper-Scissors

R P S

R 0 1 −1

P −1 0 1

S 1 −1 0

Two players, row and column
Game described by matrix A
When row player plays pure strategy i and column player plays
pure strategy j, row player pays column player Aij

Mixed Strategy: distribution over pure strategies
If one of the players moves first, the other observes his mixed
strategy but not the outcome of his coin flips.
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2-Player Zero-Sum Games

Assume row player moves first with distribution y ∈ ∆m

Payment as a function of Column’s strategy given by yᵀA
A best response by column is pure strategy j maximizing (yᵀA)j
Row player solves an LP to determine optimal strategy y, payment
u for himself

Similarly when column moves first, column solves an LP to
determine optimal strategy x, payment v for himself

x1 x2 x3 x4
y1 a11 a12 a13 a14
y2 a21 a22 a23 a24
y3 a31 a32 a33 a34

Row Moves First∑m
i=1 yi = 1

y � ~0

Column Moves First
max v

s.t. v~1−Ax � ~0∑n
j=1 xj = 1

x � ~0

These two optimization problems are LP Duals!
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Duality and Zero Sum Games

Weak Duality
u∗ ≥ v∗

Zero sum games have a second mover advantage (weakly)

Strong Duality (Minimax Theorem)
u∗ = v∗

There is no second or first mover advantage in zero sum games
with mixed strategies
Each player can guarantee u∗ = v∗ even if they move first (i.e.,
regardless of other’s strategy).
y∗, x∗ are simultaneously best responses to each other (Nash
Equilibrium)

Complementary Slackness
x∗ randomizes over pure best responses to y∗, and vice versa.
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Saddle Point Interpretation

Consider the matching pennies game

H T

H −1 1

T 1 −1

Unique equilibrium: each player randomizes uniformly
If row player deviates, he pays out more
If column player deviates, he gets paid less
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