CS675: Convex and Combinatorial Optimization Spring 2022
 Duality of Convex Optimization Problems

Instructor: Shaddin Dughmi

Outline

(9) The Lagrange Dual Problem
(2) Duality
(3) Optimality Conditions

Recall: Optimization Problem in Standard Form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

- For convex optimization problems in standard form, f_{i} is convex and h_{i} is affine.
- Let \mathcal{D} denote the domain of all these functions (i.e. when their value is finite)

Recall: Optimization Problem in Standard Form

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq0, for i=1,\ldots,m
    hi}(x)=0,\quad\mathrm{ for }i=1,\ldots,k
```

- For convex optimization problems in standard form, f_{i} is convex and h_{i} is affine.
- Let \mathcal{D} denote the domain of all these functions (i.e. when their value is finite)

This Lecture + Next

We will develop duality theory for convex optimization problems, generalizing linear programming duality.

Running Example: Linear Programming

We have already seen the standard form LP below

maximize	$c^{\top} x$
subject to	$A x \preceq b$
	$x \succeq 0$

$$
\begin{array}{ll}
-\operatorname{minimize} & -c^{\top} x \\
\text { subject to } & A x-b \preceq 0 \\
& -x \preceq 0
\end{array}
$$

Running Example: Linear Programming

We have already seen the standard form LP below

```
maximize }\mp@subsup{c}{}{\top}
subject to }Ax\preceq
\[
x \succeq 0
\]
```

-minimize $-c^{\top} x$
subject to $A x-b \preceq 0$
$-x \preceq 0$

Along the way, we will recover the following standard form dual

$$
\begin{array}{ll}
\text { minimize } & y^{\top} b \\
\text { subject to } & A^{\top} y \succeq c \\
& y \succeq 0
\end{array}
$$

The Lagrangian

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

Basic idea of Lagrangian duality is to relax/soften the constraints by replacing each with a linear "penalty term" or "cost" in the objective.

The Lagrangian

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

Basic idea of Lagrangian duality is to relax/soften the constraints by replacing each with a linear "penalty term" or "cost" in the objective.

The Lagrangian Function

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)
$$

- λ_{i} is Lagrange Multiplier for i 'th inequality constraint
- Required to be nonnegative
- ν_{i} is Lagrange Multiplier for i 'th equality constraint
- Allowed to be of arbitrary sign

The Lagrange Dual Function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

The Lagrange dual function gives the optimal value of the primal problem subject to the softened constraints

The Lagrange Dual Function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

The Lagrange dual function gives the optimal value of the primal problem subject to the softened constraints

The Lagrange Dual Function

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)\right)
$$

- Observe: g is a concave function of the Lagrange multipliers
- We will see: Its quite common for the Lagrange dual to be unbounded $(-\infty)$ for some λ and ν
- By convention, domain of g is (λ, ν) s.t. $g(\lambda, \nu)>-\infty$

Langrange Dual of LP

$$
\begin{array}{ll}
\text { minimize } & -c^{\top} x \\
\text { subject to } & A x-b \preceq 0 \\
& -x \preceq 0
\end{array}
$$

First, the Lagrangian function

$$
\begin{aligned}
L(x, \lambda) & =-c^{\top} x+\lambda_{1}^{\top}(A x-b)-\lambda_{2}^{\top} x \\
& =\left(A^{\top} \lambda_{1}-c-\lambda_{2}\right)^{\top} x-\lambda_{1}^{\top} b
\end{aligned}
$$

Langrange Dual of LP

$$
\begin{array}{ll}
\operatorname{minimize} & -c^{\top} x \\
\text { subject to } & A x-b \preceq 0 \\
& -x \preceq 0
\end{array}
$$

First, the Lagrangian function

$$
\begin{aligned}
L(x, \lambda) & =-c^{\top} x+\lambda_{1}^{\top}(A x-b)-\lambda_{2}^{\top} x \\
& =\left(A^{\top} \lambda_{1}-c-\lambda_{2}\right)^{\top} x-\lambda_{1}^{\top} b
\end{aligned}
$$

And the Lagrange Dual

$$
\begin{aligned}
g(\lambda) & =\inf _{x} L(x, \lambda) \\
& = \begin{cases}-\infty & \text { if } A^{\top} \lambda_{1}-c-\lambda_{2} \neq 0 \\
-\lambda_{1}^{\top} b & \text { if } A^{\top} \lambda_{1}-c-\lambda_{2}=0\end{cases}
\end{aligned}
$$

Langrange Dual of LP

$$
\begin{array}{ll}
\operatorname{minimize} & -c^{\top} x \\
\text { subject to } & A x-b \preceq 0 \\
& -x \preceq 0
\end{array}
$$

First, the Lagrangian function

$$
\begin{aligned}
L(x, \lambda) & =-c^{\top} x+\lambda_{1}^{\top}(A x-b)-\lambda_{2}^{\top} x \\
& =\left(A^{\top} \lambda_{1}-c-\lambda_{2}\right)^{\top} x-\lambda_{1}^{\top} b
\end{aligned}
$$

And the Lagrange Dual

$$
\begin{aligned}
g(\lambda) & =\inf _{x} L(x, \lambda) \\
& = \begin{cases}-\infty & \text { if } A^{\top} \lambda_{1}-c-\lambda_{2} \neq 0 \\
-\lambda_{1}^{\top} b & \text { if } A^{\top} \lambda_{1}-c-\lambda_{2}=0\end{cases}
\end{aligned}
$$

So we restrict the domain of g to λ satisfying $A^{\top} \lambda_{1}-c-\lambda_{2}=0$

Interpretation: "Soft" Lower Bound

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

The Lagrange Dual Function

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)\right)
$$

Interpretation: "Soft" Lower Bound

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

The Lagrange Dual Function

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)\right)
$$

Fact

$g(\lambda, \nu)$ is a lowerbound on OPT(primal) for every $\lambda \succeq 0$ and $\nu \in \mathbb{R}^{k}$.

Interpretation: "Soft" Lower Bound

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \text { for } i=1, \ldots, m \\
& h_{i}(x)=0, \text { for } i=1, \ldots, k
\end{array}
$$

The Lagrange Dual Function

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)\right)
$$

Fact

$g(\lambda, \nu)$ is a lowerbound on OPT(primal) for every $\lambda \succeq 0$ and $\nu \in \mathbb{R}^{k}$.

Proof

- Every primal feasible x incurs nonpositive penalty by $L(x, \lambda, \nu)$
- Therefore, $L\left(x^{*}, \lambda, \nu\right) \leq f_{0}\left(x^{*}\right)$
- So $g(\lambda, \nu) \leq f_{0}\left(x^{*}\right)=O P T($ Primal $)$

Interpretation: "Soft" Lower Bound

\min	$f_{0}(x)$
subject to	$f_{i}(x) \leq 0$, for $i=1, \ldots, m$.
	$h_{i}(x)=0, \quad$ for $i=1, \ldots, k$.

The Lagrange Dual Function

$$
g(\lambda, \nu)=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{k} \nu_{i} h_{i}(x)\right)
$$

Interpretation

- A "hard" feasibility constraint can be thought of as imposing a penalty of $+\infty$ if violated, and a penalty/reward of 0 if satisfied
- Lagrangian imposes a "soft" linear penalty for violating a constraint, and a reward for slack
- Lagrange dual finds the optimal subject to these soft constraints

Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

minimize	$f_{0}(x)$
subject to	$f_{1}(x) \leq 0$

- Let \mathcal{G} be attainable constraint/objective function value tuples
- i.e. $(u, t) \in \mathcal{G}$ if there is an x such that $f_{1}(x)=u$ and $f_{0}(x)=t$
- $p^{*}=\inf \{t:(u, t) \in \mathcal{G}, u \leq 0\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{G}\}$

Interpretation: Geometric

Most easily visualized in the presence of a single inequality constraint

```
minimize form
subject to f}\mp@subsup{f}{1}{}(x)\leq
```


- Let \mathcal{G} be attainable constraint/objective function value tuples
- i.e. $(u, t) \in \mathcal{G}$ if there is an x such that $f_{1}(x)=u$ and $f_{0}(x)=t$
- $p^{*}=\inf \{t:(u, t) \in \mathcal{G}, u \leq 0\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{G}\}$
- $\lambda u+t=g(\lambda)$ is a supporting hyperplane to \mathcal{G} pointing northeast
- Must intersect vertical axis below p^{*}
- Therefore $g(\lambda) \leq p^{*}$

The Lagrange Dual Problem

This is the problem of finding the best lower bound on OPT(primal) implied by the Lagrange dual function

maximize $g(\lambda, \nu)$
subject to $\quad \lambda \succeq 0$

- Note: this is a convex optimization problem, regardless of whether primal problem was convex
- By convention, sometimes we add "dual feasibility" constraints to impose "nontrivial" lowerbounds (i.e. $g(\lambda, \nu) \geq-\infty$)
- $\left(\lambda^{*}, \nu^{*}\right)$ solving the above are referred to as the dual optimal solution

Langrange Dual Problem of LP

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

Recall

Our Lagrange dual function for the above minimization LP (to the right), defined over the domain $A^{\top} \lambda_{1}-c-\lambda_{2}=0$.

$$
g(\lambda)=-\lambda_{1}^{\top} b
$$

Langrange Dual Problem of LP

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

Recall

Our Lagrange dual function for the above minimization LP (to the right), defined over the domain $A^{\top} \lambda_{1}-c-\lambda_{2}=0$.

$$
g(\lambda)=-\lambda_{1}^{\top} b
$$

The Lagrange dual problem can then be written as

$$
\begin{aligned}
- \text { maximize } & -\lambda_{1}^{\top} b \\
\text { subject to } & A^{\top} \lambda_{1}-c-\lambda_{2}=0
\end{aligned}
$$

$$
\lambda \succeq 0
$$

Langrange Dual Problem of LP

$$
\begin{array}{ll}
\text { maximize } & c^{\top} x \\
\text { subject to } & A x \preceq b \\
& x \succeq 0
\end{array}
$$

Recall

Our Lagrange dual function for the above minimization LP (to the right), defined over the domain $A^{\top} \lambda_{1}-c-\lambda_{2}=0$.

$$
g(\lambda)=-\lambda_{1}^{\top} b
$$

The Lagrange dual problem can then be written as

$$
\begin{aligned}
- \text { maximize } & -\lambda_{1}^{\top} b \\
\text { subject to } & A^{\top} \lambda_{1}=c-\lambda_{2}=0 \\
& A^{\top} \lambda_{1} \succeq c \\
& \lambda \succeq 0
\end{aligned}
$$

Langrange Dual Problem of LP

maximize	$c^{\top} x$	- minimize	$-c^{\top} x$
subject to	$A x \preceq b$	subject to	$A x-b \preceq 0$
	$x \succeq 0$		$-x \preceq 0$

Recall

Our Lagrange dual function for the above minimization LP (to the right), defined over the domain $A^{\top} \lambda_{1}-c-\lambda_{2}=0$.

$$
g(\lambda)=-\lambda_{1}^{\top} b
$$

The Lagrange dual problem can then be written as

minimize	$y^{\top} b$	-maximize	$-\lambda_{1}^{\top} b$
subject to	$A^{\top} y \succeq c$	subject to	$A^{\top} \lambda_{1}=c-\lambda_{2}=0$
	$y \succeq 0$		$A^{\top} \lambda_{1} \succeq c$
		$\lambda \succeq 0$	

Another Example: Conic Optimization Problem

```
minimize c c
subject to }Ax=
x\inK
```

- $x \in K$ can equivalently be written as $z^{\top} x \leq 0, \forall z \in K^{\circ}$

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{\top} x+\nu^{\top}(A x-b)+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z^{\top} x \\
& =\left(c-A^{\top} \nu+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z\right)^{\top} x+\nu^{\top} b
\end{aligned}
$$

Another Example: Conic Optimization Problem

```
minimize c c
subject to }Ax=
x\inK
```

- $x \in K$ can equivalently be written as $z^{\top} x \leq 0, \forall z \in K^{\circ}$

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{\top} x+\nu^{\top}(A x-b)+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z^{\top} x \\
& =\left(c-A^{\top} \nu+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z\right)^{\top} x+\nu^{\top} b
\end{aligned}
$$

- Can think of $\lambda \succeq 0$ as choosing some $s \in K^{\circ}$

$$
L(x, s, \nu)=\left(c-A^{\top} \nu+s\right)^{\top} x+\nu^{\top} b
$$

Another Example: Conic Optimization Problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \in K
\end{array}
$$

- $x \in K$ can equivalently be written as $z^{\top} x \leq 0, \forall z \in K^{\circ}$

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{\top} x+\nu^{\top}(A x-b)+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z^{\top} x \\
& =\left(c-A^{\top} \nu+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z\right)^{\top} x+\nu^{\top} b
\end{aligned}
$$

- Can think of $\lambda \succeq 0$ as choosing some $s \in K^{\circ}$

$$
L(x, s, \nu)=\left(c-A^{\top} \nu+s\right)^{\top} x+\nu^{\top} b
$$

- Lagrange dual function $g(s, \nu)$ is bounded when coefficient of x is zero, in which case it has value $\nu^{\top} b$

Another Example: Conic Optimization Problem

$\operatorname{minimize}$	$c^{\top} x$
subject to	$A x=b$
	$x \in K$

maximize $\nu^{\top} b$
subject to $A^{\top} \nu-c \in K^{\circ}$

- $x \in K$ can equivalently be written as $z^{\top} x \leq 0, \forall z \in K^{\circ}$

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{\top} x+\nu^{\top}(A x-b)+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z^{\top} x \\
& =\left(c-A^{\top} \nu+\sum_{z \in K^{\circ}} \lambda_{z} \cdot z\right)^{\top} x+\nu^{\top} b
\end{aligned}
$$

- Can think of $\lambda \succeq 0$ as choosing some $s \in K^{\circ}$

$$
L(x, s, \nu)=\left(c-A^{\top} \nu+s\right)^{\top} x+\nu^{\top} b
$$

- Lagrange dual function $g(s, \nu)$ is bounded when coefficient of x is zero, in which case it has value $\nu^{\top} b$

Outline

(1) The Lagrange Dual Problem

(2) Duality
(3) Optimality Conditions

Weak Duality

Primal Problem

Dual Problem

```
min}\mp@subsup{f}{0}{\prime}(x
s.t.
fi}(x)\leq0,\quad\foralli=1,\ldots,m
hi}(x)=0,\quad\foralli=1,\ldots,k
```

$\max g(\lambda, \nu)$
s.t.
$\lambda \succeq 0$

Weak Duality

Primal Problem

Dual Problem

$\min f_{0}(x)$
s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k
\end{aligned}
$$

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

Weak Duality

$O P T($ dual $) \leq O P T($ primal $)$.

- We have already argued holds for every optimization problem
- Duality Gap: difference between optimal dual and primal values

Recall: Geometric Interpretation of Weak Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


- Let \mathcal{G} be attainable constraint/objective function value tuples
- i.e. $(u, t) \in \mathcal{G}$ if there is an x such that $f_{1}(x)=u$ and $f_{0}(x)=t$
- $p^{*}=\inf \{t:(u, t) \in \mathcal{G}, u \leq 0\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{G}\}$

Recall: Geometric Interpretation of Weak Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


- Let \mathcal{G} be attainable constraint/objective function value tuples
- i.e. $(u, t) \in \mathcal{G}$ if there is an x such that $f_{1}(x)=u$ and $f_{0}(x)=t$
- $p^{*}=\inf \{t:(u, t) \in \mathcal{G}, u \leq 0\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{G}\}$

Fact

The equation $\lambda u+t=g(\lambda)$ defines a supporting hyperplane to \mathcal{G}, intersecting t axis at $g(\lambda) \leq p^{*}$.

Strong Duality

Strong Duality

We say strong duality holds if $O P T($ dual $)=O P T($ primal $)$.

- Equivalently: there exists a setting of Lagrange multipliers so that $g(\lambda, \nu)$ gives a tight lowerbound on primal optimal value.
- In general, does not hold for non-convex optimization problems
- Usually, but not always, holds for convex optimization problems.
- Mild assumptions, such as Slater's condition, needed.

Geometric Proof of Strong Duality

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0
\end{array}
$$

- Let \mathcal{A} be everything northeast (i.e. "worse") than \mathcal{G}
- i.e. $(u, t) \in \mathcal{A}$ if there is an x such that $f_{1}(x) \leq u$ and $f_{0}(x) \leq t$
- $p^{*}=\inf \{t:(0, t) \in \mathcal{A}\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{A}\}$

Geometric Proof of Strong Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


- Let \mathcal{A} be everything northeast (i.e. "worse") than \mathcal{G}
- i.e. $(u, t) \in \mathcal{A}$ if there is an x such that $f_{1}(x) \leq u$ and $f_{0}(x) \leq t$
- $p^{*}=\inf \{t:(0, t) \in \mathcal{A}\}$
- $g(\lambda)=\inf \{\lambda u+t:(u, t) \in \mathcal{A}\}$

Fact

The equation $\lambda u+t=g(\lambda)$ defines a supporting hyperplane to \mathcal{A}, intersecting t axis at $g(\lambda) \leq p^{*}$.

Geometric Proof of Strong Duality

minimize $\quad f_{0}(x)$
subject to $\quad f_{1}(x) \leq 0$

Fact

When f_{0} and f_{1} are convex, \mathcal{A} is convex.

Geometric Proof of Strong Duality

minimize $\quad f_{0}(x)$
subject to $\quad f_{1}(x) \leq 0$

Fact

When f_{0} and f_{1} are convex, \mathcal{A} is convex.

Proof

- Assume (u, t) and $\left(u^{\prime}, t^{\prime}\right)$ are in \mathcal{A}

Geometric Proof of Strong Duality

minimize $\quad f_{0}(x)$
subject to $\quad f_{1}(x) \leq 0$

Fact

When f_{0} and f_{1} are convex, \mathcal{A} is convex.

Proof

- Assume (u, t) and $\left(u^{\prime}, t^{\prime}\right)$ are in \mathcal{A}
- $\exists x, x^{\prime}$ with $\left(f_{1}(x), f_{0}(x)\right) \leq(u, t)$ and $\left(f_{1}\left(x^{\prime}\right), f_{0}\left(x^{\prime}\right)\right) \leq\left(u^{\prime}, t^{\prime}\right)$.

Geometric Proof of Strong Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


Fact

When f_{0} and f_{1} are convex, \mathcal{A} is convex.

Proof

- Assume (u, t) and $\left(u^{\prime}, t^{\prime}\right)$ are in \mathcal{A}
- $\exists x, x^{\prime}$ with $\left(f_{1}(x), f_{0}(x)\right) \leq(u, t)$ and $\left(f_{1}\left(x^{\prime}\right), f_{0}\left(x^{\prime}\right)\right) \leq\left(u^{\prime}, t^{\prime}\right)$.
- By Jensen's inequality

$$
\left(f_{1}\left(\alpha x+(1-\alpha) x^{\prime}\right), f_{0}\left(\alpha x+(1-\alpha) x^{\prime}\right)\right) \leq\left(\alpha u+(1-\alpha) u^{\prime}, \alpha t+(1-\alpha) t^{\prime}\right)
$$

Geometric Proof of Strong Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


Fact

When f_{0} and f_{1} are convex, \mathcal{A} is convex.

Proof

- Assume (u, t) and $\left(u^{\prime}, t^{\prime}\right)$ are in \mathcal{A}
- $\exists x, x^{\prime}$ with $\left(f_{1}(x), f_{0}(x)\right) \leq(u, t)$ and $\left(f_{1}\left(x^{\prime}\right), f_{0}\left(x^{\prime}\right)\right) \leq\left(u^{\prime}, t^{\prime}\right)$.
- By Jensen's inequality

$$
\left(f_{1}\left(\alpha x+(1-\alpha) x^{\prime}\right), f_{0}\left(\alpha x+(1-\alpha) x^{\prime}\right)\right) \leq\left(\alpha u+(1-\alpha) u^{\prime}, \alpha t+(1-\alpha) t^{\prime}\right)
$$

- Therefore, segment connecting (u, t) and $\left(u^{\prime}, t^{\prime}\right)$ also in \mathcal{A}.

Geometric Proof of Strong Duality

minimize $\quad f_{0}(x)$
subject to $f_{1}(x) \leq 0$

Theorem (Informal)

There is a choice of λ so that $g(\lambda)=p^{*}$. Therefore, strong duality holds.

Geometric Proof of Strong Duality

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


Theorem (Informal)

There is a choice of λ so that $g(\lambda)=p^{*}$. Therefore, strong duality holds.

Proof

- Recall $\left(0, p^{*}\right)$ is on the boundary of \mathcal{A}
- By the supporting hyperplane theorem, there is a supporting hyperplane to \mathcal{A} at $\left(0, p^{*}\right)$
- Direction of the supporting hyperplane gives us an appropriate λ

I Lied (A little)

minimize $\quad f_{0}(x)$
subject to $f_{1}(x) \leq 0$

- In our proof, we ignored a technicality that can prevent strong duality from holding.

I Lied (A little)

minimize	$f_{0}(x)$
subject to	$f_{1}(x) \leq 0$

- In our proof, we ignored a technicality that can prevent strong duality from holding.
- What if our supporting hyperplane H at $\left(0, p^{*}\right)$ is vertical?
- The normal to H is perpendicular to the t axis
- In this case, no finite λ exists such that $(\lambda, 1)$ is normal to H.

I Lied (A little)

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{1}{}(x)\leq
```


- In our proof, we ignored a technicality that can prevent strong duality from holding.
- What if our supporting hyperplane H at $\left(0, p^{*}\right)$ is vertical?
- The normal to H is perpendicular to the t axis
- In this case, no finite λ exists such that $(\lambda, 1)$ is normal to H.
- Somewhat counterintuitively, this can happen even in simple convex optimization problems (though its somewhat rare in practice)

Violation of Strong Duality

$$
\begin{array}{ll}
\operatorname{minimize} & e^{-x} \\
\text { subject to } & \frac{x^{2}}{y} \leq 0
\end{array}
$$

- Let domain be the region $y \geq 1$
- Problem is convex, with feasible region given by $x=0$
- Optimal value is 1 , at $x=0$ and $y=1$

Violation of Strong Duality

$$
\begin{array}{ll}
\operatorname{minimize} & e^{-x} \\
\text { subject to } & \frac{x^{2}}{y} \leq 0
\end{array}
$$

- Let domain be the region $y \geq 1$
- Problem is convex, with feasible region given by $x=0$
- Optimal value is 1 , at $x=0$ and $y=1$
- $\mathcal{A}=\mathbb{R}_{++}^{2} \bigcup(\{0\} \times[1, \infty])$
- Therefore, any supporting hyperplane to \mathcal{A} at $(0,1)$ must be vertical.
- Optimal dual value is 0 ; a duality gap of 1 .

Slater's Condition

There exists a point $x \in \mathcal{D}$ where all inequality constraints are strictly satisfied (i.e. $f_{i}(x)<0$). I.e. the optimization problem is strictly feasible.

- A sufficient condition for strong duality.
- Forces supporting hyperplane to be non-vertical

Slater's Condition

There exists a point $x \in \mathcal{D}$ where all inequality constraints are strictly satisfied (i.e. $f_{i}(x)<0$). I.e. the optimization problem is strictly feasible.

- A sufficient condition for strong duality.
- Forces supporting hyperplane to be non-vertical
- Can be weakened to requiring strict feasibility only of non-affine constraints

Outline

(1) The Lagrange Dual Problem

(2) Duality
(3) Optimality Conditions

Recall: Lagrangian Duality

Primal Problem

Dual Problem

```
min}\mp@subsup{f}{0}{}(x
s.t.
fi(x)\leq0, \foralli=1,\ldots,m.
hi}(x)=0,\quad\foralli=1,\ldots,k
```

$\max g(\lambda, \nu)$
s.t.
$\lambda \succeq 0$

Recall: Lagrangian Duality

Primal Problem

```
min}\mp@subsup{f}{0}{}(x
s.t.
fi}(x)\leq0,\quad\foralli=1,\ldots,m
hi}(x)=0,\quad\foralli=1,\ldots,k
```


Dual Problem

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

Weak Duality

$O P T($ dual $) \leq O P T($ primal $)$.

Recall: Lagrangian Duality

Primal Problem

```
min}\mp@subsup{f}{0}{}(x
s.t.
fi(x)\leq0, \foralli=1,\ldots,m.
hi}(x)=0,\quad\foralli=1,\ldots,k
```


Dual Problem

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

Dual Solution as a Certificate

Primal Problem

Dual Problem

$\min f_{0}(x)$

s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

- Dual solutions serves as a certificate of optimality
- If $f_{0}(x)=g(\lambda, \nu)$, and both are feasible, then both are optimal.

Dual Solution as a Certificate

Primal Problem

Dual Problem

$\min f_{0}(x)$

s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k
\end{aligned}
$$

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

- Dual solutions serves as a certificate of optimality
- If $f_{0}(x)=g(\lambda, \nu)$, and both are feasible, then both are optimal.
- If $f_{0}(x)-g(\lambda, \nu) \leq \epsilon$, then both are within ϵ of optimality.
- OPT(primal) and OPT(dual) lie in the interval $\left[g(\lambda, \nu), f_{0}(x)\right]$

Dual Solution as a Certificate

Primal Problem

Dual Problem

$\min f_{0}(x)$
s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

$$
\begin{aligned}
& \max g(\lambda, \nu) \\
& \text { s.t. } \\
& \lambda \succeq 0
\end{aligned}
$$

- Dual solutions serves as a certificate of optimality
- If $f_{0}(x)=g(\lambda, \nu)$, and both are feasible, then both are optimal.
- If $f_{0}(x)-g(\lambda, \nu) \leq \epsilon$, then both are within ϵ of optimality. - OPT(primal) and OPT(dual) lie in the interval $\left[g(\lambda, \nu), f_{0}(x)\right]$
- Primal-dual algorithms use dual certificates to recognize optimality, or bound sub-optimality.

Implications of Strong Duality

Primal Problem

Dual Problem

$\min f_{0}(x)$
s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m . \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

```
max g(\lambda,\nu)
```

s.t.
$\lambda \succeq 0$

Facts

If strong duality holds, and x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are feasible \& optimal, then

- x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over all x.
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for all $i=1, \ldots, m$. (Complementary Slackness)

Implications of Strong Duality

Primal Problem

$\min f_{0}(x)$
s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m . \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

Dual Problem

 $\max g(\lambda, \nu)$s.t.
$\lambda \succeq 0$

Facts

If strong duality holds, and x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are feasible \& optimal, then

- x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over all x.
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for all $i=1, \ldots, m$. (Complementary Slackness)

Proof

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \nu^{*}\right)=\min _{x} L\left(x, \lambda^{*}, \nu^{*}\right) \\
& \leq L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{k} \nu_{i}^{*} h_{i}\left(x^{*}\right)
\end{aligned}
$$

$$
\leq f_{0}\left(x^{*}\right)
$$

Optimality Conditions $\leq f_{0}\left(x^{*}\right)$

Implications of Strong Duality

Primal Problem

$$
\min f_{0}(x)
$$

s.t.

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m . \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

Dual Problem

$$
\max g(\lambda, \nu)
$$

s.t.
$\lambda \succeq 0$

Facts

If strong duality holds, and x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are feasible \& optimal, then

- x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over all x.
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for all $i=1, \ldots, m$. (Complementary Slackness)

Interpretation

- Lagrange multipliers $\left(\lambda^{*}, \nu^{*}\right)$ "simulate" the primal feasibility constraints
- Interpreting λ_{i} as the "value" of the i 'th constraint, at optimality only the binding constraints are "valuable"
- Recall economic interpretation of LP
$\min f_{0}(x)$
s.t.

$$
\max g(\lambda, \nu)
$$

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m . \\
& h_{i}(x)=0, \quad \forall i=1, \ldots, k .
\end{aligned}
$$

s.t.
$\lambda \succeq 0$

KKT Conditions

Suppose the primal problem is convex and defined on an open domain, and moreover the constraint functions are differentiable everywhere in the domain. If strong duality holds, then x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are optimal iff:

- x^{*} and (λ^{*}, ν^{*}) are feasible
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for all i (Complementary Slackness)
- $\nabla_{x} L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{k} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0$
$\min f_{0}(x)$
s.t.

$$
\max g(\lambda, \nu)
$$

$f_{i}(x) \leq 0, \quad \forall i=1, \ldots, m$.
s.t.
$\lambda \succeq 0$

KKT Conditions

Suppose the primal problem is convex and defined on an open domain, and moreover the constraint functions are differentiable everywhere in the domain. If strong duality holds, then x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are optimal iff:

- x^{*} and $\left(\lambda^{*}, \nu^{*}\right)$ are feasible
- $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0$ for all i (Complementary Slackness)
- $\nabla_{x} L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{k} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0$

Why are KKT Conditions Useful?

- Derive an analytical solution to some convex optimization problems
- Gain structural insights

Example: Equality-constrained Quadratic Program

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { subject to } & A x=b
\end{array}
$$

- KKT Conditions: $A x^{*}=b$ and $P x^{*}+q+A^{\top} \nu^{*}=0$
- Simply a solution of a linear system with variables x^{*} and ν^{*}.
- $m+n$ constraints and $m+n$ variables

Example: Market Equilibria (Fisher's Model)

- Buyers B, and goods G.
- Buyer i has utility $u_{i j}$ for each unit of good G.
- Buyer i has budget m_{i}, and there's one divisible unit of each good.

Example: Market Equilibria (Fisher's Model)

- Buyers B, and goods G.
- Buyer i has utility $u_{i j}$ for each unit of good G.
- Buyer i has budget m_{i}, and there's one divisible unit of each good.
- Does there exist a market equilibrium?
- Prices p_{j} on items, such that each player can buy his favorite bundle that he can afford and the market clears (supply = demand).

Example: Market Equilibria (Fisher's Model)

- Buyers B, and goods G.
- Buyer i has utility $u_{i j}$ for each unit of good G.
- Buyer i has budget m_{i}, and there's one divisible unit of each good.
- Does there exist a market equilibrium?
- Prices p_{j} on items, such that each player can buy his favorite bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

$$
\begin{array}{lll}
\text { maximize } & \sum_{i} m_{i} \log \sum_{j} u_{i j} x_{i j} & \\
\text { subject to } & \sum_{i} x_{i j} \leq 1, & \text { for } j \in G . \\
& x \succeq 0 &
\end{array}
$$

Example: Market Equilibria (Fisher's Model)

- Buyers B, and goods G.
- Buyer i has utility $u_{i j}$ for each unit of good G.
- Buyer i has budget m_{i}, and there's one divisible unit of each good.
- Does there exist a market equilibrium?
- Prices p_{j} on items, such that each player can buy his favorite bundle that he can afford and the market clears (supply = demand).

Eisenberg-Gale Convex Program

$$
\begin{array}{lll}
\text { maximize } & \sum_{i} m_{i} \log \sum_{j} u_{i j} x_{i j} & \\
\text { subject to } & \sum_{i} x_{i j} \leq 1, & \text { for } j \in G . \\
& x \succeq 0 &
\end{array}
$$

Using KKT conditions, we can prove that the dual variables corresponding to the item supply constraints are market-clearing prices!

