CS675: Convex and Combinatorial Optimization Spring 2022 Convex Sets

Instructor: Shaddin Dughmi

Outline

(1) Convex sets, Affine sets, and Cones
(2) Examples of Convex Sets
(3) Convexity-Preserving Operations

4 Separation Theorems

Convex Sets

A set $S \subseteq \mathbb{R}^{n}$ is convex if the line segment between any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in[0,1]$, then $\theta x+(1-\theta) y \in S$.

Convex Sets

A set $S \subseteq \mathbb{R}^{n}$ is convex if the line segment between any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in[0,1]$, then $\theta x+(1-\theta) y \in S$.

Equivalent Definition

S is convex if every convex combination of points in S lies in S.

Convex Combination

- Finite: y is a convex combination of x_{1}, \ldots, x_{k} if $y=\theta_{1} x_{1}+\ldots \theta_{k} x_{k}$, where $\theta_{i} \geq 0$ and $\sum_{i} \theta_{i}=1$.
- General: expectation of probability measure on S.

Convex Sets

Convex Hull

The convex hull of $S \subseteq \mathbb{R}^{n}$ is the smallest convex set containing S.

- Intersection of all convex sets containing S
- The set of all convex combinations of points in S

Convex Sets

Convex Hull

The convex hull of $S \subseteq \mathbb{R}^{n}$ is the smallest convex set containing S.

- Intersection of all convex sets containing S
- The set of all convex combinations of points in S

A set S is convex if and only if convexhull $(S)=S$.

Affine Set

A set $S \subseteq \mathbb{R}^{n}$ is affine if the line passing through any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in \mathbb{R}$, then $\theta x+(1-\theta) y \in S$.

Obviously, affine sets are convex.

Affine Set

A set $S \subseteq \mathbb{R}^{n}$ is affine if the line passing through any two points in S lies in S. i.e. if $x, y \in S$ and $\theta \in \mathbb{R}$, then $\theta x+(1-\theta) y \in S$.

Obviously, affine sets are convex.

Equivalent Definition

S is affine if every affine combination of points in S lies in S.

Affine Combination

y is an affine combination of x_{1}, \ldots, x_{k} if $y=\theta_{1} x_{1}+\ldots \theta_{k} x_{k}$, and $\sum_{i} \theta_{i}=1$.

Generalizes convex combinations

Affine Sets

Equivalent Definition II

S is affine if and only if it is a shifted subspace

- i.e. $S=x_{0}+V$, where V is a linear subspace of \mathbb{R}^{n}.
- Any $x_{0} \in S$ will do, and yields the same V.
- The dimension of S is the dimension of subspace V.

Affine Sets

Equivalent Definition II

S is affine if and only if it is a shifted subspace

- i.e. $S=x_{0}+V$, where V is a linear subspace of \mathbb{R}^{n}.
- Any $x_{0} \in S$ will do, and yields the same V.
- The dimension of S is the dimension of subspace V.

Equivalent Definition III

S is affine if and only if it is the solution of a set of linear equations (i.e. the intersection of hyperplanes).

- i.e. $S=\{x: A x=b\}$ for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

Affine Sets

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^{n}$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in S

Affine Sets

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^{n}$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in S

A set S is affine if and only if affinehull $(S)=S$.

Affine Sets

Affine Hull

The affine hull of $S \subseteq \mathbb{R}^{n}$ is the smallest affine set containing S.

- Intersection of all affine sets containing S
- The set of all affine combinations of points in S

A set S is affine if and only if affinehull $(S)=S$.

Affine Dimension

The affine dimension of a set is the dimension of its affine hull

Cones

A set $K \subseteq \mathbb{R}^{n}$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \geq 0$, then $\theta x \in K$.

Note: every cone contains 0 .

Cones

A set $K \subseteq \mathbb{R}^{n}$ is a cone if the ray from the origin through every point in K is in K i.e. if $x \in K$ and $\theta \geq 0$, then $\theta x \in K$.

Note: every cone contains 0 .

Special Cones

- A convex cone is a cone that is convex
- A cone is pointed if whenever $x \in K$ and $x \neq 0$, then $-x \notin K$.
- We will mostly mention proper cones: convex, pointed, closed, and of full affine dimension.

Cones

Equivalent Definition

K is a convex cone if every conic combination of points in K lies in K.

Conic Combination

y is a conic combination of x_{1}, \ldots, x_{k} if $y=\theta_{1} x_{1}+\ldots \theta_{k} x_{k}$, where $\theta_{i} \geq 0$.

Cones

Conic Hull

The conic hull of $K \subseteq \mathbb{R}^{n}$ is the smallest convex cone containing K

- Intersection of all convex cones containing K
- The set of all conic combinations of points in K

Cones

Conic Hull

The conic hull of $K \subseteq \mathbb{R}^{n}$ is the smallest convex cone containing K

- Intersection of all convex cones containing K
- The set of all conic combinations of points in K

A set K is a convex cone if and only if conichull $(K)=K$.

Cones

Polyhedral Cone

A cone is polyhedral if it is the set of solutions to a finite set of homogeneous linear inequalities $A x \leq 0$.

Outline

(1) Convex sets, Affine sets, and Cones
(2) Examples of Convex Sets
(3) Convexity-Preserving Operations

4 Separation Theorems

- Linear Subspace: Affine, Cone
- Hyperplane: Affine, cone if includes 0
- Halfspace: Cone if origin on boundary
- Line: Affine, cone if includes 0
- Ray: Cone if endpoint at 0
- Line segment

- Polyhedron: finite intersection of halfspaces

- Polytope: Bounded polyhedron

- Nonnegative Orthant \mathbb{R}_{+}^{n} : Polyhedral cone
- Simplex: convex hull of affinely independent points
- Unit simplex: $x \succeq 0, \sum_{i} x_{i} \leq 1$
- Probability simplex: $x \succeq 0, \sum_{i} x_{i}=1$.

- Euclidean ball: $\left\{x:\left\|x-x_{c}\right\|_{2} \leq r\right\}$ for center x_{c} and radius r
- Ellipsoid: $\left\{x:\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}$ for symmetric $P \succeq 0$
- Equivalently: $\left\{x_{c}+A u:\|u\|_{2} \leq 1\right\}$ for some linear map A

- Norm ball: $\{x:\|x-c\| \leq r\}$ for any norm ||.\|

The unit sphere for different metrics: $\|x\|_{l_{p}}=1$ in \mathbb{R}^{2}.

- Norm ball: $\{x:\|x-c\| \leq r\}$ for any norm \|.\|

The unit sphere for different metrics: $\|x\|_{l_{p}}=1$ in \mathbb{R}^{2}.

- Norm cone: $\{(x, r):||x|| \leq r\}$
- Cone of symmetric positive semi-definite matrices M
- Symmetric matrix $A \succeq 0$ iff $x^{T} A x \geq 0$ for all x

Outline

(1) Convex sets, Affine sets, and Cones

(2) Examples of Convex Sets
(3) Convexity-Preserving Operations

4 Separation Theorems

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.

Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^{T} A z \geq 0$, for all $z \in \mathbb{R}^{n}$.

Intersection

The intersection of two convex sets is convex. This holds for the intersection of an infinite number of sets.

Examples

- Polyhedron: intersection of halfspaces
- PSD cone: intersection of linear inequalities $z^{T} A z \geq 0$, for all $z \in \mathbb{R}^{n}$.

In fact, we will see that every closed convex set is the intersection of a (possibly infinite) set of halfspaces.

Affine Maps

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine function (i.e. $f(x)=A x+b$), then

- $f(S)$ is convex whenever $S \subseteq \mathbb{R}^{n}$ is convex
- $f^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^{m}$ is convex

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =A(\theta x+(1-\theta) y)+b \\
& =\theta(A x+b)+(1-\theta)(A y+b)) \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

Examples

- An ellipsoid is image of a unit ball after an affine map
- A polyhedron $A x \preceq b$ is inverse image of nonnegative orthant under $f(x)=b-A x$

Perspective Function

Let $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be $P(x, t)=x / t$.

- $P(S)$ is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex
- $P^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^{n}$ is convex

Perspective Function

Let $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be $P(x, t)=x / t$.

- $P(S)$ is convex whenever $S \subseteq \mathbb{R}^{n+1}$ is convex
- $P^{-1}(T)$ is convex whenever $T \subseteq \mathbb{R}^{n}$ is convex

Generalizes to linear fractional functions $f(x)=\frac{A x+b}{c^{T} x+d}$

- Composition of perspective with affine.

Outline

(1) Convex sets, Affine sets, and Cones
(2) Examples of Convex Sets
(3) Convexity-Preserving Operations

4 Separation Theorems

Separating Hyperplane Theorem

If $A, B \subseteq \mathbb{R}^{n}$ are disjoint convex sets, then there is a hyperplane weakly separating them. That is, there is $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $a^{\top} x \leq b$ for every $x \in A$ and $a^{\top} y \geq b$ for every $y \in B$.

Separating Hyperplane Theorem (Strict Version)

If $A, B \subseteq \mathbb{R}^{n}$ are disjoint closed convex sets, and at least one of them is compact, then there is a hyperplane strictly separating them. That is, there is $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $a^{\top} x<b$ for every $x \in A$ and $a^{\top} y>b$ for every $y \in B$.

Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^{n}$ such that $z^{\top} x \geq 0$ for all $x \in K$, and $z^{\top} w<0$.

Supporting Hyperplane

Supporting Hyperplane Theorem.

If $S \subseteq \mathbb{R}^{n}$ is a closed convex set and y is on the boundary of S, then there is a hyperplane supporting S at y. That is, there is $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $a^{\top} x \leq b$ for every $x \in S$ and $a^{\top} y=b$.

