CS675: Convex and Combinatorial Optimization
Spring 2022
Geometric Duality of Convex Sets and Functions

Instructor: Shaddin Dughmi

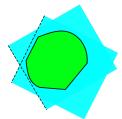
Outline

Convexity and Duality

2 Duality of Convex Sets

3 Duality of Convex Functions

Duality Correspondances

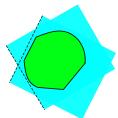


There are two equivalent ways to represent a convex set

- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

Convexity and Duality 1/14

Duality Correspondances



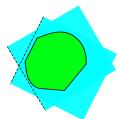
There are two equivalent ways to represent a convex set

- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Convexity and Duality 1/14

Duality Correspondances



There are two equivalent ways to represent a convex set

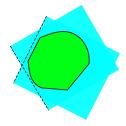
- The family of points in the set (standard representation)
- The set of halfspaces containing the set ("dual" representation)

This equivalence between the two representations gives rise to a variety of "duality" relationships among convex sets, cones, and functions.

Definition

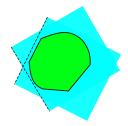
"Duality" is a woefully overloaded mathematical term for a relation that groups elements of a set into "dual" pairs.

Convexity and Duality 1/14



A closed convex set S is the intersection of all closed halfspaces ${\cal H}$ containing it.

Convexity and Duality 2/14



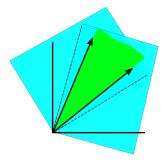
A closed convex set S is the intersection of all closed halfspaces \mathcal{H} containing it.

Proof

- Clearly, $S \subseteq \bigcap_{H \in \mathcal{H}} H$
- To prove equality, consider $x \notin S$
- By the separating hyperplane theorem, there is a hyperplane separating S from x
- Therefore there is $H \in \mathcal{H}$ with $x \notin H$, hence $x \notin \bigcap_{H \in \mathcal{H}} H$

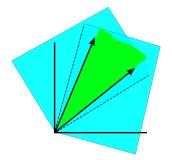
Convexity and Duality

2/14



A closed convex cone K is the intersection of all closed homogeneous halfspaces $\mathcal H$ containing it.

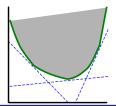
Convexity and Duality 3/14



A closed convex cone K is the intersection of all closed homogeneous halfspaces $\mathcal H$ containing it.

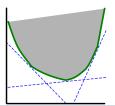
Proof

- For every non-homogeneous halfspace $a^{T}x \leq b$ containing K, the smaller homogeneous halfspace $a^{T}x \leq 0$ contains K as well.
- Therefore, can discard non-homogeneous halfspaces without changing the intersection



A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Convexity and Duality 4/14



A convex function is the point-wise supremum of all affine functions under-estimating it everywhere.

Proof

- ullet epi f convex, therefore is the intersection of family of halfspaces ${\cal H}$
- Each $h \in \mathcal{H}$ can be written as $a^{\mathsf{T}}x t \leq b$, for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. (Why?)
 - Constrains $(x,t) \in \mathbf{epi}\ f$ to $a^{\mathsf{T}}x b < t$
- f(x) is the lowest t s.t. $(x,t) \in \mathbf{epi} f$
- Therefore, f(x) is the point-wise maximum of $a^{\mathsf{T}}x b$ over all halfspaces $h(a,b) \in \mathcal{H}$.

Convexity and Duality 4/14

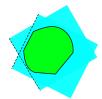
Outline

Convexity and Duality

Duality of Convex Sets

3 Duality of Convex Functions

Polar Duality of Convex Sets



One way of representing all the halfspaces containing a convex set.

Polar

Let $S \subseteq \mathbb{R}^n$ be a closed convex set containing the origin. The polar of S is defined as follows:

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

Note

- Every halfspace $a^{\mathsf{T}}x \leq b$ with $b \neq 0$ can be written as a "normalized" inequality $y^{\mathsf{T}}x \leq 1$, by dividing by b.
- S° can be thought of as the normalized representations of halfspaces containing S.

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

- ${\bf 2} \ S^{\circ}$ is a closed convex set containing the origin
- **3** When 0 is in the interior of S, then S° is bounded.

6/14

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

- $oldsymbol{2}$ S° is a closed convex set containing the origin
- 3 When 0 is in the interior of S, then S° is bounded.

- Follows from representation as intersection of halfspaces
- **3** S contains an ϵ -ball centered at the origin, so S° is contained in the $\frac{1}{\epsilon}$ ball centered at the origin.
 - Take $y \in S^{\circ}$
 - $x := \epsilon \frac{y}{||y||_2} \in S$
 - $1 \geq y^{\mathsf{T}} x = \epsilon ||y||_2$, so $||y||_2 \leq \frac{1}{\epsilon}$

Duality of Convex Sets 6/14

$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

- ${\bf 2} \ S^{\circ}$ is a closed convex set containing the origin
- **3** When 0 is in the interior of S, then S° is bounded.

$$S^{\circ\circ} = \{x : x^{\mathsf{T}}y \le 1 \text{ for all } y \in S^{\circ}\}$$

- $S \subseteq S^{\circ \circ}$ is easy: $\widehat{x} \in S \implies \forall y \in S^{\circ} \ \widehat{x}^{\mathsf{T}} y \leq 1 \implies \widehat{x} \in S^{\circ \circ}$
 - Take $\widehat{x} \notin S$, by SSHT and $0 \in S$, there is a halfspace $z^{\mathsf{T}}x \leq 1$ containing S but not \widehat{x} (i.e. $z^{\mathsf{T}}\widehat{x} > 1$)
 - $z \in S^{\circ}$, therefore $\widehat{x} \notin S^{\circ \circ}$

Duality of Convex Sets 6/14

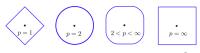
$$S^{\circ} = \{ y : y^{\mathsf{T}} x \le 1 \text{ for all } x \in S \}$$

- ${f 2}$ S° is a closed convex set containing the origin
- **3** When 0 is in the interior of S, then S° is bounded.

Note

When S is non-convex, $S^{\circ} = (convexhull(S))^{\circ}$, and $S^{\circ \circ} = convexhull(S)$.

Examples



The unit sphere for different metrics: $||x||_{l_p} = 1$ in \mathbb{R}^2 .

Norm Balls

- The polar of the Euclidean unit ball is itself (we say it is self-dual)
- The polar of the 1-norm ball is the ∞ -norm ball
- More generally, the p-norm ball is dual to the q-norm ball, where $\frac{1}{2} + \frac{1}{2} = 1$

Duality of Convex Sets 7/14

Examples

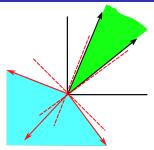
Polytopes

Given a polytope P represented as $Ax \leq \vec{1}$, the polar P° is the convex hull of the rows of A.

- Facets of P correspond to vertices of P° .
- Dually, vertices of P correspond to facets of P° .

Duality of Convex Sets 7/14

Polar Duality of Convex Cones



Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone ${\cal K}$ is given by

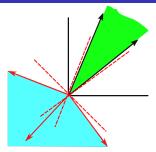
$$K^\circ = \{y: y^\intercal x \leq 0 \text{ for all } x \in K\}$$

Note

- $\bullet \ \forall x \in K \ y^\intercal x \leq 1 \iff \forall x \in K \ y^\intercal x \leq 0$
- K° represents all homogeneous halfspaces containing K.

Duality of Convex Sets

Polar Duality of Convex Cones



Polar duality takes a simplified form when applied to cones

Polar

The polar of a closed convex cone ${\cal K}$ is given by

$$K^\circ = \{y: y^\intercal x \leq 0 \text{ for all } x \in K\}$$

Dual Cone

By convention, $K^* = -K^\circ$ is referred to as the dual cone of K. $K^* = \{y : y^\intercal x \ge 0 \text{ for all } x \in K\}$

Duality of Convex Sets 8/14

$$K^{\circ} = \{y : y^{\mathsf{T}}x \leq 0 \text{ for all } x \in K\}$$

$$K^{\circ} = \{y : y^{\mathsf{T}}x \le 0 \text{ for all } x \in K\}$$

- Same as before
- Intersection of homogeneous halfspaces

Examples

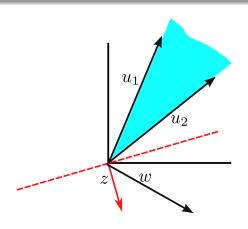
- The polar of a subspace is its orthogonal complement
- The polar cone of the nonnegative orthant is the nonpositive orthant
 - Self-dual
- The polar of a polyhedral cone $Ax \leq 0$ is the conic hull of the rows of A
- The polar of the cone of positive semi-definite matrices is the cone of negative semi-definite matrices

Self-dual

Duality of Convex Sets 10/14

Recall: Farkas' Lemma

Let K be a closed convex cone and let $w \notin K$. There is $z \in \mathbb{R}^n$ such that $z^{\mathsf{T}}x \leq 0$ for all $x \in K$, and $z^{\mathsf{T}}w > 0$.



Equivalently: there is $z \in K^{\circ}$ with $z^{\mathsf{T}}w > 0$.

Duality of Convex Sets 11/14

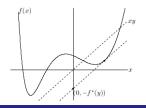
Outline

Convexity and Duality

2 Duality of Convex Sets

3 Duality of Convex Functions

Conjugation of Convex Functions



Conjugate

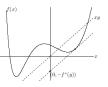
Duality of Convex Functions

For a function $f:\mathbb{R}^n \to \mathbb{R} \bigcup \{\infty\}$, the conjugate of f is

$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

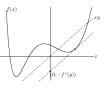
Note

- $f^*(y)$ is the minimal value of β such that the affine function $y^Tx \beta$ underestimates f(x) everywhere.
- Equivalently, the distance we need to lower the hyperplane $y^{\mathsf{T}}x t = 0$ in order to get a supporting hyperplane to $\mathbf{epi}\ f$.
- $y^{\mathsf{T}}x t = f^*(y)$ are the supporting hyperplanes of $\mathbf{epi}\,f$



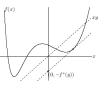
$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- $3 \quad xy \leq f(x) + f^*(y) \text{ for all } x,y \in \mathbb{R}^n \text{ (Fenchel's Inequality)}$



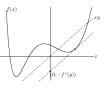
$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- 3 $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)
- 2 Supremum of affine functions of y
- **3** By definition of $f^*(y)$



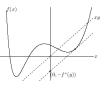
$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- 3 $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)
- $f^{**}(x) = \max_y y^{\mathsf{T}}x f^*(y)$ by definition



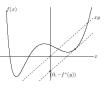
$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- 3 $xy \le f(x) + f^*(y)$ for all $x, y \in \mathbb{R}^n$ (Fenchel's Inequality)
- $f^{**}(x) = \max_{y} y^{\mathsf{T}} x f^{*}(y)$ by definition
 - For fixed $y, f^*(y)$ is minimal β such that $y^{\mathsf{T}}x \beta$ underestimates f.



$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- $3 \quad xy \leq f(x) + f^*(y) \text{ for all } x, y \in \mathbb{R}^n \text{ (Fenchel's Inequality)}$
- $f^{**}(x) = \max_{y} y^{\mathsf{T}} x f^{*}(y)$ by definition
 - For fixed $y, f^*(y)$ is minimal β such that $y^{\mathsf{T}}x \beta$ underestimates f.
 - Therefore $f^{**}(x)$ is the maximum, over all y, of affine underestimates $y^{\mathsf{T}}x \beta$ of f



$$f^*(y) = \sup_{x} (y^{\mathsf{T}}x - f(x))$$

- $f^{**} = f$ when f is convex
- 2 f^* is a convex function
- $3 \quad xy \leq f(x) + f^*(y) \text{ for all } x, y \in \mathbb{R}^n \text{ (Fenchel's Inequality)}$
- $f^{**}(x) = \max_{y} y^{\mathsf{T}} x f^{*}(y)$ by definition
 - For fixed y, $f^*(y)$ is minimal β such that $y^{\mathsf{T}}x \beta$ underestimates f.
 - Therefore $f^{**}(x)$ is the maximum, over all y, of affine underestimates $y^{\mathsf{T}}x \beta$ of f
 - By our earlier characterization, this is equal to f when f is convex.

Examples

- Affine function: f(x) = ax + b. Conjugate has $f^*(a) = -b$, and ∞ elsewhere
- $f(x) = x^2/2$ is self-conjugate
- Exponential: $f(x) = e^x$. Conjugate has $f^*(y) = y \log y y$ for $y \in \mathbb{R}_+$, and ∞ elsewhere.
- Convex Quadratic: $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx$ with Q positive definite. Conjugate is $f^*(y) = \frac{1}{2}y^{\mathsf{T}}Q^{-1}y$
- Log-sum-exp: $f(x) = \log(\sum_i e^{x_i})$. Conjugate has $f^*(y) = \sum_i y_i \log y_i$ for $y \succeq 0$ and $1^{\mathsf{T}}y = 1$, ∞ otherwise.