CS675: Convex and Combinatorial Optimization Spring 2022
 Submodular Function Optimization

Instructor: Shaddin Dughmi

Outline

(1) Introduction to Submodular Functions
(2) Unconstrained Submodular Minimization

- Definition and Examples
- The Convex Closure and the Lovasz Extension
- Wrapping up
(3) Monotone Submodular Maximization s.t. a Matroid Constraint
- Definition and Examples
- Warmup: Cardinality Constraint
- General Matroid Constraints

Introduction

- We saw how matroids form a class of feasible sets over which optimization of modular objectives is tractable
- If matroids are discrete analogues of convex sets, then submodular functions are discrete analogues of convex/concave functions
- Submodular functions behave like convex functions sometimes (minimization) and concave other times (maximization)
- Today we will introduce submodular functions, go through some examples, and mention some of their properties

Set Functions

- A set function takes as input a set, and outputs a real number
- Inputs are subsets of some ground set X
- $f: 2^{X} \rightarrow \mathbb{R}$
- We will focus on set functions where X is finite, and denote $n=|X|$

Set Functions

- A set function takes as input a set, and outputs a real number
- Inputs are subsets of some ground set X
- $f: 2^{X} \rightarrow \mathbb{R}$
- We will focus on set functions where X is finite, and denote $n=|X|$
- Equivalently: map points in the hypercube $\{0,1\}^{n}$ to the real numbers
- Can be plotted as 2^{n} points in $n+1$ dimensional space

Set Functions

- We have already seen modular set functions
- There is a weight w_{i} for each $i \in X$, and a constant c, such that $f(S)=c+\sum_{i \in S} w_{i}$ for all sets $S \subseteq X$.
- Discrete analogue of affine functions

Set Functions

- We have already seen modular set functions
- There is a weight w_{i} for each $i \in X$, and a constant c, such that $f(S)=c+\sum_{i \in S} w_{i}$ for all sets $S \subseteq X$.
- Discrete analogue of affine functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$

Set Functions

- We have already seen modular set functions
- There is a weight w_{i} for each $i \in X$, and a constant c, such that $f(S)=c+\sum_{i \in S} w_{i}$ for all sets $S \subseteq X$.
- Discrete analogue of affine functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$
- Submodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)

Set Functions

- We have already seen modular set functions
- There is a weight w_{i} for each $i \in X$, and a constant c, such that $f(S)=c+\sum_{i \in S} w_{i}$ for all sets $S \subseteq X$.
- Discrete analogue of affine functions
- Direct definition of modularity: $f(A)+f(B)=f(A \cap B)+f(A \cup B)$
- Submodular/supermodular functions are weak analogues to convex/concave functions (in no particular order!)
- Other possibly useful properties a set function may have:
- Monotone increasing or decreasing
- Nonnegative: $f(A) \geq 0$ for all $S \subseteq X$
- Normalized: $f(\emptyset)=0$.

Submodular Functions

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is submodular if and only if

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

- "Uncrossing" two sets reduces their total function value

Submodular Functions

Definition 2

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is submodular if and only if

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

for all $A \subseteq B \subseteq X$ and $i \notin B$.

- The marginal value of an additional element exhibits "diminishing marginal returns"
- Should remind of concavity: second "derivative" is negative

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(A)+f(B) \leq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

Supermodular Functions

Definition 0

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if $-f$ is submodular.

Definition 1

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(A)+f(B) \leq f(A \cap B)+f(A \cup B)
$$

for all $A, B \subseteq X$.

Definition 2

A set function $f: 2^{X} \rightarrow \mathbb{R}$ is supermodular if and only if

$$
f(B \cup\{i\})-f(B) \geq f(A \cup\{i\})-f(A))
$$

for all $A \subseteq B \subseteq X$ and $i \notin B$.

Examples

Many common examples are monotone, normalized, and submodular.

Coverage Functions

- In general: X is a family of sets, and $f(S)$ is the "size" (cardinality or measure) of $\bigcup_{A \in S} A$
- Discrete special case: X the left hand side of a bipartite graph, and $f(S)$ is the total number of neighbors of S.

Examples

Many common examples are monotone, normalized, and submodular.

Coverage Functions

- In general: X is a family of sets, and $f(S)$ is the "size" (cardinality or measure) of $\bigcup_{A \in S} A$
- Discrete special case: X the left hand side of a bipartite graph, and $f(S)$ is the total number of neighbors of S.

The following two are examples of coverage functions

Probability

X is a set of probability events, and $f(S)$ is the probability at least one of them occurs.

Sensor Coverage

X is a family of locations in space you can place sensors, and $f(S)$ is the total area covered if you place sensors at locations $S \subseteq X$.

Examples

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
- Many different models
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.

Examples

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- The idea propagates through the network through some random diffusion process
- Many different models
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.

Utility Functions

When X is a set of goods, $f(S)$ can represent the utility of an agent for a bundle of these goods. Utilities which exhibit diminishing marginal returns are natural in many settings.

Examples

Entropy

X is a set of random variables, and $f(S)$ is the entropy of the joint distribution of a subset of them S.

Examples

Entropy

X is a set of random variables, and $f(S)$ is the entropy of the joint distribution of a subset of them S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Examples

Entropy

X is a set of random variables, and $f(S)$ is the entropy of the joint distribution of a subset of them S.

Matroid Rank

The rank function of a matroid is monotone, submodular, and normalized.

Clustering Quality

X is the set of nodes in a graph G, and $f(S)=E(S)$ is the internal connectedness of cluster S.

- Supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph G, and $f(S)=\frac{E(S)}{|S|}$ where $E(S)$ is the number of edges with both endpoints in S.

- Non-monotone
- Neither submodular nor supermodular

Examples

There are fewer examples of non-monotone submodular/supermodular functions, which are nontheless fundamental.

Graph Cuts

X is the set of nodes in a graph G, and $f(S)$ is the number of edges crossing the cut ($S, X \backslash S$).

- Submodular
- Non-monotone.

Graph Density

X is the set of nodes in a graph G, and $f(S)=\frac{E(S)}{|S|}$ where $E(S)$ is the number of edges with both endpoints in S.

- Non-monotone
- Neither submodular nor supermodular
- However, maximizing it reduces to maximizing supermodular function $E(S)-\alpha|S|$ for various $\alpha>0$ (binary search)

Equivalence of Both Definitions

Definition 1

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Equivalence of Both Definitions

Definition 1

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Definition $1 \Rightarrow$ Definition 2

- To prove (2), let $A^{\prime}=A \bigcup\{i\}$ and $B^{\prime}=B$ and apply (1)

$$
\begin{aligned}
f(A \cup\{i\})+f(B) & =f\left(A^{\prime}\right)+f\left(B^{\prime}\right) \\
& \geq f\left(A^{\prime} \cap B^{\prime}\right)+f\left(A^{\prime} \cup B^{\prime}\right) \\
& =f(A)+f(B \cup\{i\})
\end{aligned}
$$

Equivalence of Both Definitions

```
Definition 1
\(f(A)+f(B) \geq f(A \cap B)+f(A \cup B)\)
```


Definition 2

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A))
$$

Definition $2 \Rightarrow$ Definition 1

- To prove (1), start with $A=B=A \bigcap B$ and repeatedly add elements to one but not the other
- At each step, (2) implies that the LHS of inequality (1) increases more than the RHS

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)-f(T)$ is submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)-f(T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)-f(T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

Operations Preserving Submodularity

- Nonnegative-weighted combinations (a.k.a. conic combinations): If f_{1}, \ldots, f_{k} are submodular, and $w_{1}, \ldots, w_{k} \geq 0$, then $g(S)=\sum_{i} w_{i} f_{i}(S)$ is also submodular
- Special case: adding or subtracting a modular function
- Restriction: If f is a submodular function on X, and $T \subseteq X$, then $g(S)=f(S \cap T)$ is submodular
- Contraction (a.k.a conditioning): If f is a submodular function on X, and $T \subseteq X$, then $f_{T}(S)=f(S \cup T)-f(T)$ is submodular
- Reflection: If f is a submodular function on X, then $\bar{f}(S)=f(X \backslash S)$ is also submodular
- Others: Dilworth trucation, convolution with modular functions, ...

Note

The minimum or maximum of two submodular functions is not necessarily submodular

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Optimizing Submodular Functions

- As our examples suggest, optimization problems involving submodular functions are very common
- These can be classified on two axes: constrained/unconstrained and maximization/minimization

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$.

Outline

(1) Introduction to Submodular Functions
(2) Unconstrained Submodular Minimization

- Definition and Examples
- The Convex Closure and the Lovasz Extension
- Wrapping up
(3) Monotone Submodular Maximization s.t. a Matroid Constraint
- Definition and Examples
- Warmup: Cardinality Constraint
- General Matroid Constraints

Recall: Optimizing Submodular Functions

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Recall: Optimizing Submodular Functions

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Problem Definition

Given a submodular function $f: 2^{X} \rightarrow \mathbb{R}$ on a finite ground set X,

$$
\begin{array}{ll}
\text { minimize } & f(S) \\
\text { subject to } & S \subseteq X
\end{array}
$$

- We denote $n=|X|$
- We assume $f(S)$ is a rational number with at most b bits

Problem Definition

Given a submodular function $f: 2^{X} \rightarrow \mathbb{R}$ on a finite ground set X,

$$
\begin{array}{ll}
\text { minimize } & f(S) \\
\text { subject to } & S \subseteq X
\end{array}
$$

- We denote $n=|X|$
- We assume $f(S)$ is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$ in constant time.

Problem Definition

Given a submodular function $f: 2^{X} \rightarrow \mathbb{R}$ on a finite ground set X,

minimize $\quad f(S)$

subject to $S \subseteq X$

- We denote $n=|X|$
- We assume $f(S)$ is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$ in constant time.

Goal

An algorithm which runs in time polynomial in n and b.

Problem Definition

Given a submodular function $f: 2^{X} \rightarrow \mathbb{R}$ on a finite ground set X,

minimize $\quad f(S)$

subject to $S \subseteq X$

- We denote $n=|X|$
- We assume $f(S)$ is a rational number with at most b bits

Representation

In order to generalize all our examples, algorithmic results are often posed in the value oracle model. Namely, we only assume we have access to a subroutine evaluating $f(S)$ in constant time.

Goal

An algorithm which runs in time polynomial in n and b.
Note: weakly polynomial. There are strongly polytime algorithms.

Examples

Minimum Cut

Given a graph $G=(V, E)$, find a set $S \subseteq V$ minimizing the number of edges crossing the cut ($S, V \backslash S$).

- G may be directed or undirected.
- Extends to hypergraphs.

Examples

Minimum Cut

Given a graph $G=(V, E)$, find a set $S \subseteq V$ minimizing the number of edges crossing the cut $(S, V \backslash S)$.

- G may be directed or undirected.
- Extends to hypergraphs.

Densest Subgraph

Given an undirected graph $G=(V, E)$, find a set $S \subseteq V$ maximizing the average internal degree.

- Reduces to supermodular maximization via binary search for the right density.

Continuous Extensions of a Set Function

Recall

A set function f on $X=\{1, \ldots, n\}$ can be thought of as a map from the vertices $\{0,1\}^{n}$ of the n-dimensional hypercube to the real numbers.

Continuous Extensions of a Set Function

Recall

A set function f on $X=\{1, \ldots, n\}$ can be thought of as a map from the vertices $\{0,1\}^{n}$ of the n-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, an extension of f to the hypercube $[0,1]^{n}$ is a function $g:[0,1]^{n} \rightarrow \mathbb{R}$ satisfying $g(x)=f(x)$ for every $x \in\{0,1\}^{n}$.

Continuous Extensions of a Set Function

Recall

A set function f on $X=\{1, \ldots, n\}$ can be thought of as a map from the vertices $\{0,1\}^{n}$ of the n-dimensional hypercube to the real numbers.

We will consider extensions of a set function to the entire hypercube.

Extension of a Set Function

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, an extension of f to the hypercube $[0,1]^{n}$ is a function $g:[0,1]^{n} \rightarrow \mathbb{R}$ satisfying $g(x)=f(x)$ for every $x \in\{0,1\}^{n}$.

Long story short. . .

We will exhibit an extension which is convex when f is submodular, and can be minimized efficiently. We will then show that minimizing it yields a solution to the submodular minimization problem.

The Convex Closure

Convex Closure

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the convex closure $f^{-}:[0,1]^{n} \rightarrow \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^{n}$.

The Convex Closure

Convex Closure

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the convex closure $f^{-}:[0,1]^{n} \rightarrow \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^{n}$.

Geometric Intuition

What you would get by placing a blanket under the plot of f and pulling up.

$$
\begin{aligned}
& f(\emptyset)=0 \\
& f(\{1\})=f(\{2\})=1 \\
& f(\{1,2\})=1 \\
& f^{-}\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)
\end{aligned}
$$

The Convex Closure

Convex Closure

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the convex closure $f^{-}:[0,1]^{n} \rightarrow \mathbb{R}$ of f is the point-wise greatest convex function under-estimating f on $\{0,1\}^{n}$.

Claim

The convex closure exists for any set function.

Proof

- If $g_{1}, g_{2}:[0,1]^{n} \rightarrow \mathbb{R}$ are convex under-estimators of f, then so is $\max \left\{g_{1}, g_{2}\right\}$
- Holds for infinite set of convex under-estimators
- Therefore $f^{-}=\max \{g: g$ is a convex underestimator of $f\}$ is the point-wise greatest convex underestimator of f.

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n}} \lambda_{y} f(y) \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0, \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Interpretation

- The minimum expected value of f over all distributions on $\{0,1\}^{n}$ with expectation x.
- Equivalently: the minimum expected value of f for a random set $S \subseteq X$ including each $i \in X$ with probability x_{i}.
- The upper bound on $f^{-}(x)$ implied by applying Jensen's inequality to every convex combination of $\{0,1\}^{n}$.

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n} \lambda_{y} f(y)} \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0, \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Implications

- f^{-}is an extension of f.
- $f^{-}(x)$ has no "integrality gap"
- For every $x \in[0,1]^{n}$, there is a random integer vector $y \in\{0,1\}^{n}$ such that $\mathbf{E}_{y} f(y)=f^{-}(x)$.
- Therefore, there is an integer vector y such that $f(y) \leq f^{-}(x)$.

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n}} \lambda_{y} f(y) \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0,
\end{array} \text { for } y \in\{0,1\}^{n} .
$$

$f(\emptyset)=0$
$f(\{1\})=f(\{2\})=1$
$f(\{1,2\})=1$
When $x_{1} \leq x_{2}$

$$
\begin{aligned}
f^{-}\left(x_{1}, x_{2}\right) & =x_{1} f(\{1,2\}) \\
& +\left(x_{2}-x_{1}\right) f(\{2\}) \\
& +\left(1-x_{2}\right) f(\emptyset)
\end{aligned}
$$

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\text { minimize } & \sum_{y \in\{0,1\}^{n}} \lambda_{y} f(y) \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Proof

- $O P T(x)$ is at least $f^{-}(x)$ for every x : By Jensen's inequality

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n} \lambda_{y} f(y)} \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0, \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Proof

- $O P T(x)$ is at least $f^{-}(x)$ for every x : By Jensen's inequality
- To show that $O P T(x)$ is at most $f^{-}(x)$, suffices to show that it is a convex under-estimate of f

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n}} \lambda_{y} f(y) \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0, \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Proof

- $O P T(x)$ is at least $f^{-}(x)$ for every x : By Jensen's inequality
- To show that $O P T(x)$ is at most $f^{-}(x)$, suffices to show that it is a convex under-estimate of f
- Under-estimate: $O P T(x)=f(x)$ for $x \in\{0,1\}^{n}$

Claim

The value of the convex closure f^{-}at $x \in[0,1]^{n}$ is the solution of the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{y \in\{0,1\}^{n}} \lambda_{y} f(y) \\
\text { subject to } & \sum_{y \in\{0,1\}^{n} \lambda_{y} y=x} \\
& \sum_{y \in\{0,1\}^{n}} \lambda_{y}=1 \\
& \lambda_{y} \geq 0, \quad \text { for } y \in\{0,1\}^{n} .
\end{array}
$$

Proof

- $O P T(x)$ is at least $f^{-}(x)$ for every x : By Jensen's inequality
- To show that $O P T(x)$ is at most $f^{-}(x)$, suffices to show that it is a convex under-estimate of f
- Under-estimate: $O P T(x)=f(x)$ for $x \in\{0,1\}^{n}$
- Convex: The value of a minimization LP is convex in its right hand side constants (check)

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Proof

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Proof

- $f^{-}(y)=f(y)$ for every $y \in\{0,1\}^{n}$
- Therefore $\min _{x \in[0,1]^{n}} f^{-}(x) \leq \min _{y \in\{0,1\}^{n}} f(y)$

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Proof

- $f^{-}(y)=f(y)$ for every $y \in\{0,1\}^{n}$
- Therefore $\min _{x \in[0,1]^{n}} f^{-}(x) \leq \min _{y \in\{0,1\}^{n}} f(y)$
- For every $x, f^{-}(x)$ is the expected value of $f(y)$, for a random variable $y \in\{0,1\}^{n}$ with expectation x.
- Therefore, $\min _{x \in[0,1]^{n}} f^{-}(x) \geq \min _{y \in\{0,1\}^{n}} f(y)$

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^{-}over a convex set $[0,1]^{n}$. Are we done?

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^{-}over a convex set $[0,1]^{n}$. Are we done?

Problem

In general, it is hard to evaluate f^{-}efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

Using the Convex Closure

Fact

The minimum of f^{-}is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Good News?

We reduced minimizing set function f to minimizing a convex function f^{-}over a convex set $[0,1]^{n}$. Are we done?

Problem

In general, it is hard to evaluate f^{-}efficiently, let alone its derivative. This is indispensible for convex optimization algorithms.

We will show that, when f is submodular, f^{-}is in fact equivalent to another extension which is easier to evaluate.

Chain Distributions

Chain Distribution

A chain distribution on the ground set X is a distribution over $S \subseteq X$ who's support forms a chain in the inclusion order.

Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X=\{1, \ldots, n\}$. The chain distribution with marginals $x \in[0,1]^{n}$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\operatorname{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S]=x_{i}$ for all $i \in X$.

Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X=\{1, \ldots, n\}$. The chain distribution with marginals $x \in[0,1]^{n}$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\mathbf{P r}_{S \sim D^{\mathcal{L}}(x)}[i \in S]=x_{i}$ for all $i \in X$.

Chain Distributions

Chain Distribution with Given Marginals

Fix the ground set $X=\{1, \ldots, n\}$. The chain distribution with marginals $x \in[0,1]^{n}$ is the unique chain distribution $D^{\mathcal{L}}(x)$ satisfying $\operatorname{Pr}_{S \sim D^{\mathcal{L}}(x)}[i \in S]=x_{i}$ for all $i \in X$.

$D^{\mathcal{L}}(x)$ is the distribution given by the following process:

- Sort $x_{1} \geq x_{2} \ldots \geq x_{n}$
- Let $S_{i}=\{1, \ldots, i\}$
- Let $\operatorname{Pr}\left[S_{i}\right]=x_{i}-x_{i+1}$

The Lovasz Extension

Definition

The Lovasz extension of a set function f is defined as follows.

$$
f^{\mathcal{L}}(x)=\underset{S \sim D^{\mathcal{L}}(x)}{\mathbf{E}} f(S)
$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in\{0,1\}^{n}$ is the point distribution at y.

The Lovasz Extension

Definition

The Lovasz extension of a set function f is defined as follows.

$$
f^{\mathcal{L}}(x)=\underset{S \sim D^{\mathcal{L}}(x)}{\mathbf{E}} f(S)
$$

i.e. the Lovasz extension at x is the expected value of a set drawn from the unique chain distribution with marginals x.

Observations

- $f^{\mathcal{L}}$ is an extension, since the chain distribution with marginals $y \in\{0,1\}^{n}$ is the point distribution at y.
- $f^{\mathcal{L}}(x)$ is the expected value of f on some distribution on $\{0,1\}^{n}$ with marginals x. Since $f^{-}(x)$ chooses the "lowest" such distribution, we have $f^{\mathcal{L}}(x) \geq f^{-}(x)$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem
If f is submodular, then $f^{\mathcal{L}}=f^{-}$.
Converse holds: if f not submodular, then $f^{\mathcal{L}}$ not convex. (won't prove)

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}}=f^{-}$.
Converse holds: if f not submodular, then $f^{\mathcal{L}}$ not convex. (won't prove)

Intuition

- Recall: $f^{-}(x)$ evaluates f on the "lowest" distribution with marginals x
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.

Equivalence of the Convex Closure and Lovasz Extension

Theorem

If f is submodular, then $f^{\mathcal{L}}=f^{-}$.
Converse holds: if f not submodular, then $f^{\mathcal{L}}$ not convex. (won't prove)

Intuition

- Recall: $f^{-}(x)$ evaluates f on the "lowest" distribution with marginals x
- It turns out that, when f is submodular, this lowest distribution is the chain distribution $D^{\mathcal{L}}(x)$.
- Contingent on marginals x, submodularity implies that cost is minimized by "packing" as many elements together as possible
- diminishing marginal returns
- This gives the chain distribution

It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

- Take a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.

It suffices to show that the chain distribution with marginals x is in fact the "lowest" distribution with marginals x.

Proof (Special case)

- Take a distribution \mathcal{D} on two "crossing" sets A and B, with probability 0.5 each.
- Consider "uncrossing" A and B, replacing them with $A \bigcap B$ and $A \bigcup B$, with probability 0.5 each.
- Yields a chain distribution supported on $A \bigcap B$ and $A \bigcup B$.
- Marginals don't change
- By submodularity, expected value can only go down.

Proof (Slightly Less Special Case)

Proof (Slightly Less Special Case)

- Take a distribution \mathcal{D} on two "crossing" sets A and B, with probabilities $p \leq q$.

$$
p f(A)+{ }_{q f}(B)
$$

Proof (Slightly Less Special Case)

- Take a distribution \mathcal{D} on two "crossing" sets A and B, with probabilities $p \leq q$.
- Consider "uncrossing" a probability mass of p from each of A, B.
- Yields a chain distribution supported on $A \bigcap B, B$, and $A \cup B$.
- Marginals don't change
- By submodularity, expected value can only go down.

Proof (General Case)

Proof (General Case)

- Take a distribution \mathcal{D} which includes two "crossing" sets A and B in its support, with probabilities $p \leq q$.

Proof (General Case)

- Take a distribution \mathcal{D} which includes two "crossing" sets A and B in its support, with probabilities $p \leq q$.
- Consider "uncrossing" a probability mass of p from each of A, B.
- Marginals don't change
- By submodularity, expected value can only go down.

Proof (General Case)

- Take a distribution \mathcal{D} which includes two "crossing" sets A and B in its support, with probabilities $p \leq q$.
- Consider "uncrossing" a probability mass of p from each of A, B.
- Marginals don't change
- By submodularity, expected value can only go down.
- Makes \mathcal{D} "closer" to being a chain distribution
- The bounded potential function $\mathbf{E}_{S \sim \mathcal{D}}\left[|S|^{2}\right]$ increases

Minimizing the Lovasz Extension

Because $f^{\mathcal{L}}=f^{-}$, we know the following:

Fact

The minimum of $f \mathcal{L}$ is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Minimizing the Lovasz Extension

Because $f^{\mathcal{L}}=f^{-}$, we know the following:

Fact

The minimum of f L is equal to the minimum of f, and moreover is attained at minimizers $y \in\{0,1\}^{n}$ of f.

Therefore, minimizing f reduces to the following convex optimization problem

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\text { minimize } & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

Recall: Solvability of Convex Optimization

Weak Solvability

An algorithm weakly solves our optimization problem if it takes in approximation parameter $\epsilon>0$, runs in poly $\left(n, \log \frac{1}{\epsilon}\right)$ time, and returns $x \in[0,1]^{n}$ which is ϵ-optimal:

$$
f^{\mathcal{L}}(x) \leq \min _{y \in[0,1]^{n}} f^{\mathcal{L}}(y)+\epsilon\left[\max _{y \in[0,1]^{n}} f^{\mathcal{L}}(y)-\min _{y \in[0,1]^{n}} f^{\mathcal{L}}(y)\right]
$$

Recall: Solvability of Convex Optimization

Polynomial Solvability of CP

In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly (n) time:
(1) Compute a starting ellipsoid $E \supseteq[0,1]^{n}$ with

$$
\frac{\operatorname{vol}(E)}{\operatorname{vol}\left([0,1]^{n}\right)}=O(\exp (n)) .
$$

(2) A separation oracle for the feasible set $[0,1]^{n}$
(0) A first order oracle for $f^{\mathcal{L}}$: evaluates $f^{\mathcal{L}}(x)$ and a subgradient of $f^{\mathcal{L}}$ at x.

Recall: Solvability of Convex Optimization

Polynomial Solvability of CP

In order to weakly minimize $f^{\mathcal{L}}$, we need the following operations to run in poly (n) time:
(c) Compute a starting ellipsoid $E \supseteq[0,1]^{n}$ with

$$
\frac{\operatorname{vol}(E)}{\operatorname{vol}\left([0,1]^{n}\right)}=O(\exp (n)) .
$$

(2) A separation oracle for the feasible set $[0,1]^{n}$
(0) A first order oracle for $f^{\mathcal{L}}$: evaluates $f^{\mathcal{L}}(x)$ and a subgradient of $f^{\mathcal{L}}$ at x.

1 and 2 are trivial.

First order Oracle for $f^{\mathcal{L}}$

- Recall: the chain distribution with marginals x
- Sort $x_{1} \geq x_{2} \ldots \geq x_{n}$
- Let $S_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$
- Let $\operatorname{Pr}\left[S_{i}\right]=x_{i}-x_{i+1}$

First order Oracle for $f^{\mathcal{L}}$

- Recall: the chain distribution with marginals x
- Sort $x_{1} \geq x_{2} \ldots \geq x_{n}$
- Let $S_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$
- Let $\operatorname{Pr}\left[S_{i}\right]=x_{i}-x_{i+1}$
- Can evaluate $f^{\mathcal{L}}(x)=\sum_{i} f\left(S_{i}\right)\left(x_{i}-x_{i+1}\right)$

First order Oracle for $f^{\mathcal{L}}$

- Recall: the chain distribution with marginals x
- Sort $x_{1} \geq x_{2} \ldots \geq x_{n}$
- Let $S_{i}=\left\{x_{1}, \ldots, x_{i}\right\}$
- Let $\operatorname{Pr}\left[S_{i}\right]=x_{i}-x_{i+1}$
- Can evaluate $f^{\mathcal{L}}(x)=\sum_{i} f\left(S_{i}\right)\left(x_{i}-x_{i+1}\right)$
- $f^{\mathcal{L}}$ is peicewise linear, so can compute a sub-gradient.

Recovering an Optimal Set

We can get an ϵ-optimal solution x^{*} to the optimization problem in $\operatorname{poly}\left(n, \log \frac{1}{\epsilon}\right)$ time.

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\text { minimize } & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

Recovering an Optimal Set

We can get an ϵ-optimal solution x^{*} to the optimization problem in poly $\left(n, \log \frac{1}{\epsilon}\right)$ time.

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\text { minimize } & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

- Set $\epsilon<2^{-b}$, runtime is $\operatorname{poly}(n, b)$.

Recovering an Optimal Set

We can get an ϵ-optimal solution x^{*} to the optimization problem in poly $\left(n, \log \frac{1}{\epsilon}\right)$ time.

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\text { minimize } & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

- Set $\epsilon<2^{-b}$, runtime is $\operatorname{poly}(n, b)$.
- $\min f(S) \leq f^{\mathcal{L}}\left(x^{*}\right)<\min 2 f(S)$

Recovering an Optimal Set

We can get an ϵ-optimal solution x^{*} to the optimization problem in $\operatorname{poly}\left(n, \log \frac{1}{\epsilon}\right)$ time.

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\operatorname{minimize} & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

- Set $\epsilon<2^{-b}$, runtime is $\operatorname{poly}(n, b)$.
- $\min f(S) \leq f^{\mathcal{L}}\left(x^{*}\right)<\min 2 f(S)$
- $f^{\mathcal{L}}\left(x^{*}\right)$ is the expectation f over a distribution of sets - It must include an optimal set in its support

Recovering an Optimal Set

We can get an ϵ-optimal solution x^{*} to the optimization problem in poly $\left(n, \log \frac{1}{\epsilon}\right)$ time.

Minimizing the Lovasz Extension

$$
\begin{array}{ll}
\text { minimize } & f^{\mathcal{L}}(x) \\
\text { subject to } & x \in[0,1]^{n}
\end{array}
$$

- Set $\epsilon<2^{-b}$, runtime is $\operatorname{poly}(n, b)$.
- $\min f(S) \leq f^{\mathcal{L}}\left(x^{*}\right)<\min 2 f(S)$
- $f^{\mathcal{L}}\left(x^{*}\right)$ is the expectation f over a distribution of sets - It must include an optimal set in its support
- We can identify this set by examining the chain distribution with marginals x^{*}

Outline

(1) Introduction to Submodular Functions
(2) Unconstrained Submodular Minimization

- Definition and Examples
- The Convex Closure and the Lovasz Extension
- Wrapping up
(3) Monotone Submodular Maximization s.t. a Matroid Constraint
- Definition and Examples
- Warmup: Cardinality Constraint
- General Matroid Constraints

Recall: Optimizing Submodular Functions

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Recall: Optimizing Submodular Functions

	Maximization	Minimization
Unconstrained	NP-hard	Polynomial time
	$\frac{1}{2}$ approximation	via convex opt
Constrained	Usually NP-hard	Usually NP-hard to apx.
	$1-1 / e$ (mono, matroid)	Few easy special cases
	$O(1)$ ("nice" constraints)	

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

```
maximize f(S)
subject to S\in\mathcal{I}
```

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

```
maximize f(S)
subject to S\in\mathcal{I}
```

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.
- We denote $n=|X|$

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$
maximize $f(S)$
subject to $S \in \mathcal{I}$

- Non-decreasing: $f(S) \leq f(T)$ for $S \subseteq T$
- Normalized: $f(\emptyset)=0$.
- We denote $n=|X|$

Representation

As before, we work in the value oracle and independence oracle models. Namely, we assume we have access to a subroutine evaluating $f(S)$, and a subroutine for checking whether $S \in \mathcal{I}$, each in constant time.

Examples

Maximum Coverage

X is the left hand side of a graph, and $f(S)$ is the total number of neighbors of S.

- Can think of $i \in X$ as a set, and $f(S)$ as the total "coverage" of S. Goal is to cover as much of the RHS as possible with k LHS nodes.

Social Influence

- X is the family of nodes in a social network
- A meme, idea, or product is adopted at a set of nodes S
- $f(S)$ is the expected number of nodes in the network which end up adopting the idea.
- Goal is to obtain maximum influence subject to a constraint
- Cardinality
- Transversal
- ...

Combinatorial Allocation

- G is a set of goods
- $f_{i}(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition $\left(B_{1}, \ldots, B_{n}\right)$ of G among agents.
- Aggregate utility is $\sum_{i} f_{i}\left(B_{i}\right)$.

Combinatorial Allocation

- G is a set of goods
- $f_{i}(B)$ is submodular utility of agent $i \in N$ for bundle $B \subseteq G$
- Allocation: A partition $\left(B_{1}, \ldots, B_{n}\right)$ of G among agents.
- Aggregate utility is $\sum_{i} f_{i}\left(B_{i}\right)$.
- Let $X=G \times N$ be the set of good/agent pairs
- Allocations correspond to subsets S of X in which at most one "copy" of each good is chosen
- Partition matroid constraint
- $f(S)=\sum_{i \in N} f_{i}(\{j \in G:(j, i) \in S\})$
- Submodular

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1 / e$.

- Holds even for max coverage subject to a cardinality constraint (Feige '98)

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1 / e$.

- Holds even for max coverage subject to a cardinality constraint (Feige '98)

Goal

An algorithm in the value oracle and independence oracle models which

- Runs in time poly (n)
- Returns a feasible set $S^{*} \in \mathcal{I}$ satisfying

$$
f\left(S^{*}\right) \geq(1-1 / e) \max _{S \in \mathcal{I}} f(S)
$$

Complexity

Theorem

Maximizing a submodular function subject to a matroid constraint is NP-hard, and NP-hard to approximate to within any better than a factor of $1-1 / e$.

- Holds even for max coverage subject to a cardinality constraint (Feige '98)

Goal

An algorithm in the value oracle and independence oracle models which

- Runs in time poly (n)
- Returns a feasible set $S^{*} \in \mathcal{I}$ satisfying

$$
f\left(S^{*}\right) \geq(1-1 / e) \max _{S \in \mathcal{I}} f(S)
$$

Holds for arbitrary matroid, but much simpler for uniform matroids.

Subject to a Cardinality Constraint

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X with $|X|=n$, and an integer $k \leq n$

```
maximize f(S)
subject to |S| \leqk
```

- k-uniform matroid constraint

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm
(1) $S \leftarrow \emptyset$
(2) While $|S| \leq k$

- Choose $e \in X$ maximizing $f(S \bigcup\{e\})$
- $S \leftarrow S \bigcup\{e\}$

The Greedy Algorithm

The following is the straightforward adaptation of the greedy algorithm for maximizing modular functions over a matroid.

The Greedy Algorithm

(1) $S \leftarrow \emptyset$
(2) While $|S| \leq k$

- Choose $e \in X$ maximizing $f(S \bigcup\{e\})$
- $S \leftarrow S \bigcup\{e\}$

Theorem

The greedy algorithm is a (1-1/e) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \cup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:
- Let $S \subseteq T$
- $f_{A}(S)=f(S \cup A)-f(A) \leq f(T \cup A)-f(A)=f_{A}(T)$.

Contraction/Conditioning

Let $f: 2^{X} \rightarrow \mathbb{R}$ and $A \subseteq X$. Define $f_{A}(S)=f(A \bigcup S)-f(A)$.

Lemma

If f is monotone and submodular, then f_{A} is monotone, submodular, and normalized for any A.

Proof

- Normalized: trivial
- Monotone:

$$
\begin{aligned}
& \text { Let } S \subseteq T \\
& \text { - } f_{A}(S)=f(S \cup A)-f(A) \leq f(T \cup A)-f(A)=f_{A}(T) \text {. }
\end{aligned}
$$

- Submodular:

$$
\begin{aligned}
f_{A}(S)+f_{A}(T) & =f(S \cup A)-f(A)+f(T \cup A)-f(A) \\
& \geq f(S \cup T \cup A)-f(A)+f((S \cap T) \cup A)-f(A) \\
& =f_{A}(S \cup T)+f_{A}(S \cap T)
\end{aligned}
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

- Applying recursively, we get

$$
\sum_{j \in A} f(\{j\}) \geq f(A)
$$

Lemma

If f is normalized and submodular, and $A \subseteq X$, then there is $j \in A$ such that $f(\{j\}) \geq \frac{1}{|A|} f(A)$.

Proof

- If A_{1}, A_{2} partition A, then

$$
f\left(A_{1}\right)+f\left(A_{2}\right) \geq f\left(A_{1} \cup A_{2}\right)+f\left(A_{1} \cap A_{2}\right)=f(A)
$$

- Applying recursively, we get

$$
\sum_{j \in A} f(\{j\}) \geq f(A)
$$

- Therefore, $\max _{j \in A} f(\{j\}) \geq \frac{1}{|A|} f(A)$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.
- We will show that the suboptimality $O P T-f(S)$ shrinks by a factor of $(1-1 / k)$ each iteration

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- Let S be the working set in the algorithm
- Let S^{*} be optimal solution with $f\left(S^{*}\right)=O P T$.
- We will show that the suboptimality $O P T-f(S)$ shrinks by a factor of $(1-1 / k)$ each iteration
- After k iterations, it has shrunk to $(1-1 / k)^{k} \leq 1 / e$ from its original value

$$
\begin{aligned}
& O P T-f(S) \leq \frac{1}{e} O P T \\
& (1-1 / e) O P T \leq f(S)
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j^{\prime} \in S^{*}$ s.t.

$$
f_{S}\left(\left\{j^{\prime}\right\}\right) \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right)
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j^{\prime} \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}\left(\left\{j^{\prime}\right\}\right) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right)
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j^{\prime} \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}\left(\left\{j^{\prime}\right\}\right) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right) \\
& \geq \frac{1}{k}(O P T-f(S))
\end{aligned}
$$

Theorem

The greedy algorithm is a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a cardinality constraint.

Proof

- By definition, in each iteration $f(S)$ increases by $\max _{j} f_{S}(\{j\})$
- By our lemmas, there is $j^{\prime} \in S^{*}$ s.t.

$$
\begin{aligned}
f_{S}\left(\left\{j^{\prime}\right\}\right) & \geq \frac{1}{\left|S^{*}\right|} f_{S}\left(S^{*}\right) \\
& =\frac{1}{k}\left(f\left(S \cup S^{*}\right)-f(S)\right) \\
& \geq \frac{1}{k}(O P T-f(S))
\end{aligned}
$$

- Therefore, suboptimality decreases by factor of $1-\frac{1}{k}$, as needed.

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is now only a $1 / 2$ approximation
- Partition matroid with parts $\{a\}$ and $\{b, c\}$ and budgets 1
- $f(a)=f(b)=1, f(c)=f(a c)=1+\epsilon, f(a b)=f(b c)=f(a b c)=2$

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is now only a $1 / 2$ approximation
- Partition matroid with parts $\{a\}$ and $\{b, c\}$ and budgets 1
- $f(a)=f(b)=1, f(c)=f(a c)=1+\epsilon, f(a b)=f(b c)=f(a b c)=2$
- Nevertheless, a continuous greedy algorithm gives $1-1 / e$

From Uniform to Arbitrary Matroid

Problem Definition

Given a non-decreasing and normalized submodular function $f: 2^{X} \rightarrow \mathbb{R}_{+}$on a finite ground set X, and a matroid $M=(X, \mathcal{I})$

$$
\begin{array}{ll}
\text { maximize } & f(S) \\
\text { subject to } & S \in \mathcal{I}
\end{array}
$$

- The discrete greedy algorithm is now only a $1 / 2$ approximation
- Partition matroid with parts $\{a\}$ and $\{b, c\}$ and budgets 1
- $f(a)=f(b)=1, f(c)=f(a c)=1+\epsilon, f(a b)=f(b c)=f(a b c)=2$
- Nevertheless, a continuous greedy algorithm gives $1-1 / e$
- Approach resembles that for minimization
- Define a continous extension of f
- Optimize continuous extension over matroid polytope
- Extract an integer point

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$
- Clearly an extension of f

The Multilinear Extension

Multilinear Extension

Given a set function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, its multilinear extension $F:[0,1]^{n} \rightarrow \mathbb{R}$ evaluated at $x \in[0,1]^{n}$ gives the expected value of $f(S)$ for the random set S which includes each i independently with probability x_{i}.

$$
F(x)=\sum_{S \subseteq X} f(S) \prod_{i \in S} x_{i} \prod_{i \neq S}\left(1-x_{i}\right)
$$

- For each point x, evaluates f on the independent distribution $D(x)$
- Clearly an extension of f
- Not concave (or convex) in general
- Recall f with $f(\emptyset)=0$ and $f(\{1\})=f(\{2\})=f(\{1,2\})=1$
- $F(x)=1-\left(1-x_{1}\right)\left(1-x_{2}\right)$

Easy Properties of the Multilinear Extension

Normalized
 When f is normalized, $F(0)=0$

Follows from the fact that F is an extension of f

Easy Properties of the Multilinear Extension

Normalized

When f is normalized, $F(0)=0$
Follows from the fact that F is an extension of f

Nondecreasing

When f is monotone non-decreasing, $F(x) \leq F(y)$ whenever $x \preceq y$ component-wise.

Increasing the probability of selecting each element increases the expected value.

Up-concavity

Even though F is not concave, it is concave in "upwards" directions.

Up-concavity

Assume f is submodular. For every $\vec{a} \in[0,1]^{n}$ and $\vec{d} \in[0,1]^{n}$ satisfying $d \succeq 0$, the function $g(t)=F(\vec{a}+\vec{d} t)$ is a concave function of $t \in \mathbb{R}$.

Proof Sketch

- By multivariate chain rule: $\frac{d^{2} g}{d t^{2}}=d^{T}\left(\nabla^{2} F\right) d$
- The Hessian $\nabla^{2} F$ is not negative semi-definite, so can't conclude that g is concave for arbitrary directions d
- Multilinearity implies second partial derivatives $\frac{\partial^{2} F}{\partial x_{i}^{2}}$ are zero
- Submodularity implies mixed derivatives $\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$ are nonpositive
- Diminishing marginal returns + coupling argument
- Therefore $\frac{d^{2} g}{d t^{2}}=d^{T}\left(\nabla^{2} F\right) d \leq 0$ for $\vec{d} \succeq 0$

Cross-convexity

Nevertheless, F is convex in "cross" directions.

Cross-convexity

Assume f is submodular. For every $a \in[0,1]^{n}$ and $\vec{d}=e_{i}-e_{j}$ for some $i, j \in X$, the function $g(t)=F(\vec{a}+\vec{d} t)$ is a convex function of $t \in \mathbb{R}$.

- Trading off one item's probability for another's gives convex curve
- Follows from submodularity: as we "remove" j, the marginal benefit of "adding" i increases

$$
x_{x_{j}=1}^{\epsilon} \quad
$$

Cross-convexity

Nevertheless, F is convex in "cross" directions.

Cross-convexity

Assume f is submodular. For every $a \in[0,1]^{n}$ and $\vec{d}=e_{i}-e_{j}$ for some $i, j \in X$, the function $g(t)=F(\vec{a}+\vec{d} t)$ is a convex function of $t \in \mathbb{R}$.

Proof

- $\frac{d^{2} g}{d t^{2}}=d^{T}\left(\nabla^{2} F\right) d=\frac{\partial^{2} F}{\partial x_{i}^{2}}+\frac{\partial^{2} F}{\partial x_{j}^{2}}-2 \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$
- By multilinearity, $\frac{\partial^{2} F}{\partial x_{i}^{2}}=\frac{\partial^{2} F}{\partial x_{j}^{2}}=0$
- We already argued that submodularity implies $\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \leq 0$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$
- $D\left(x^{*}\right)$ is a distribution over sets with expected value at least (1-1/e) of our target
- Would we be done?

Algorithm Outline

Step A: Continuous Greedy Algorithm

Computes a $1-1$ /e approximation to the following continuous (non-convex) optimization problem.

$$
\begin{array}{ll}
\text { maximize } & F(x) \\
\text { subject to } & x \in \mathcal{P}(\mathcal{M})
\end{array}
$$

- i.e. Computes x^{*} s.t. $F\left(x^{*}\right) \geq(1-1 / e) \max \{F(x): x \in \mathcal{P}(\mathcal{M})\}$
- Note: $\max \{F(x): x \in \mathcal{P}(\mathcal{M})\} \geq \max \{f(S): S \in \mathcal{I}\}$
- $D\left(x^{*}\right)$ is a distribution over sets with expected value at least ($1-1 / e$) of our target
- Would we be done?

No! $D\left(x^{*}\right)$ may be mostly supported on infeasible sets (i.e. not independent in matroid \mathcal{M}).

Algorithm Outline

Step B: Pipage Rounding

"Rounds" x^{*} to some vertex y^{*} of the matroid polytope (i.e. an independent set) satisfying

$$
f\left(y^{*}\right)=F\left(y^{*}\right) \geq F\left(x^{*}\right)
$$

Algorithm Outline

Step B: Pipage Rounding

"Rounds" x^{*} to some vertex y^{*} of the matroid polytope (i.e. an independent set) satisfying

$$
f\left(y^{*}\right)=F\left(y^{*}\right) \geq F\left(x^{*}\right)
$$

- A-priori, not obvious that such a y^{*} exists

Step A: Continuous Greedy Algorithm

- Feasible polytope $\mathcal{P} \subseteq[0,1]^{n}$
- Downwards Closed: If $y \in \mathcal{P}$ and $\overrightarrow{0} \preceq x \preceq y$ then $x \in \mathcal{P}$ also.
- Objective function $F:[0,1]^{n} \rightarrow \mathbb{R}_{+}$which is non-decreasing, up-concave, and normalized $(F(\overrightarrow{0})=0)$.

Step A: Continuous Greedy Algorithm

- Feasible polytope $\mathcal{P} \subseteq[0,1]^{n}$
- Downwards Closed: If $y \in \mathcal{P}$ and $\overrightarrow{0} \preceq x \preceq y$ then $x \in \mathcal{P}$ also.
- Objective function $F:[0,1]^{n} \rightarrow \mathbb{R}_{+}$which is non-decreasing, up-concave, and normalized $(F(\overrightarrow{0})=0)$.
- Continuously moves a particle inside the matroid polytope, starting at $\overrightarrow{0}$, for a total of 1 time unit.
- Position at time t given by $x(t)$.

Step A: Continuous Greedy Algorithm

- Feasible polytope $\mathcal{P} \subseteq[0,1]^{n}$
- Downwards Closed: If $y \in \mathcal{P}$ and $\overrightarrow{0} \preceq x \preceq y$ then $x \in \mathcal{P}$ also.
- Objective function $F:[0,1]^{n} \rightarrow \mathbb{R}_{+}$which is non-decreasing, up-concave, and normalized $(F(\overrightarrow{0})=0)$.
- Continuously moves a particle inside the matroid polytope, starting at $\overrightarrow{0}$, for a total of 1 time unit.
- Position at time t given by $x(t)$.
- Discretized to time steps of ϵ, which we will assume to be arbitrarily small for convenience of analysis, but may be taken to be $1 / \operatorname{poly}(n)$ in the actual implementation.

Step A: Continuous Greedy Algorithm

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- Let $y(t) \in \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
- $x(t+\epsilon) \leftarrow x(t)+\epsilon y(t)$
(3) Return $x(1)$

Step A: Continuous Greedy Algorithm

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- Let $y(t) \in \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
- $x(t+\epsilon) \leftarrow x(t)+\epsilon y(t)$
(3) Return $x(1)$
- I.e. When the particle is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
- The direction is actually a vertex of our matroid polytope
- This is NOT gradient ascent

Step A: Continuous Greedy Algorithm

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- Let $y(t) \in \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
- $x(t+\epsilon) \leftarrow x(t)+\epsilon y(t)$
(3) Return $x(1)$
- I.e. When the particle is at x, it moves in direction y maximizing the linear function $\nabla F(x) \cdot y$ over $y \in \mathcal{P}$
- The direction is actually a vertex of our matroid polytope
- This is NOT gradient ascent
- Observe: Algorithm forms a convex combination of $\frac{1}{\epsilon}$ vertices of the polytope \mathcal{P}, each with weight ϵ.
- $x(1) \in \mathcal{P}$.

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\frac{d F(x(t))}{d t}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\frac{d F(x(t))}{d t}=\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t)
\end{aligned}
$$

$$
\geq O P T-F(x(t))
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x^{*}-x(t)\right]^{+} \\
& \geq O P T-F(x(t))
\end{aligned}
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x^{*}-x(t)\right]^{+} \\
& =\nabla F(x(t)) \cdot\left[\max \left(x^{*}, x(t)\right)-x(t)\right] \\
& \geq O P T-F(x(t))
\end{aligned}
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $\frac{d \vec{x}}{d t}=y(t)$
- Let x^{*} be the point in \mathcal{P} maximizing $F(x)$, and $O P T=F\left(x^{*}\right)$.

$$
\begin{aligned}
\frac{d F(x(t))}{d t} & =\nabla F(x(t)) \cdot \frac{d \vec{x}}{d t} \\
& =\nabla F(x(t)) \cdot y(t) \\
& \geq \nabla F(x(t)) \cdot\left[x^{*}-x(t)\right]^{+} \\
& =\nabla F(x(t)) \cdot\left[\max \left(x^{*}, x(t)\right)-x(t)\right] \\
& \geq F\left(\max \left(x^{*}, x(t)\right)\right)-F(x(t)) \\
& \geq O P T-F(x(t))
\end{aligned}
$$

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Proof Sketch

- $v(t)=F(x(t))$ satisfies $\frac{d v}{d t} \geq O P T-v$.
- Differential equation $\frac{d v}{d t}=O P T-v$ with boundary condition $v(0)=0$ has a unique solution

$$
v(t)=O P T\left(1-e^{-t}\right)
$$

- $v(1) \geq O P T(1-1 / e)$

Implementation Details

Continuous Greedy Algorithm (F, \mathcal{P}, ϵ)

(1) $x(0) \leftarrow \overrightarrow{0}$
(2) For $t \in[0, \epsilon, 2 \epsilon, \ldots, 1-\epsilon]$

- Let $y(t) \in \operatorname{argmax}_{y \in \mathcal{P}}\{\nabla F(x(t)) \cdot y\}$
- $x(t+\epsilon) \leftarrow x(t)+\epsilon y(t)$
(3) Return $x(1)$

When F is multilinear extension of submodular f, and $\mathcal{P}=\mathcal{P}(\mathcal{M})$ for matroid \mathcal{M}.

- $\nabla F(x)$ is not readily available, but can be estimated "accurately enough" using poly (n) random samples from $D(x)$, w.h.p.
- Step 2 can be implemented because \mathcal{P} is solvable
- Discretization: Taking $\epsilon=1 / O\left(n^{2}\right)$ is "fine enough"
- Both the above introduce error into the approximation guarantee, yielding $1-1 / e-1 / O(n)$ w.h.p
- This can be shaved off to $1-1 / e$ with some additional "tricks".
- The following algorithm takes x in matroid base polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$, and non-decreasing cross-convex function F, and outputs integral y with $F(y) \geq F(x)$

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry
(1) Let T be a minimum-size tight set containing a fractional entry

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T), i \in T$ for some i with $x_{i} \in(0,1)$, and $|T|$ is as small as possible.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.
- The following algorithm takes x in matroid base polytope $\mathcal{P}_{\text {base }}(\mathcal{M})$, and non-decreasing cross-convex function F, and outputs integral y with $F(y) \geq F(x)$

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry
(1) Let T be a minimum-size tight set containing a fractional entry

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T), i \in T$ for some i with $x_{i} \in(0,1)$, and $|T|$ is as small as possible.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

Theorem

On input $x \in \mathcal{P}_{\text {base }}(\mathcal{M})$, Pipage rounding terminates in $O\left(n^{2}\right)$ iterations, and outputs a matroid vertex y with $f(y)=F(y) \geq F(x)$.

PipageRounding ($\mathcal{M}, x, F)$

While x contains a fractional entry
(1) Let T be a minimum-size tight set containing a fractional entry

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T), i \in T$ for some i with $x_{i} \in(0,1)$, and $|T|$ is as small as possible.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

Step 1

- T is a subset of every other tight set containing i, because tight sets form a lattice
- A lattice is a family of sets closed under intersection and union.
- Proof:
- Tight sets are the minimizers of the set function $\operatorname{rank}_{\mathcal{M}}(S)-x(S)$
- This set function is submodular.
- Minimizers of a submodular function form a lattice.

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry
(1) Let T be a minimum-size tight set containing a fractional entry

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T), i \in T$ for some i with $x_{i} \in(0,1)$, and $|T|$ is as small as possible.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

Step 2

- Since rank is integer valued, any tight set containing fractional variable should have another.

PipageRounding (\mathcal{M}, x, F)

While x contains a fractional entry
(1) Let T be a minimum-size tight set containing a fractional entry

- i.e. $x(T)=\operatorname{rank}_{\mathcal{M}}(T), i \in T$ for some i with $x_{i} \in(0,1)$, and $|T|$ is as small as possible.
(2) Let $j \in T$ be such that $j \neq i$ and x_{j} is fractional.
(3) Let $x(\mu)=x+\mu\left(e_{i}-e_{j}\right)$, and maximize $F(x(\mu))$ subject to $x(\mu) \in \mathcal{P}(\mathcal{M})$.
(4) $x \leftarrow x(\mu)$.

Step 3+4

- Either the number of fractional variables decreases, or a smaller tight set containing x_{i} or x_{j} is created.
- Why smaller? T remains tight, and if R is a new tight set then by lattice property so is $T \bigcap R$

- Therefore this terminates in $O\left(n^{2}\right)$ iterations
- $F(x)$ does not decrease by definition of step 3

To summarize

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Theorem

On input x, Pipage rounding terminates in $O\left(n^{2}\right)$ iterations, and outputs a matroid vertex y with $f(y)=F(y) \geq F(x)$

To summarize

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Theorem

On input x, Pipage rounding terminates in $O\left(n^{2}\right)$ iterations, and outputs a matroid vertex y with $f(y)=F(y) \geq F(x)$

- Efficient implementation of continuous greedy algorithm follows from matroid optimization and basic concentration bounds
- Efficient implementation of each iteration of Pipage rounding will be on HW

To summarize

Theorem

In the limit as $\epsilon \rightarrow 0$, the continuous greedy algorithm outputs a $1-1 / e$ approximation to maximizing $F(x)$ over \mathcal{P}.

Theorem

On input x, Pipage rounding terminates in $O\left(n^{2}\right)$ iterations, and outputs a matroid vertex y with $f(y)=F(y) \geq F(x)$

- Efficient implementation of continuous greedy algorithm follows from matroid optimization and basic concentration bounds
- Efficient implementation of each iteration of Pipage rounding will be on HW

Theorem

The continuous greedy algorithm followed by Pipage rounding gives a ($1-1 / e$) approximation algorithm for maximizing a monotone, normalized, and submodular function subject to a matroid constraint.

