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Abstract

Subjective judgments are an essential but problematic information source for science and
policy — problematic, because there are no public criteria for assessing judgmental
truthfulness.  I present a scoring method for eliciting truthful subjective data in situations
where objective truth is unknowable. The method assigns high scores, not to the most
common answers, but to answers that are more common than collectively predicted, with
predictions drawn from the same population.  This simple adjustment in the scoring
criterion removes all bias in favor of consensus: Truthful answers maximize expected
score even for respondents who believe that their answer represents a minority view.



Subjective judgment, from expert and lay sources, is woven into all human
knowledge. Surveys of behaviors, attitudes, and intentions are a research staple in
political science, psychology, sociology and economics (1). Subjective expert judgment
drives environmental risk analysis, business forecasts, historical inferences, artistic and
legal interpretations (2).

The value of subjective data is limited by its quality at the source — the thought
process of an individual respondent or expert. Quality would plausibly be enhanced if
respondents felt as if their answers were being evaluated by an omniscient scorer, in
possession of the truth (3). This is the situation with tests of objective knowledge, where
success is defined as agreement with the scorer’s answer key, or, in the case of forecasts,
an observable outcome (7). Such evaluations are rarely appropriate in social science,
because the scientist is reluctant to impose a particular definition of truth, even were one
available (8).

Here I present a method of eliciting subjective information, designed for
situations where objective truth is intrinsically or practically unknowable (9). The method
consists of an ‘information-scoring’ system that induces truthful answers from a sample
of rational, i.e., Bayesian, expected-value maximizing respondents. Unlike other
Bayesian elicitation mechanisms (12-14), the method does not assume that the researcher
knows the probabilistic relationship between different responses. Hence it can be applied
to novel questions, by a researcher who is a complete outsider for the domain. Unlike
earlier approaches to ‘test theory without an answer key’ (8), or the Delphi method (15),
it does not privilege the consensus answer. Hence, there is no reason for respondents to
bias their answer toward the likely group mean. Truthful responding remains the correct
strategy even for someone who is sure that their answer represents a minority view.

The ‘surprisingly common’ criterion.  Instead of using consensus as a truth
criterion, my method assigns high scores to answers that are more common than
collectively predicted, with predictions drawn from the same population that generates
the answers. Such responses are surprisingly common, and the associated numerical
index is called an information-score. This adjustment in the target criterion removes the
bias inherent in consensus-based methods, and levels the playing field between typical
and unusual opinions.

The scoring works at the level of a single question. For example, we might ask:

(i) What is your probability estimate that humanity will survive past the year
2100 (one hundred point probability scale)?



(ii) Will you vote in the next presidential elections (Definitely / Probably /
Probably Not / Definitely Not)?

(iii) Have you had more than 20 sexual partners over the past year (Yes / No)?
(iv) Is Picasso your favorite twentieth-century painter (Yes / No)?

Each respondent provides a personal answer and also a prediction of the empirical
distribution of answers, i.e., the fraction of people endorsing each answer. Predictions are
scored for accuracy — for how well they match the empirical frequencies. The personal
answers, which are the main object of interest, are scored for being surprisingly common.
An answer endorsed by 10% of the population against a predicted frequency of 5% would
be surprisingly common and would receive a high information score; it would be a
surprisingly uncommon, hence low scoring, answer if predictions averaged 25%.

The surprisingly common criterion exploits an overlooked implication of
Bayesian reasoning about population frequencies, namely, that in most situations one
should expect that others will underestimate the true frequency of one’s own opinion or
personal  characteristic. This implication is a corollary to the more usual Bayesian
argument that the highest predictions of the frequency of a given opinion or characteristic
in the population should come from individuals who hold that opinion or characteristic,
because holding the opinion constitutes a valid and favorable signal about its general
popularity (16, 17).  People who, for example, rate Picasso as their favorite should — and
usually do (18) — give higher estimates of the percentage of the population who shares
that opinion, because their own feelings are an informative ‘sample of one’ (21). It
follows, then, that Picasso lovers — who have reason to believe that their best estimate of
Picasso popularity is high compared to others’ estimates — should conclude that the true
popularity of Picasso is underestimated by the population. Hence, one’s true opinion is
also the opinion that has the best chance of being surprisingly common.

The validity of this conclusion does not depend on whether the personally truthful
answer is believed to be rare or widely shared. For example, a male who has had more
than 20 sexual partners [answering question (iii)] may feel that few people fall in this
promiscuous category. Nevertheless, according to Bayesian reasoning, he should expect
that his personal estimate of the percentage (e.g., 5%) will be somewhat higher than the
average of estimates collected from the population as a whole (e.g., 2%). The fact that he
has had more than 20 sexual partners is evidence that the general population — which
includes persons with fewer partners — will underestimate the prevalence of this profile.

Truth-telling is individually and collectively optimal. Truth-telling is
individually rational in the sense that a truthful answer maximizes expected information-



score, assuming that everyone is responding truthfully [hence it is a Bayesian Nash
equilibrium (23)]. It is also collectively rational in the sense that no other equilibrium
provides a higher expected information-score, for any respondent. In actual applications
of the method, one would not teach respondents the mathematics of scoring or explain the
notion of equilibrium. Rather, one would like to be able to tell them that truthful answers
will maximize their expected scores, and that in arriving at their personal true answer
they are free to ignore what other respondents might say. The equilibrium analysis
confirms that under certain conditions one can make such a claim honestly.

The equilibrium results rest on two assumptions. First, the sample of respondents
is sufficiently large so that a single answer cannot appreciably affect empirical
frequencies (24). The results do hold for large finite populations but are simpler to state
for a countably infinite population, as is done here.  Respondents are indexed by r Œ
{1,2,…}, and their truthful answer to a m-multiple choice question by tr= (t1

r,.., tm
r) (tk

r  Œ
{0,1}, Sk!xk

r  = 1). tk
r is thus an indicator variable having value one or zero depending on

whether answer k is or is not the truthful answer of respondent r.  The truthful answer is
also called a personal opinion or characteristic.

Second, respondents treat personal opinions as an 'impersonally informative’
signal about the population distribution, which is an unknown parameter, w = (w1,..,wm) Œ
W (25).  Formally, I assume common knowledge (26) by respondents that all posterior
beliefs, p(w |!tr), are consistent with Bayesian updating from a single distribution over w,
also called a common prior, p(w), and that: p(w |!tr) = p(w |!ts) if and only if!tr= ts.
Opinions thus provide evidence about w  but the inference is impersonal: respondents
believe that others sharing their opinion will draw the same inference about population
frequencies (27). One can therefore denote a generic respondent with opinion j by tj, and
suppress the respondent superscript from joint and conditional probabilities: Prob{ tj

r =1 |
ti

s =1} becomes p(tj|ti), etc..
For a binary question one may interpret the model as follows.  Each respondent

privately and independently conducts one toss of a biased coin, with unknown probability
wH   of heads.  The result of the toss represents his opinion.  Using this datum, he forms a
posterior distribution, p(wH  |!tr), whose expectation is the predicted frequency of Heads.
For example, if the prior is uniform, then the posterior distribution following the toss will
be triangular on [0,1], skewed toward Heads or Tails depending on the result of the toss,
with expected value of 1/3 or 2/3. However, if the prior is not uniform but strongly biased
toward the opposite result, i.e., Tails, then the expected frequency of Heads following a
Heads toss might still be quite low. This would correspond to a prima facie unusual
characteristic, such as having more than 20 sexual partners within the previous year.



An important simplification in the method is that I never elicit prior or posterior
distributions, only answers and predicted frequencies. Denoting answers and predictions
by xr = (x1
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r) (xk

r  Œ {0,1}, Sk!xk
r  = 1), and yr = (y1

r,.., ym
r) (yk

s ≥ 0,  Skyk
s  = 1),

respectively, I calculate the population endorsement frequencies, xk , and the (geometric)
average, yk , of predicted frequencies,
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Instead of applying a preset answer key, we evaluate answers according to their
information-score, which is the log-ratio of actual-to-predicted endorsement frequencies:

Information-score  for answer  k = log xk
yk

(1)

At least one answer will have a non-negative information-score. Variance in predictions
tends to lower all yk  and hence raises information-scores.

The total score for a respondent combines the information-score with a separate
score for the accuracy of predictions (28):

Score for respondent r  =  Information-score + Prediction score
 
 
= xk

r  log  xk
yk

∑
k

  +   a  xk log yk
r

xk
∑
k

,       0 < a  ≤ 1.

(2)

Equation 2 is the complete payoff equation for the game. It is symmetric, and zero sum if
a=1.  The first part of the equation selects a single information-score value, as xk

r =0 for
all answers except the one endorsed by r.  The second part is a penalty proportional to the
relative entropy (or Kullback-Leibler divergence) between the empirical distribution and
r's prediction of that distribution (29, 30). The best prediction score is zero, attained when
prediction exactly matches reality, yk

r  = xk .  Expected prediction score is maximized by
reporting expected frequencies, yk

r = E{xk|tr} (2). The constant a  fine-tunes the weight
given to prediction error.

To see how this works in the simple coin-toss setting, imagine that there are only
two equally likely possibilities — either the coin is fair, or it is unfair in which case it
always comes up Heads. A respondent who privately observes a single toss of Tails
knows that the coin is fair, and predicts a 50-50 split of observations. A respondent



observing Heads lowers the probability of fairness from the prior 1/2 to a posterior of 1/3,
in accord with Bayes’ rule, which in turn yields a predicted (i.e.,  expected) frequency of
1/6 for Tails (multiplying 1/3 by 1/2).  From the perspective of someone observing Tails,
the expectation of others’ predictions of the frequency of Tails will be a mix of
predictions of 1/2 (from those tossing Tails) and 1/6 (from those tossing Heads), yielding
a geometric mean clearly lower than her predicted frequency of 1/2.  Hence, she expects
that Tails will prove to be more common than predicted and receive a positive
information-score. By contrast, Heads is expected to be a surprisingly uncommon toss,
because the predicted frequency of 1/2 is lower than the expectation of others’
predictions, which is a mix of 1/2 and 5/6 predictions. A similar argument would show
that those who draw Heads should expect that Heads will prove to be the answer with the
high information-score.

The example illustrates a general property of information-scores, namely, that a
truthful answer constitutes the best guess about the most surprisingly common answer, if
“best” is defined precisely by expected information-score, and if other respondents are
answering truthfully and giving truthful predicted frequencies. This property does not
depend on the number of possible answers or the prior (31). It leads directly to the
equilibrium result (proof in the Supporting Online Material):

Theorem  Assume that: (i) every respondent r with opinion tr forms a posterior over
the population distribution of opinions, p(w|tr), by applying Bayes’ rule to a
common prior p(w); (ii)  p(w|tr) = p(w|ts) if and only if tr = ts; and (iii) scores are
computed according to equation 2. Then,

(T1) Truth-telling is a Nash equilibrium for any a>0:  Truth-telling maximizes
expected total score of every respondent who believes that others are
responding truthfully;

(T2) Expected equilibrium information-scores are non-negative, and attain a
maximum for all respondents in the truth-telling equilibrium;

(T3) For a=1, the game is zero-sum, and the total scores in the truth-telling
equilibrium equal:  log!p(w |tr) + K, with K set by the zero-sum constraint.

Truth-telling is defined as truthful answers, xr = tr,  and truthful predictions, yr = Ep{w |tr}.
T2 states that although there are other equilibria, constructed by mapping multiple true
opinions into a single response category or by randomization, these less revealing
equilibria result in lower information-scores for all respondents. If needed, one can



enhance the strategic advantage of truth-telling by giving relatively more weight to
information-score in equation 1 (32). For sufficiently small a, the expected total scores in
the truth-telling equilibrium will Pareto-dominate expected scores in any other
equilibrium.  T3 shows that by setting a=1 we also have the option of presenting the
survey as a purely competitive, zero-sum contest. Total scores then rank respondents
according to how well they anticipate the true distribution of answers. Note that the
scoring system asks only for the expected distribution of true answers, Ep{w | tr}  and not
for the posterior distribution p(w |tr), which is an m-dimensional probability density
function. Remarkably, one can infer which respondents assign more probability to the
actual value of w  by means of a procedure that does not elicit these probabilities directly.

Respondents can freely ignore how others will answer.  In previous economic
research on incentive mechanisms it has been standard to assume that the scorer (or the
‘center’) knows the prior and posteriors and incorporates this knowledge into the scoring
function  (12-14, 33). In principle, any change in the prior, whether caused by a change in
question wording, in the composition of the sample, or by new public information, would
require a recalculation of the scoring functions. By contrast, my method employs a
universal ‘one-size-fits-all’ scoring equation, which makes no mention of prior or
posterior probabilities. This has three benefits for practical application. First, questions do
not need to be limited to some pre-tested set for which empirically estimated base rates
and conditional probabilities are available; instead, one can use the full resources of
natural language to tailor a new set of questions for each application. Second, it is
possible to apply the same survey to different populations, or in a dynamic setting (which
is relevant to political polling).  Third, one can honestly instruct respondents to refrain
from speculating about the answers of others while formulating their own answer.
Truthful answers are optimal for any prior, and there are no posted probabilities for them
to consider, and perhaps reject.

These are decisive advantages when it comes to scoring complex, unique
questions.  In particular, one can apply the method to elicit honest probabilistic
judgments about the truth-value of any clearly stated proposition, even if actual truth is
beyond reach and no prior is available. For example, a recent book, Our Final Century,
by a noted British astronomer, gives the chances of human survival beyond the year 2100
at no better than 50:50 (34).  It is a provocative assessment, which will not be put to the
test anytime soon. With the present method, one could take the question: “Is this our final
century?” and submit it to a sample of experts, who would each provide a subjective
probability and also estimate probability distributions over others’ probabilities. T1
implies that honest reporting of subjective probabilities would maximize expected



information-score. Experts would face comparable truth-telling incentives as if they were
betting on the actual outcome, e.g., as in a futures market (10), and that outcome could
be determined in time for scoring.

I illustrate this with a discrete computation, which assumes that probabilities are
elicited at 1%  precision via a hundred-point multiple-choice question (in practice, one
would have fewer categories, and smooth out the empirical frequencies). The population
vector w = (w00,..,w99) indexes the unknown distribution of such probabilities among
experts. Given any prior, p(w), it is a laborious but straightforward exercise to calculate
expected information-score as function of true personal probability and endorsed
probability. Fig. 1, lines A90 and B90, present the result of such calculations, with two
different priors pA(w), and pB(w), for experts who happen to agree that the probability of
disaster striking before 2100 is 90%. The experts thus share the same assessment but
have different theories about how their assessment is related to the assessment of others.
Although lines A90 and B90 differ, the expected information-score is in both cases
maximized by a truthful endorsement of 90%. This confirms T1. In both cases, each
expert believes that his subjective probability is pessimistic relative to the population:
The expectation of others’ probabilities, conditioned on a personal estimate of 90%, is
only 65% with  pA(w), and 54% with pB(w).

If the subjective probability shifts to 50%, the lines move to A50, B50, and the
optimum, in both cases, relocates to 50%.  Hence, the optimum automatically tracks
changes in subjective belief — in this case the subjective probability of an unknown
future event — but is invariant with respect to assumptions about how that belief is
related to beliefs of other individuals. Changing these assumptions will simply lead back
to the same recommendation — to truthfully report subjective probability.

Respondents are thus free to concentrate on their personal answer and need not
worry about formulating an adequate prior. Any model of the prior is likely to be
complex and involve strong assumptions. For example, in the calculations in Fig. 1, I
assumed that experts’ estimates are based on a private signal, distributed between zero
and one, representing a personal assessment of the credibility of evidence supporting the
bad outcome.  The ‘credibility signal’ is a valid, but stochastic indicator of the true state
of affairs:  On the bad scenario, credibility signals are independent draws from a uniform
distribution, so that some experts ‘get the message’ and some do not; on the good
scenario, they are independent draws from a triangular distribution, peaking at zero (no
credibility) and declining linearly to one (full credibility). A prior probability of
catastrophe then induces a monotonic mapping from credibility signals to posterior
probabilities of catastrophe, as well as a prior over experts’ probability estimates, p(w).



Lines A and B differ in that the prior probability of catastrophe is presumed to be 50%
for line A, and 20% for line B.  Expected scores are higher for B, because the 90%
estimate is more surprising in that case.

One could question any of the assumptions of this model (35). However, changing
the assumptions would not move the optimum, as long as the impersonally informative
requirement is preserved. (The impersonally informative requirement means that two
experts will estimate the same probability of catastrophe if and only if they share the
same posterior distribution over other experts’ probabilities). Thus, even though
information-scoring conditions success on the answers of other people, the respondent
does not need to develop a theory of other people’s answers —  the most popular answer
has no advantage at being the ‘winning one,’ and the entire structure of mutual beliefs, as
embodied in the prior, is irrelevant.

Proper scoring of probabilities.  It is instructive to compare information-scores
with scores that would be computed if the Scorer had a crystal ball, and could score
estimates for accuracy. The standard instrument for eliciting honest probabilities about
publicly verifiable events is the logarithmic proper scoring rule (2, 7, 11). With the rule,
an expert who announces a probability distribution z = (z1,.., zn) over n mutually
exclusive events would receive a score of,

K +   log zi (3)

if event i  is realized. For instance, an expert whose true subjective probability estimate
that humanity will perish by 2100 is 90% but who announced a possibly different
probability z, would calculate an expected score of 0.9!log z + 0.1!log(1-z), assuming,
again, that there was some way to establish the true outcome. This expectation is
maximized at the true value, z=0.90, as shown by line PS90 in Fig. 1 (elevation is
arbitrary).  It is hard to distinguish proper scoring, which requires knowledge of the true
outcome, from information-scoring, which does not require such knowledge (36).

Informational boundary conditions.  There are two generic ways in which the
assumption of an impersonally informative prior might fail.  First, a true answer might
not be informative about population frequencies in the presence of public information
about these frequencies (inducing a sharp prior). For instance, a person’s gender would
have minimal impact on their judgment of the proportion of men and women in the
population. This would be a case of tr≠ ts but p(w |!tr) @ p(w |!ts), and the difference
between expected information-scores for honest and deceptive answers would be



virtually zero (though still positive). As shown below, the remedy is to combine the
gender-question with an opinion question that interacts with gender.

Second, respondents with different tastes or characteristics might choose the same
answer for different reasons, and hence form different posteriors. For example, someone
with nonstandard political views might treat her liking for a candidate as evidence that
most people will prefer someone else.  This would be a case of :  p(w |!tr) ≠ p(w |!ts)
although tr= ts.   Here, too, the remedy is to expand the questionnaire, allowing the person
to reveal both the opinion and characteristic.

A last example, an art evaluation, illustrates both remedies. The example assumes
existence of experts and laymen, and a binary state-of-nature — that a particular artist
either does or does not represent an original talent. By hypothesis, art experts recognize
this distinction quite well, but laymen discriminate poorly and, indeed, have a higher
chance of enjoying a derivative artist than an original one. The fraction of experts is
common knowledge, as are the other probabilities (given in Table 1).

In the Short Version of the survey, respondents only state their opinion; in the
Long Version, they also report their expertise. Table 1 displays expected information
scores for all possible answers, as function of opinion and expertise. With the Short
Version, truth-telling is optimal for experts but not for laymen, who do have a slight
incentive to deceive if they happen to like the exhibition. With the Long Version,
however, the diagonal, truth-telling entries have highest expected score. In particular,
respondents will do better if they reveal their true expertise even though the distribution
of expertise in the surveyed population is common knowledge.

Experts receive higher scores.  Expected information-scores in this, and other
examples, reflect the amount of information associated with a particular opinion or
characteristic.  In Table 1 experts have a clear advantage even though they comprise a
minority of the sample, because their opinion is more informative about population
frequencies.  In general, the expected information-score for opinion i equals the expected
relative entropy between distribution p(w|tk,ti) and p(w|tk), averaged over all tk.  In words,
the expected score for i is the information-theoretic measure of how much endorsing
opinion i shifts others’ posterior beliefs about the population distribution. An expert
endorsement will cause greater shift in beliefs, because it is more informative about the
underlying variables that drive opinions for both segments (37). This measure of impact
is quite insensitive to the size of the expert segment, or to the direction of association
between expert and non-expert opinion.

By establishing truth-telling incentives, I do not suggest that people are deceitful
or unwilling to provide information without explicit financial payoffs.  The concern,



rather, is that the absence of external criteria can promote self-deception and false-
confidence even among the well-intentioned. A futurist, or an art critic, can comfortably
spend a lifetime making judgments without the reality checks that confront a doctor,
scientist, or business investor.  In the absence of reality checks, it is tempting to grant
special status to the prevailing consensus.  The benefit of explicit scoring is precisely to
counteract informal pressures to agree (or perhaps to ‘stand out’ and disagree).  Indeed,
the mere existence of a truth-inducing scoring system provides methodological
reassurance for social science, showing that subjective data can — if needed — be
elicited via a process that is neither faith-based (‘all answers are equally good’) nor
biased against the exceptional view.(39)
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Figure and Table Captions

For Figure 1

Figure 1 illustrates how expected information-score is maximized by a truthful
report of  subjective belief in a proposition (i.e., that 'this is our final century'),
irrespective of priors (A or B) or subjective probability values (50% or 90%).
Line A90 gives expected score for different reported probabilities when true
personal estimate of catastrophe is 90% and prior probability is 50%. It is optimal
to report 90% even though that is expected to be an unusually pessimistic
estimate. Changing the prior to 20% (line B90) increases expected scores but does
not displace the optimum. Changing subjective probability to 50% shifts the
optimum to 50% (A50 assumes a 50% prior, B50 a 20% prior). Standard proper
scoring (expectation of eq. 3, displayed as line PS90) also maximally rewards a
truthful report (90%).  However, proper scoring requires knowledge of the true
outcome, which may remain moot until 2100.

For Table 1

An incomplete question can create incentives for misrepresentation. The first pair
of columns give the conditional probabilities of liking the exhibition as function
of originality (so that, for example, Experts have a 70% chance of liking an



original artist). It is common knowledge that 25% of the sample are Experts, and
that the prior probability of an original exhibition is 25%. The remaining columns
display expected information-scores. Truth-telling is optimal in the Long Version,
but not in the Short Version of the survey.



Probability of opinion
conditional on quality

of exhibition

Expected score for
reported opinion and expertise level

LONG VERSION
SHORT

VERSION

If
original

If
derivative

Expert
claims
Like

Expert
claims
Dislike

Layman
claims
Like

Layman
claims
Dislike

Like Dislike

Like 70% 10% +575!    -776 -462 +67 +191! -57
Expert
opinion

Dislike 30% 90% -934 +95! +84 -24 -86 +18!

Like 10% 20% -826 +32 +45! -18 -66 +12!Layman
opinion

Dislike 90% 80% -499 -156 -73 +2! -6#  -4!!  

Table 1


