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Here is a self-contained proof of the theorem stated in the paper.  There is a

countably infinite population of respondents, indexed by r, s,..  Œ  I = {1,2,…}, who all
face a common multiple-choice question, with m possible answers.  The private  ‘signal’
for respondent r is given by the m-dimensional unit vector tr Œ Em, having value one on
the coordinate corresponding to the true answer for respondent r and value zero on all
other coordinates. A generic respondent holding opinion i is denoted by ti (hence
superscripts refer to individuals, subscripts to classes of individuals; i.e., tr refers to the
opinion of a specific respondent r Œ I, while ti refers to a respondent player holding
opinion i).

Each respondent endorses one answer and predicts the fraction of respondents that
will endorse each possible answer. The answer is represented by the n-dimensional unit
vector xr = (x1

r,.., xm
r) Œ Em, (xk

r  Œ {0,1},  Sk xk
r  = 1), and prediction by a relative

frequency distribution yr = (y1
r,.., ym

r)  Œ Dm (i.e., an element from the unit simplex in Rm,
yk

r ≥ 0,  Skyk
r  = 1).  xk

r  has value one or zero depending on whether person r has or has
not endorsed answer k; yk

r is r's estimate of the proportion of players who will endorse k.
(x,y) is the (countably infinite) vector of answers and predictions.

The score of any respondent depends on his answer, his predictions, and on the
empirical averages:
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  log yk
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xk  is the average frequency of answer k, and yk  the geometric average of the predicted
frequencies of response k.  We set yk=0 if yk

r=0 for some r, and also set log(0/0) = 0, and
0 log(0) = 0.

The score for player r, as function of (x,y), is:



ur(x,y)  = xk
r  log  xk

yk
∑
k

 +  a xk log  yk
r
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∑
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 .

The first term, or the information-score, picks out log(xk /yk) that corresponds to the
answer endorsed by respondent r.  The second term is the prediction score.

Information assumptions
There are three information assumptions, which hold for any finite subset S =

{r,…,s} of respondents,

(A1)  There exists a common prior p(tr,…,ts) over opinions of member  of S.

(A2) The prior is exchangeable: p(tr,…,ts) = p(tp(r),…,tp(s)), for all permutations,
p, defined on the set S.

(A3) Different opinions imply different posterior distributions: p(• |tr) = p(•!|ts)
implies tr = ts.

 (A1) is a standard assumption in Bayesian game theory (26).  (A2) is critical.  By
De"Finetti’s theorem (25), it implies the existence of a probability distribution p(w) on W
= Dm, which expresses the common prior as a joint distribution of conditionally
independent random variables,

p(tr,..,ts)  = p (tq |w) p(w) dw P
q Œ S

W
 

 p(tkr|w) = wk = 1
nlim

nÆ•
tk
q∑

q = 1

n
.

(S1)

In other words, respondents believe that their opinions are independent, conditional on
the population frequency of opinions, w.  The assumption of conditional independence
may be invoked directly rather than derived from exchangeability. However,
exchangeability highlights the key underlying property, that respondents with the same
opinion have the same posterior beliefs about the distribution of opinions in the



population. The final assumption (A3) is a version of stochastic relevance (13); it only
affects whether the truth-telling Nash equilibrium is strict.

Strategies in Bayesian Nash Equilibrium
The answer strategy of player r is a function xr(tr) = (x1

 r(tr),.., xm
 r(tr)) : Em Æ Dm,

indicating if player r's truthful answer is tr, he will give answer xk with probability xk
r(tr).

An answering strategy is truthful if xr(tr) = tr.  The prediction strategy of player r is
likewise a function yr(tr) = (y1

 r(tr),.., ym
 r(tr)): Em Æ Dm, indicating that if player r's holds

opinion tr, he will predict that a fraction yk
r of the population will give answer k. We don’t

need to consider randomized predictions, because the payoff function is strictly convex in
yk

r.   The pair (x r(tr),y r(t r)) is then a strategy for player r.  (x(t),y(t)) denotes all players’
strategies, and (x-r(t-r),y-r(t-r)) the strategies of all players except player r.  (x(t),y(t)) is
collectively truthful if all answers are truthful and if predictions are consistent with
Bayes’ rule.

Definition    (x(t),y(t)) is a Bayesian Nash Equilibrium (BNE) if for all players r,
answers xk

r, and predictions yr,

E{ur(x(t),y(t)) | tr} ≥ E{ur(xr, yr, x-r(t-r),y-r(t-r)) | tr},  for all xr Œ Em,  yr Œ Dm.

A BNE is strict if the inequality is strict.

Theorem 1  If (A1)-(A3) hold, then collective truth-telling is a strict Bayesian
Nash Equilibrium.

Proof   If everyone tells the truth, then the population averages are:
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Consider an individual with opinion i, and who believes that everyone else is truth-
telling. Which answer should he endorse to maximize expected score?  Because the
expected prediction error does not depend on his answer, we can ignore the second part
of the scoring equation, and concentrate on the information-score. If he endorses answer
j, the expected information-score is:
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(S3a) takes the expectation of  log(xj / yj ), with respect to the posterior distribution,
p(w|ti), and (S3b) follows from collective truthfulness, (5). (S3c) uses conditional
independence to write wk p(w|ti) as p(w,tk,|ti). (S3d) follows from (S3c) by Bayes’ rule. In
(S3e) we use conditional independence again to write wj as p(tj|w), and then to insert
p(tk|tj,w)|p(tk|w) = 1, into the fraction. (S3f) then follows by Bayes’ rule.

One can now compare the expected information-score associated with truthfully
endorsing answer i and falsely endorsing some other answer j:
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The inequality follows from Jensen’s inequality (29), and is strict if (A3) holds. This
proves that a truthful answer maximizes expected information-score, assuming that all
other answers and predictions are truthful.

It remains to show that predictions should be truthful as well.  This time we can
ignore the information-score, and calculate expected prediction-score conditional on
opinion i:
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This presumes truthful answers, so that xk = wk.   The second expectation does not involve
yk.   Hence, the score-maximizing prediction of the proportion of k-answers, is the
expected frequency of answer k, or, equivalently, the probability that randomly selected
person holds opinion k:  yk = E{wk |ti} = p(tk|ti).

This completes the proof that collective truth-telling is a strict Bayesian Nash
Equilibrium.  We now turn to,



Theorem 2  If (A1)-(A3) hold, then the following are true for all respondents:

(a) the expected information-score in any Bayesian Nash Equilibrium is non-
negative,

(b) the expected information-score is (weakly) greater in the truth-telling
equilibrium than in any other Bayesian Nash Equilibrium.

Proof (a)    The expected information-score is obtained by setting j=i in (S3):

E{ ln xi
yi

 | ti } =   p(tk | ti)  p(w | tk ,ti) ln p(w |tk ,ti)
p(w |tk)  dw

W
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k = 1

m
(S6)

This is the relative entropy between the distribution p(w|tk,ti) and p(w|tk), averaged over
all tk.  It measures how much knowing ti improves other players’ forecast of w (also
called “expected utility of data,” regarding ti as ‘data,’ Proposition 2.31 in (25)).  The
expression attains a minimum value of zero in the case where i's answer does not change
others’ forecasts of w.  This proves 2a.

Proof (b)    We consider the joint distribution q(w, x) induced by a particular Bayesian
Nash  equilibrium, (x(t),y(t))  (the marginal of q then coincides with p, q(w)=p(w)). The
expected information-score for endorsing answer j when the true opinion is i equals:
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This is similar to (S3), except that the substitution in (S7b) no longer assumes a truth-
telling equilibrium.

We now expand the relative entropy between q(w, x|ti,tk) and q(w, x|tk) in two
different ways, conditioning first on w and then on x:
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(S8a) only involves the marginal of q(w, x) with respect to w, so we can replace q with p;
(S8b) equals zero, because x is fully determined by w. Now we can write (S8a) as (S9a),
and expand (S8c) into (S9b) and (S9c):
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Summing  up over all tk gives an expression that relates the expected information-score in
truth-telling equilibrium and expected  information-score in the alternative equilibrium:
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(S10a) is the expected information-score in the truth-telling equilibrium; (S10b) is
identical to (S7f) which is the expected information-score for endorsing j in some other
equilibrium; (S10c) and (S10d) are relative entropies, hence positive. This proves that
expected information-score can only decrease in a non-truth-telling equilibrium.

Theorem 3  If (A1)-(A3) hold and a=1, then the game is zero-sum, and the total
score for a respondent with opinion i in the truth-telling equilibrium equals:

log p(w |ti) +  K.

Proof   For a=1, the scoring equation is:
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The average total score across all respondents than equals zero, as:
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To calculate total score in the truth-telling equilibrium, we need to supplement the
expression for expected information-score (S6) with an analogous expression for
expected  prediction-score.  Truth-telling implies that yk = p(tk|ti) in Equation S5:
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This is also a relative entropy, of the distribution p(w|tk) and p(w|tk,ti), averaged over all
tk.  It measures (negatively) the entropy reduction in i's beliefs about w produced by
learning another person’s opinion k. The expected prediction-score is zero when
knowledge of others’ answers would not change i's beliefs about w.



The expected total score in the truth-telling equilibrium now combines (S6) and
(S11):
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The ex-post score for a person who endorses i, when the population average is w, is then:

wk ln p(w |ti)
p(w |tk)  =  ln p(w |ti)  -  wk ln p(w |tk) ∑

k = 1

m
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k = 1

m

The second  term is a constant, determined by the zero-sum constraint. This proves
Theorem 3.


