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@© Journal of the American Statistical Association
December 1971, Volume 66, Number 336
Theory and Methods Section

Elicitation of Personal Probabilities

LEONARD J. SAVAGE*

and Expectations

Proper scoring rules, i.e., devices of a certcin class for eliciting a person's prob-
abilities and other expectations, are studied, mainly theoretically but with some
speculations about application. The relation of proper scoring rules to other eco-
nomic devices and tfo the foundations of the persondlistic theory of probability is
brought out. The implications of various restrictions, especially symmetry restric-
tions, on scoring rules is explored, usually with a minimum of regularity hypothesis.

1. INTRODUCTION
1.1 Preface

This article is about a class of devices by means of
which an idealized komo economicus—and therefore, with
some approximation, a real person—can be induced to
reveal his opinions as expressed by the probabilities that
he associates with events or, more generally, his personal
expectations of random quantities. My emphasis here is
theoretical, though some experimental considerations
will be mentioned. The empirical importance of such
studies in many areas is now recognized. It was empha-
sized for the area of economics in an address by Trygve
Haavelmo [28, p. 357]:

I think most of us feel that if we could use explicitly such
variables as, e.g., what people think prices or incomes are
going to be, or variables expressing what people think the
effects of their actions are going to be, we would be able to
establish relations that could be more accurate and have
more explanatory value. But because the statistics on such
variables are not very far developed, we do not take the
formulation of theories in terms of these variables seriously
enough. It is my belief that if we can develop more explicit
and a priori convincing economic models in terms of these
variables, which are realities in the minds of people even if
they are not in the current statistical yearbooks, then ways
and means can and will eventually be found to obtain actual
measurements of such data.

A special instance of the central general principle of
this article was recognized long ago by Brier [5], the
general principle itself was briefly but colorfully an-
nounced by McCarthy [37], and a considerable literature
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pertaining to it has grown up, some of which will be cited
in context and most of which can be found through the
references cited, especially the recent and extensive [52]
and others that I call “key references.”

Bruno de Finetti and I began to write the present
article in the spring of 1960, not yet aware of our predeces-
sors and contemporaries. The impetus was de Finetti’s,
for he had brought us to rediscover McCarthy’s [37]
insight about convex functions. We expected to make
short work of our “little note,” but it grew rapidly in
many directions and became inordinately delayed. Now
we find that the material in the present article is largely
mine and that de Finetti has published on diverse aspects
of the same subject elsewhere [12, 13, 14, 17]. De Finetti
has therefore withdrawn himself from our joint authorship
and encouraged me to publish this article alone, though
it owes so much to him at every stage, including the final
draft.

The article is written for a diverse audience. Conse-
quently, some will find parts of it mathematically too
technical, and others will find parts too elementary. If
each skips what puzzles or bores him he will, I hope, find
the rest reasonably complete for him.

1.2 Summary

The bare essentials of the economic theory of personal
probability and expectation are introduced (Section 2).
Various difficulties in principle that beset the evaluation
of preferences such as those that determine the price at
which a man is just willing to sell his car or the probability
for him that the car will shortly need a new muffler are
discussed (Section 3).

A probability is a price, in a manner of speaking. More
accurately, it is a marginal rate of substitution. Such
rates can be elicited by a general mode of behavioral
interrogation rather like one that has been proposed for
ordinary prices (Section 4). These methods admit mathe-
matically special cases that seem to be of particular
interest (Section 5).

The rate-eliciting methods, both general and special,
are examined with reference to probabilities and expec-
tations (Section 6). The methods of eliciting personal
probabilities thus arrived at can also be approached
through the ideas of statistical decision theory (Section 7,
and this decision-theoretic method provides a relatively
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new basis due to de Finetti for defining personal prob-
ability (Section 8).

The methods are generalized to simultaneous elicitation
of several rates, probabilities, or expectations (Section 9).
This vectorial discussion concludes with a prominent
special case in which the subject’s income depends only
on that event among disjoint and exhaustive possibilities
that actually occurs.

Aspects of possible applications are discussed (Section
10). These include domains of possible application,
impediments to application, and ecriteria for choice
among the methods.

2. RATES OF SUBSTITUT!ION AND PROBABILITY
AND EXPECTATION

A man who owns some of a commodity, say wheat, will,
under suitable circumstances, be almost indifferent both
to buying and selling modest quantities of it at a certain
price per bushel, his (marginal) rate of substitution of
cash for wheat.

Money payable subject to a contingency, such as the
accidential burning of a house or the outcome of a race,
can be regarded as a commodity [4]. Such commodities
are explicitly dealt in by insurance companies and book-
makers, and we encounter them implicitly wherever we
make decisions in the face of uncertainty. There is reason
to postulate that an ideally coherent person has a rate of
substitution P(4) for money contingent on the event A.
When ¢ is not too large, he is indifferent to buying or
selling ¢ dollars contingent on A for ¢P(4) dollars out-
right, and P(4) is defined as the probability of A for the
person [9]. Though the relationship can, because of the
nonlinearity of the utility of money, be expected to hold
only in the limit for infinitesimal values of ¢, I shall
usually write as though it were exact. This limitation is
serious, though a technique for creating utility-free cur-
rency and other ways to avoid the effects of nonlinear
utility will be mentioned in the next section.

Let U denote the logically certain event and A and B
any two logically incompatible events. For an economi-
cally coherent person,

P(U) =1,P(4) 20, P(A or B) = P(A) + P(B), (2.1)

as shown in [9]. Thus, such a person’s P is a (finitely
additive) probability measure.

If a finite sequence {A,,} of events is a partition (that
is, if every pair of them is incompatible but one or another
of them obtains), then

> P(4,) =1, 2.2)

as follows from (2.1).

To orient the reader in the critical literature on per-
sonal probability, the commentary and bibliography of
[47] might be useful. Excellent early papers are repub-
lished, in English, in [31]. Some more recent ones are
[51, 18, 16, 17]. An extensive bibliography with special
reference to experimental aspects is [19].
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More general than the notion of the probability of an
event is that of the expectation of a random quantity.
Let {A4,} be a partition and {»,} a corresponding se-
quence of numbers; the two together can be regarded as
the random quantity V that takes the value v, if A4,
obtains. If a person’s probability of A, is p,, what ought
he pay for the simultaneous offer of ¢V dollars, that is,
for gv; dollars in case A, obtains, gv. dollars in case A,
obtains, ete.? Viewing ¢V as a commodity bundle con-
sisting of gv; units of one commodity, gv. units of another,
ete., the answer (always for moderate ¢) is clearly

gE(V) = q 2 ps,

or ¢ times the expectation of V.

A probability P(A) is itself plainly an expectation,
namely E(l4), where I4 is the random quantity that is 1
if A obtains and 0 if 4 does not obtain. The event A and
its associated random quantity 74 can, to considerable
advantage, be rigorously regarded as two aspects of one
object, simply denoted by A [15]. Thus it is meaningful
and convenient to write P(4)=E(4).

A random quantity V need not be defined in terms of a
partition nor need it have only a finite number of possible
values; it may be simply any (ordinarily) unknown,
empirically determinable number. For the unknown pay-
ment ¢V, the person is presumably willing to exchange
some definite payment ¢F (V). The rate of substitution
E(V) is the person’s expectation of the unknown, or
random, quantity V. (In practice, V would be bounded;
mathematically, it can be useful to consider some un-
bounded ¥V and to exclude others.)

2.3)

3. SOME DIFFICULTIES IN THE EXPERIMENTAL
ELICITATION OF PREFERENCES

The difficulties mentioned in this section are mainly
tangential to the present article. Some of them have little
or no bearing on the particular situation to be studied;
others are here treated as secondary for the time being.
The first type are mentioned only to emphasize the ad-
vantage of a certain method of eliciting prices and rates
of substitution, including probabilities and expectations;
and the others are mentioned to warn of their existence.

Many conceptual experiments on preference will pre-
sumably remain conceptual only, some because their
financial cost is prohibitive and others because they imply
immoral or impractical interference with people’s lives.
For example, experiments to determine directly what risk
of pauperhood a person will take to avoid spending a
hundred dollars or to gain a million dollars are literally
fantastic. This does not of course preclude learning some-
thing indirectly : from the behavior of buyers of insurance
and of gamblers and speculators [23, 24]; or by asking
subjects to introspect about hypothetical choice; or by
observing changes of economic behavior that follow
changes in the policies of governments, firms, and other
institutions; or in other ways.

Statistical problems and difficulties arise in empirical



Personal Probabilities

studies of preference, as they do in all empirical studies.
A more special, but perhaps related difficulty, is that all
subjects report, or otherwise reveal, that they do not
know their own preferences; they experience wavering
and indecision that cannot be identified with mere in-
difference. See, for example, [47, pp. 21, 59, 168-9; 18,
Section 26; 45; and 22 under “Indifference, Intransitive”
in the Index].

Another difficulty peculiar to experiments on prefer-
ence is that once an experimenter satisfies one preference
of a subject, he may quite drastically change the sub-
ject’s pattern of preferences. The thirsty man who now
prefers water to wine and wine to whiskey might fail to
reveal this in an experiment in which he is first offered his
choice between wine and water and then, his thirst
quenched with water, is offered his choice between wine
and whiskey. A related phenomenon is illustrated by the
subject who accepts whiskey (perhaps for later con-
sumption) in preference to wine because he suspects that
the experimenter will shortly be offering him an oppor-
tunity to obtain water. Such difficulties arise in any at-
tempt to study the gambling (and insuring) preferences of
a subject. They are particularly evident and important
in experiments to determine the demand price or the
offer price of a subject for a specific object or service.

One interesting device for coping with such difficulties
was pointed out to me by W. Allen Wallis in 1949 or 1950
and was independently exploited by Allais [2] in experi-
ments conducted in 1952. Let the experimenter put the
subject successively in several hypothetical choice
situations always with the understanding that, when all
the subject’s choices have been expressed, one of them
will actually be implemented by a chance device that,
plain to the subject, has no direct connection with the
situations of interest. For instance, a subject asked to
rank half a dozen tickets to plays, concerts, and athletic
events in the order of his preference will, insofar as he is
rational, do so sincerely if he understands that the tickets
are to be thoroughly shuffled and that he will be given
that one of the top two tickets for which he has indicated
preference.

The following application of the same general principle
was introduced by Marschak [33, 34]. The experimenter
malkes a sealed bid for an object in the subject’s possession
and the subject, before seeing this bid, puts an “asking
price” on the object. The sale takes place at the bid price,
if and only if the bid is at least as high as the asking
price. It is clearly to the advantage of the subject to name
his actual offer price, at least if he is not in a position to
exclude the possibility of bids in some neighborhood of
this price; and even in that exceptional case, there is no
advantage in naming any other price. (The procedure can
evidently be so modified that the subject is the buyer
rather than the seller.)

Actual subjects are of course sometimes blind to their
own clear advantage [34; 35, p. 47], failing, for example,
to understand that they can only deprive themselves by
asking too much. It is no final criticism of such a method
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to say that subjects do not automatically and instine-
tively understand it or that, understanding, they have
psychological difficulty in doing the rational thing. Such
facts do underline the need for education and training
prior to, and even during, the application of elicitation
devices. Incidentally, such education promises to be of
great general benefit to the subject and deserves wide
promulgation on its own account.

Marschak’s method does not depend on the hypothesis
that the utility of money is linear, but throughout most
of this article, this hypothesis is relied upon. The hypothe-
sis is presumably a valid approximation if only small
transactions are involved. Still better, there would be no
approximation at all if payments were made in utiles
rather than in money, which may sometimes be roughly
feasible.

A certain scheme for effecting payments in utiles is
vividly suggested by Smith [50, Section 13]. If, to para-
phrase Smith, the currency used consists of tickets in a
one-prize lottery, which the subject is known to regard as
fair and independent of all the uncertainties that are of
direct interest for the experiment, then the subject’s util-
ity for this currency is linear, though the transactions may
be very substantial. Of course for this scheme to be valid,
the utility of the prize to the subject must not depend on
the outcome of events that are of interest. For example,
a lottery in which the prize is a diamond would obviously
not provide a valid utility-free currency for exploring a
subject’s opinions about the future of the diamond
market.

In principle, the utility function of a subject for ordi-
nary money can be determined by certain elicitation ex-
periments that give operational meaning to utility. With
this function known, the experimenter would know the
utility worth to the subject of any proposed payment
(positive or negative) and could arrange to make pay-
ments in utiles. Practical limitations on this scheme and
on the one in the preceding paragraph are severe, but the
ideas are at least sufficiently suggestive to be worth
bringing out [57, 60].

The linear approximation seems adequate for many
applications. Where it is not quite adequate, much can
be said for taking as the next approximation a function
for the utility of money of the form

(1 — e?*)/A 3.1)

(Any function of the form b—ae*, with a and X of like
sign, would of course amount to the same thing; the
choice of the constants @ and b made in (3.1) emphasize
that the proper interpretation of A =0 is linear utility, be-
cause, for fixed x and small A, (3.1) is approximately
[1—(1—X2)]/A==2.) For almost all applications A would
be positive, which is why a minus sign was introduced in
the exponent of (3.1). A person who is just willing to toss
a fair coin for $10.00 if he receives a side payment of
$0.10 exhibits a N of about .0020 per dollar. To show that
a person’s utility for money is adequately described by
(3.1) in some range of practical interest and to determine
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the value applicable to him may in some contexts provide
a practical basis for paying him in utiles.

Taken literally, the exponential utilities described what
I would call a perfect miser, a person who does not neces-
sarily rank lotteries, and the like, simply by their ex-
pected cash value but whose rankings do not fluctuate
with his own wealth at the moment. Within sufficiently
narrow limits, any person’s utilities can be expected to be
practically linear. When these limits are somewhat ex-
ceeded so that nonlinearity must be taken into account,
there should be new limits within which the great experi-
mental simplification of miserly behavior can still be
safely assumed as an approximation. Miserly utility, or
utility with constant local risk aversion, seems to have
been introduced by Pratt [43].

4. THE ELICITATION OF A RATE OF SUBSTITUTION

Some of the difficulties mentioned in the previous sec-
tion tend to disappear when the investigation is confined
to rates of substitution, of which probabilities are for this
paper the prime example. First, the transactions en-
visaged are then moderate, almost by definition, so that
typically the experiments that suggest themselves are not
grandiose. Second, the satisfaction of one preference here
has ideally no effect on the subject’s other preferences,
though in practice there can well be a conflict between
keeping the transactions small enough to avoid important
manifestations of saturation (or of nonlinear utility, as
we say in connection with probability or expectation) and
yet large enough to justify the subject’s close attention.
Possible remedies for this conflict, at least in probabilistic
cases, were mentioned in Section 3. Finally, by means of
devices related to Marschak’s method mentioned there, it
is possible to present a subject with a single, relatively
simple, economic choice in which it is to his interest to
reveal any reasonable number of his rates of substitu-
tion, as will now be explained for the case of a single rate.

Suppose the experimenter offers, once and for all, to
buy some of a commodity at each possible price—more
accurately price rate—so much at each rate. The subject
will then have an incentive to satisfy the expressed de-
mands of the experimenter at all rates higher than the
subject’s rate r but not those at lower rates, thereby re-
vealing 7.

In mathematical terms, the experimenter offers, for a
certain non-negative “schedule of demands” f, to buy

[ s @y
z<p
units of the commodity at a total cost of
[ esrae (42)
z<p

for any number z named by the subject. From the sub-
ject’s own viewpoint, his income from such a transaction,
as a function of z, is
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I(z;7)

—r f S@dn+ f 0

(4.3)
~ [ =i
z<p

Plainly, and in correspondence with the verbal argument
that preceded this paragraph, the income I(z; r) will be
maximized when z=r, and for that z alone if f(p) is posi-
tive near r on both sides. If, for example, f(p) =p~?* for
positive p, then I(z; r)=(2z—1)/(2x%), I(z; r)—I(r; r)
= —(z—r)?/(2rz?) <0 for all positive r.

The mathematical analogy between this device for
eliciting a rate and Marschak’s device (discussed in
paragraph 6 of Section 3) for eliciting a price is notable.
The possibility that r is negative, in which case the sub-
ject regards the commodity as a nuisance, is not neces-
sarily excluded but can often be eliminated from practical
consideration. The experimenter might then be content,
as in the example above, to define f only for positive
prices. Similarly, the experimenter could with impunity
attach 0 density to preposterously high prices.

With abbreviations, (4.3) reads

I(z;7) = blx)r + c().

The experimenter is therefore in effect offering to give the
subject c(z) units of cash and b(z) units of the com-
modity for any number z chosen by the subject. The vital
feature of the functions b and ¢, which is automatically
assured if b and ¢ are of the form implied by (4.3) with
positive f, is that

I(z;r) = b(@)r + c(x) < b(r)r + c(r) =J(7),

with equality if and only if z=r, where J(r) has been in-
troduced as an abbreviation for I(r, r).

The sort of b and ¢ induced by (4.4) with a positive f
satisfies (4.5), but what can be said of the most general
solution of (4.5)? In this problem, it is to be understood
that z and r have a common convex range, such as all real
numbers, the non-negative real numbers, or the real
numbers between 0 and 1, inclusive or not. (A reader not
familiar with convex sets and convex functions may find
[47, Appendix 2] helpful here and elsewhere in the present
article.) What (4.5) requires is that, for each fixed z, the
function I (z:r), which is linear in r, lies strictly below the
function J except at x, where the linear function and J
have the common value I (z; z) =J (z). In short, I (z; ) is,
for each z, a linear function of support of J at the point z,
and only there. This implies that J is a strictly convex
function of r. Such a function J often has only one linear
function of support at a given z, its tangent at x, but
wherever J has a corner, it has more than one support.

Conversely, let J be any strictly convex function of r,
well behaved at the endpoints of the range of r if there are
any (thatis, neither discontinuous nor vertical there), and
let I(z; r) be any support of J at x. This I evidently
satisfies (4.5). (Examples of bad behavior at the endpoint
0 when the range is the non-negative reals: if J(0) =1 and

(4.4)

(4.5)
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J(z) =x? elsewhere, then J is strictly convex but dis-
continuous and very much without a linear function of
support at 0; if J (x) = —x'/%, J is strictly convex and con-
tinuous but still has no linear function of support at 0.)

Any convex function J has, at each interior z, left and
right derivatives J.(z) and Jr(). If z<y, Jr(x) <Jr(x)
<Jr(y)<Jr(y), and the middle inequality is strict if J is
strictly convex. The slopes of the supports at z are the
numbers between J 1 (z) and J z(z) inclusive. There is just
one such slope if and only if this interval degenerates to a
single number, which is then the derivative J’(z). Since
b(x) is between J1(x) and Jg(x), the function b is non-
decreasing—strictly increasing if J is strictly convex.
Consequently, except on an at most denumerable set of
points, b is continuous, and except at just those points, b
is the derivative of its indefinite integral. The points of
continuity of b are the points of differentiability of J, and
at those points, J'(z) =b(x).

The function b determines J and ¢ except for an addi-
tive constant k; thus

J(x) = f by)dy + k =b@)x + clx) +k  (4.6)

If J is twice differentiable at x, then, as (4.6) makes
clear, b and ¢ are differentiable there, and therefore

ble) =J'(x) = b(z) + b/ (x)x + ' (z). 4.7

Whence
V(x)x = — (z). (4.8)

1f, therefore, J’ is absolutely continuous (that is, an in-
definite integral of its own derivative where defined), and
f denotes J'’; then

1@ =~ [ oot [ o tdrte @9

where d and e are constants. Thus, under a rather mild
regularity hypothesis, (4.3) is the general solution of (4.5),
except for a relatively unimportant linear term. This term
expresses the possibility of the experimenter’s making the
subject outright gifts (possibly negative) of d units of the
commodity and e units of cash. Such a gift can have no
rational influence on the subject’s choice (if his utility is
linear in the commodity and in cash), though it might
play some practical role, such as insuring that an experi-
mental subject will in net be paid, not penalized, for his
cooperation.

Though the integral approach to the problem is of some
interest and is not of seriously limited generality for one
commodity (especially when extended by Stieljes-like in-
tegrals), it does not, over all, seem as useful and informa-
tive as (4.5) and will not be central to this article.

-A convenient form for I(z; r) is often

I(@;r) =J (@) + b@)(r — 2)
=J(@) +J'(@)(r — 2),
where the final line is applicable only if J’(z) exists.

(4.10)
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The loss to the subject if he (irrationally) replies with «

when his rate is actually r is
L(xz;r) = 1I(r;r) — I(z;7)
=J(@r) — I(z;7)
=J@r) —J(@&) — bx)@r — z)
=J(@r) —J@) —J' @) — ),

(4.11)

where once more the final line is applicable only where the
derivative J'(x) exists.

The function L, and equivalently I, has an easily de-
rived and useful monotonicity [6, p. 43; 30, p. 44], ac-
cording to which it not only pays to choose x equal to » but
to keep any unavoidable discrepancy small. Namely, if =
is between r and 2, then L(x; r) <L(z; r), with strict in-
equality if J is strictly convex and z>z. Since L is non~
negative and b is nondecreasing, the following identity
makes this evident.

L(z;r) — L(z;7)

=J@) —J@ —b@)(r—2) +J@)( —2)

=J@) —J@ — b@@ —2) + [b@) — b@)]@ — 1)

= L(z; z) + [b(2) — b(@)](z — 7). (4.12)

5. SOME SPECIAL FORMS FOR THE
ELICITING FUNCTION

5.1 Loss as a Function of Discrepancy; L(x; r)=H(x —r)

One suggestive, and possibly desirable, way of limiting
the choice of the convex function J is to require the sub-
ject’s loss L(z; r), if he replies with  when r is his true
rate, to be a function only of his discrepancy x—r. Let us
then investigate the consequences of supposing that
L(z; r)=H(z—r) for some function H, non-negative and
0 at 0 but not 0 everywhere. As the remaining paragraphs
of this subsection are devoted to showing, this condition
is so restrictive that L(z; r) must be of the form k(x—r)?
for some positive constant k. (This result has indepen-
dently been derived with slightly less generality by
Brown [6].)

According to (4.11),

Hx—1) =J@F) —J(@) — b)) — 2). (5.1)

To see the sort of implication latent in (5.1), suppose for
the moment that b and J are defined for all sufficiently
small |z| and |r|; as is rather intuitive and as will later
be explicitly shown, this entails no real loss of generality.
Under the simplifying assumption, an instance of (5.1)
for |2| and |r| small is

H@ —r) =H(—-r) — (=) 5.2)
=J(—z) — J(=71) = b(—1)(r — z).

Therefore

J@) +J(—=7) + b(—r)r — b(—1r)z

(5.3)
=J() +J(—z) — blx)x + b(z)r.
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In particular,
J(@) + J(=7) + b(—=r)r = 2J(0) + b0)r, (5.4)
2J(0) — b(0)z = J(x) + J(—z) — b(x)z. (5.5)
By means of (5.4) and (5.5), simplify (5.3) thus.
2J(0) 4+ b(0)r — b(—n)z
20— 0t v o0
or
[b@@) — bO]r = [6(0) — b(=n) ]z, (6.7

s0 b(z) is linear in z, at least for || small.

To see that b is linear near every z in the interior of its
domain of definition, and therefore linear throughout the
interior, let 4=z—z, #=r—2z, b(u)=b(z+u), and J(u)
=J(z+u). Since (z—r)=(£—7), the circumflexed func-
tions and variables also satisfy (5.1), so b is linear for [ xI
small, that is, b is linear near z, as asserted, and con-
sequently linear everywhere, with the (temporarily)
possible exception of the endpoints of the domain of
definition.

Armed with this information and the fact that H is non-
negative but not identically 0, a reader familiar with the
theory of the Cauchy-Hamel equation [1, Section 2.1]
could easily show (from (5.1) alone) that H(zx—r)
=k(xz—r)? for some positive k. But it is more elementary
to recall that b(x) =2kxz+-1is the slope of a line of support
of J at z. Since this slope is continuous in z, J is differ-
entiable, and according to (4.6),

J(2) = kx® + Iz +m, (5.8
with some positive k&, and according to (4.10),
I(@;r) =J(@) +J'(@)(r — 2)
=kt lz+m+ @ —2)Qkx+1) (5.9

= 2kzx + Dr — kx? + m.

And indeed, for any J of the form (5.8), according to
4.11),
Lz;r) =J(r) — I(z;7)
= ket 4 Ir +m — {[2kx + Ur — ka? +m}
=k(x — )3,

(5.10)

as anticipated.

(The possibility that the linearity of b might fail at the
endpoints of the interval of definition has been left open
but can easily be removed by means of (5.1) and what has
now been proved.)

5.2 Symmetry; L(x; r}=L(r; x)

Another suggestive condition is that the loss for reply-
ing with ¢ when r applies should be the same as that for
replying with » when « applies; that is, L(z; r) =L(r; ).
This condition too leads to (5.8), (5.9), and (5.10).

Briefly, the demonstration is as follows.
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0 = L(z;r) — L(r; 2)
= [b(r) + @)@ —r) +2[J () — J(@)].

Consider the two equations that result from (5.11) on re-
placing (z, r) first by (r, 2) and then by (2, z), and add all
three equations to conclude that

blx)@z — 1) + b)) (@ —2) +b(R)(r —1x) =0. (5.12)

Therefore b(x) is linear, and the passage to (5.8), (5.9),
and (5.10) can be made as before. Or it can be made thus.
When the form b(z) =2kxz-+1/2 is substituted into (5.11),
J(z) is seen to be of the form kxz?4-lx4m.

Quadratic J’s are, then, not only the simplest convex
functions from the algebraic point of view; they are char-
acterized also by the condition that L(x; r) is a function of
z—r and by the condition that L(z; r) = L(r; x).

(6.11)

5.3 Ratio Discrepancy; L(x; r)=Hl(r/x)

When z ranges over the positive real numbers, the pos-
sibility that L(z; r) is of the form H(r/x) might be in-
teresting. This condition too is very restrictive;it implies
that J, I, and H are of the compatible forms:

Jr)=m+Ulr —klogr, (5.13)
Ix;r) =m+k—klogz) + (I — k/x)r, (5.14)
H) = k(u — 1 — log u), (5.15)

with & positive. The demonstration occupies the rest of
this subsection.
To begin with,

H(r/z) =J@F) —J(@) —J'@)(r —1x), (5.16)

except for the at most denumerable set of  where J'(z) is
not well defined. Therefore, as is seen on differentiating
with respect to r,

1/n)H'(r/x) = J'(r) — J'(z), (5.17)

whenever both derivatives on the right exist. Since these
two derivatives do exist except on an at most denumer-
able set, a sequence of conclusions follows one after an-
other:

H is differentiable everywhere; so is J; (5.16) and (5.17)
hold without exception; (5.16) can be differentiated on
both sides with respect to z;

—(/e)H' (r/2z) = — (r — 2)J"(x); (5.18)
J is twice differentiable everywhere; and
rJ'(r) — rJ'(x) = z(r — )" (x). (5.19)

Regarded as a differential equation for J in r, (5.19) easily
implies (5.13); (4.10) then implies (5.14); and (4.11) im-
plies (5.15). Since J as defined by (5.13) is strictly convex
and results in (5.14) and (5.15), the system is indeed
compatible.

5.4 Attempted Generalization; L(x; r) = Hl{g(r)—g(x))

Now consider the seemingly rather general possibility
that L(z; r) is of the form H(g(r) —g(x)). The special
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cases g(z) = —z and ¢(z) =log = have already been con-
sidered. What other functions g are compatible with some
strictly convex J? I am content here to examine the
question under the simplifying assumption that g is dif-
ferentiable and has a strictly positive derivative on the
domain of J.

The derivation of (5.19) can be recapitulated to con-

clude that
J'(r)  (r—a) J'(x)
gr) g g'(r)
Since the right side of (5.20) cannot change with z, and
since J'(x) is not constant, 1/¢’(r) must be linear in r.

If this linear funection is constant, it can without loss of
generality be taken to be 1, with return to (5.8), (5.9),
and (5.10). Incidentally, (5.20) specialized by setting
g’=1 provides thus an alternative route to (5.8), (5.9)
and (5.10).

If 1/¢'(r) is linear but not constant, then it is to all in-
tents and purposes of the form (r—=z) for some z below
the domain of J or of the form (2—7) for some z above the
domain of J. In the first case, for example, g(r) =log
(r—z)+const.; and L(z;r) is of the form G((r—z)/(x—2)),
which is virtually the form that led to (5.13), (5.14) and
(5.15). The introduction of ¢ has therefore led to no really
new forms of 7, J, and L.

For J defined on the unit interval, it might seem in-
teresting to seek L(x; r) of the form H(r(1—z)/(1—r)z).
But that would imply the existence of a g(r) of the form
log r—log (1 —r), which has been shown to be impossible.

J"(x) +

(5.20)

6. PROBABILISTIC INTERPRETATION
6.1 Application to a Probability as a Rate of Substitution

Suppose that an experimenter, in an effort to elicit the
probability p that a subject associates with an event D,
invites the subject to choose a number  and promises to
pay him Y (z) in case D obtains and Z(z) in case D does
not obtain. For what pairs of functions Y and Z will it be
to the subject’s interest to choose x equal to p?

If p is interpreted as the subject’s rate of substitution
of dollars for the commodity consisting of dollars that are
contingent on D, then the experimenter is in effect offer-
ing the subject Z(x) dollars in cash and Y (z) —Z () units
of the commodity. The worth of such a gift to the sub-
ject is

[Y@) — Z@)]p + Z(z)
Y(@)p + Z(x)(1 — p),

which is an instance of (4.4) with p, Y(x)—Z(x), and
Z(z) playing the roles of r, b(z), and ¢(z).

Therefore Y and Z accomplish the objective if and
only if

I(z; p) 6.1)

It

J(p) = Y(p)p + Z(p)(1 — p)
Y(p) — (Y(p) — Z(p))1 — p)

=Z(p) + (Y(p) — Z(p))p

(6.2)
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is a strictly econvex function of p, and I(z;p) is inp a
linear function of support of J at z. At values of p where
J is differentiable, according to (6.1),

J'(p) = Y(p) — Z(p), (6.3)

so at such values, according to (6.2) and (6.3),
Y(p) =J(p) + (1 — p)J'(p) (6.4)
Z(p) =J () — pJ'(p). (6.5)

The loss entailed by choice of  when p applies is
Lz;p) = [Y(0) = Y@ Ip+ [Z(0) — Z@) |1 —p), (6.6)
which is ordinarily—that is, if J is differentiable—

L(z;p) =J(p) —J (@) —J'(@)(p —2), (6.7)

as in (4.11).

The conditions that J is quadratie, that L(z; p) is a
function of p—=, and that L(z; p)=L(p; x) are, accord-
ing to Section 5, all equivalent. In this special case, (6.4)
and (6.5) can be put in the suggestive forms

Y(p) =m’ — k(1 — p)?, (6.8)
Z(p) =m — kp?, (6.9)

which correspond to
J(@) =m'p+m(l — p) —kp(1 —p). (6.10)

In any real application, p is between 0 and 1, and it
might seem natural to confine the range of choice of z to
the interval from 0 to 1 inclusive. However, if z is not so
confined, a subject who chooses <0 or z>1 exposes
himself to utterly unnecessary loss for any strictly con-
vex J. In fact, according to the monotonicity pointed out
in the final paragraph of Section 4, for any p in the in-
terval [0, 1], L(z; p)>L(1; p) if x>1, and L(x; p)
> L(0; p) if z<0.

6.2 Application to an Expectation as a Rate of Substitution

Since the probability of an event D is the expectation
of the same D regarded as an indicator, extension of the
method of eliciting probabilities just discussed to the
elicitation of the personal expectation r of any random
quantity V is to be anticipated. And this is indeed
straightforward. If the experimenter offers to pay the
subject b(z) V+c(x) for any x chosen by the subject, the
worth to the subject of choosing z is

I(z;r) = b@)r + c(x), (6.11)
so the loss for choosing « instead of r is
L(z;r) = [b() — b@)]r + [e(r) — c@@)]. (6.12)

For this to be positive if and only if z differs from r means,
as shown in Section 4, that J(r) =b(r)r4c(r) is strictly
convex and b(z)r+c¢(x) isin r a linear function of support
of J at z.

If, for example, the subject feels certain that ¥V <a for
some constant «, his r=E(V) cannot exceed a. And in
fact it is to his advantage to choose & rather than any x
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larger than a, as can be verified thus. The difference in
worth between these two choices is

[b(@ = b@)]V + fe(@) — ()]

= Lz; V) — L(a; V). (6.13)

In view of the monotonicity mentioned at the end of
Section 4, (6.13) is therefore negative if 2> a. Thus what-
ever the actual value of V may be—not greater than o—
the subject will receive more for choosing « than for
choosing any larger number.

6.3 The Most General Eliciter of an Expectation

Is b(x)v+c(xr) the only possible form for a function
S(z; v) for which

E@S@; V) < E(S(r; V)

for all z different from r=E(V)? The answer cannot
quite be “yes,” because to any such S it is clearly possible
to add f(V) with f any function for which E(f(V)) is finite
for the class of distributions envisaged for V. But little
if any further extension is possible if (6.14) is to hold for a
reasonably large class of distributions for V, as the next
four paragraphs demonstrate. Even this slight extension
is nugatory in case V is the indicator of an event, that is,
in case E(V) is a probability, because when V takes only
two values, any function f is linear on that pair of values.

To begin with, let S(z; v) be defined for all  and v in
an interval, and let (6.14) hold for every V that is subject
to a 2-point distribution in that interval. Specialized to a
V that takes the values » and »" with probabilities p and
p=1—p, (6.14) takes the form:

pS(xz; v) + pS(x; v")
< pS(pv + pv'; v) + DS(pv + Pv'; '),

unless x =pv+pv’.
For z interior to the interval of definition and S dif-
ferentiable in z,

(6.14)

(6.15)

a a
p—8(;0) +p—8(x;0) =0 (6.16)

ox ox
if x=pv+pv’. That is, if v<z<+v' and the derivatives
exist at z, then

a a
@ —1x) —8@x;v) = @—x) —8S(x;v). (6.17)

oz ax

Therefore, if S is everywhere differentiable with respect
to « (more generally, if S is absolutely continuous in x for
each v), then S(z; v) is of the form b(@)v+c(x)+f(v) as
anticipated. This conclusion obtains even without any
differentiability assumption, as will be shown in the next
paragraph for those who share an interest in such points.

According to (6.15), the function

@' — 2)8S(x;v) + (x — v)S(x;v") (6.18)
is convex in x and has
S(x; v") — S(zx; v) (6.19)
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among its slopes of support at &. Therefore the functions
(6.18) and (6.19) are of bounded variation in z, whence so
is S(z; v) for each v. Let So and S: be the singular and the
absolutely continuous parts of S with respect to z, ren-
dered unique by the convention that Sy(z¢; v) =0 for some
zo and for arbitrary ». Since (6.18), being convex, is
absolutely continuous, So(z; v) = (@ —x)S¢(z; v’)/(® —2)
and is therefore of the form by(x)v+co(z). (Now, the argu-
ment employed when S was assumed to be absolutely con-
tinuous applies almost unmodified to Si, the absolutely
continuous part of S.)
An important and widely known example is

S(x;0) = — (x —v)2 = — x? + 220 — v

For it is central to the theory of least squares that this S
satisfies (6.14) according to the following familiar cal-
culation.

E[@z — V)] = E{[x — E(V)) — (BE(V) — V)]*}

7. DECISION THEORY

A different approach to the problem of determining
those functions Y and Z that encourage a subject to re-
veal his true p is implicit in statistical decision theory, as
will now be explained.

Imagine a person in an economic situation in which he
is free to choose one of several acts and knows that if he
chooses the act a he will receive a payment of Y(a) dol-
lars in case the event D obtains and Z(a) dollars in case
D does not obtain. If the person’s probability for D is p,
the worth of the act a to him is

I(a; p) = Y(@)p + Z(a)(1 — p),

a linear function of p. The worth to him of the situation
in which he is free to choose among a finite set of acts a
is therefore the function

(7.1)

J(p) = max I(a; p). (7.2)
a

Indeed, any act a for which the maximum is attained is

worth J(p) to him and no available act is worth more.

The function J(p) is evidently convex.

When an infinite set of acts is envisaged, little changes,
especially if the set is such that the maximum required by
(7.2) is attained. With an unrestricted infinite set of acts,
J can be an arbitrary continuous, convex function. (If
the end points p =0 and p =1 are to be included and if the
maximum is to be attained, J cannot be permitted to be
vertical at those points.) If J is strictly convex, a person
choosing a support of J will reveal his value of p; for no
linear function supports a strictly convex function at
more than one point.

The original problem of characterizing functions ¥ and
Z that will elicit the person’s true p can now be envisaged
thus. For each number z, say in the interval from 0 to 1,
an act is made available to the subject that will pay him
Y (z) dollars in case D obtains and Z(x) dollars otherwise.
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For what functions Y and Z will it be optimal for the
person to choose = equal to his p, no matter what p may
be? As the preceding paragraph shows, it is necessary and
sufficient that there be some strictly convex J for which
Y (x)p+Z(x)(1—p) is a line of support at z; and this was
the main conclusion of Section 6.

8. AN ALTERNATIVE DEFINITION OF PROBABILITY

The preceding section suggests an alternative way to
define personal probability and to argue that personal
probability exists. This avenue has been pointed out and
explored by de Finetti, for example, in [13, 17].

Imagine in fact that the very notion of the probability
p attached by a person to the event D has not yet been
defined, and consider a person confronted with the choice
among all those acts @ for which the linear functions
I(a; p) nowhere exceed a specified convex function J(p)
(without vertical endpoints). Suppose that there is one
such act a to which he prefers no other. It would be unrea-
sonable for this a not to be one for which I(a; p) is a line of
support of J(p) at some point p,. For otherwise there
would be an @’ for which 7(a’; p) is a line of support of J
and is parallel to I(a; p), in which case Y(a’)> Y (a) and
Z(a')>Z(a), so that a’ is clearly superior to a.

If J is strictly convex, the unique po for which I(a; p)
is a line of support of J can be defined as the person’s
personal probability of D. But this raises three important
questions: Could a different function J* lead to a dif-
ferent po? Does this definition lead back to the idea of
probability as a rate of substitution? Is probability as
thus defined a probability measure?

To progress toward answering the first two questions,
suppose the person participates simultaneously in two
decision problems of the kind under discussion, one de-
termined by J; and one determined by J. ,where J; and J;
are convex but not necessarily strictly convex. Assume
that he acts in each of the two component problems as he
would if he were faced with that problem alone.

(This assumption is not altogether unobjectionable; for
it may imply that the person’s utility function is linear
in money. But such linearity assumptions are made al-
most throughout the present paper and are presumably
tolerable if only moderate sums of money are involved.
In the purely mathematical formulation of the decision
problems no precautions have been, or need be, taken to
keep these sums moderate, but it is fairly clear how such
precautions could be taken in applying the theory or how
the devices mentioned at the end of Section 3 might be
invoked. I do not attempt great caution about this
point, because my object in this section is only to touch
briefly on an approach to personal probability that may
be more suggestive and more practical in some respects
than such formally more rigorous approaches as those
reported on in [47, Ch. 3].

The linear function of support I;(a;; p) chosen for J;
and the linear function of support Iy(az;p) chosen for J,
should support J; and J; respectively at some common
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point p*, as will be argued. The person, in choosing a;
and ap, has in effect chosen an act a for which I(a; p)
=Ii(a1; p)+1s(az; p). Some linear function of support
I*(p) of J=J1+J; at some point p* is either the same as,
or everywhere higher than, I(a; p). Since, as is not hard
to see, I* can be represented as the sum of linear functions
of support of /1 and J; at p*, I* represents an act (that is,
a choice of a; and a;) that was available to the person.
Therefore his choice of a; and a; is discredited, or seen to
be inadmissible, unless I*(p) =1(a; p) for all p, which is
impossible unless Ii(ar; p*) =J1(p*) and Iy(az; p*)
=Jo(p*) as asserted. This conclusion will yield affirmative
answers to the first two questions.

First, as is now evident, two strictly convex functions
cannot lead to different values of p if the linear-utility
assumption holds and if the person is coherent.

Second, suppose p* has been determined by means of a
strictly convex function J1, and consider also the decision
problem defined by the broken-line convex function J,
with J,(p) =max (rq, pq), where r is a positive fraction and
¢ is a positive number. According to what was proved in
the paragraph before last, the person will prefer ¢ dollars
contingent on D to rq dollars outright if »>p* and vice
versa if r<p*, so p* is indeed a rate of substitution.

A certain approach to the third question, whether prob-
ability as here defined is a probability measure, is best
postponed to the next section. But it can be argued now
that since personal probabilities defined as rates of sub-
stitution constitute a probability measure, the same must
be true for the equivalent new definition.

De Finetti [13] has shown how the approach of this
section applied to conditional probability.

9. THE SIMULTANEOUS ELICITATION OF
SEVERAL RATES

9.1 Vector Rates

When several rates r, are concerned, each can be in-
dependently elicited by means of a function I,(z,; 7,) as
in Section 4, but there are other possibilities.

Generalizing from Section 4, let r={r,} be a finite
sequence of rates, which can advantageously be thought
of as a vector. (Infinite sequences or even functions on an
arbitrary domain might also have a useful interpretation,
for instance, as distribution functions or densities. Vec-
tors without any interpretation as functions could also be
handled and might have applications. Extensions of this
sort are presented by Hendrickson [30].) Let z= {x,} be
a sequence of possible numerical responses of a subject, a
response vector. The experimenter’s aim is to provide the
subject with an incentive to choose z=r by offering to
give ¢(x) units of cash and b,(x) units of the sth commodity
for whatever x is chosen by the subject.

The experimenter may already know something about
r. For example, in the important case of probabilities,
he knows that each probability is between 0 and 1; and
when the r, are probabilities of the elements of a parti-
tion, he knows that they add up to 1. In other cases, it
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will often be known that each r,>0. For still one more ex-
ample, the rate for a certain high quality commodity may
be plainly higher than that of certain other commodities.

It may be to the experimenter’s advantage to ex-
clude all, or at least some, unreasonable values of z.In
particular, he might confine acceptable responses x to
some convex set K—a scheme that gives adequate flexi-
bility for the examples just mentioned. For the moment,
assume that K has at least one extrinsic interior point 2,
that is, a point for which z-Ar = {z,+Ar,} isin K for all
sufficiently small vectors Ar. This temporary simplifica-
tion excludes at least one important example, that of
probabilities p, so constrained that Zp,=1.

With the exception of the expression of I by integrals,
the whole of Section 4 will now easily be paraphrased
with sets, or bundles, or commodities (or, more ab-
stractly, vector commodities) playing the role that a
single commodity played there.

Though the experimenter does not initially know the
vector r, he can in effect offer the subject the income
I(z; r) for choosing the vector x, where

I(z; ) = 2 be(@)rs + c(x) < Z be(r)rs + c(r)
=I(r;r) =J(),

with equality if and only if x=r.

According to (9.1), I(z: r) is, for each z, a strict linear
function of support at z for the function J. Therefore, J
is strictly convex, and virtually all strictly convex func-
tions do lead to at least one I. If K has no boundary
points—and it is seldom if ever important to include
boundary points in K—then every strictly convex func-
tion will serve. If K does have boundary points, then
discontinuities at the boundary points and milder sorts
of misbehavior incompatible with linear functions of
support at the boundary points are to be excluded.

If J is differentiable at the nonboundary point x of K
or, equivalently, if the b,(z) are continuous at z, then

9

9.1)

bs(z) = J(x), 9.2)
9z,
and
c(x) = J(x) — Z, i J(x). (9.3)
ox,

If the b,(x) are continuous for all such z, they obviously
determine J through (9.2), except for an additive con-
stant. (But continuity is not needed for the conclusion
that J is determined except for an additive constant by
the b,.)

The loss incurred by the subject on choosing x when r
applies is

L(z; ) = [J(@r) —J(@)] — 2 be(@) (rs — z2)

] 7@, (9.4)

= @) —J@] = = (re — 22)

0T,

the last line applying only where J is differentiable
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The condition that J(z) be quadratic, that is, of the
form

J(@) = D ke, as + Zlots +m (9.5)
8,t

is equivalent to the condition that L(z; r) depends only

on z—r= {xs—rs} and to the condition that L(x; r)

=L(r; z).

Much the same can be said even without assuming
that K has extrinsic interior points, with slight differences
because it may no longer be possible to change one z,
without changing other components of . Equation (9.1)
and the paragraph following it remain in force, but it now
may be possible to change the individual b,(x) without
really affecting I. The meaning of (9.1) and (9.4) is there-
fore better conveyed by

I(z; ) =b@)() +cl@) LbE)E) +c(r) =J (), (9.6)
Lz;r) =J() —J(@) — b(=)(r — ), 9.7)

where for each z, b(z)(r) is linear and homogeneous in the
vector r and I(x;r) is, as always, a linear function of sup-
port of J at z.

9.2 Vector Expectations

The case of a sequence V= {V,} of random numbers
considered as commodities is important. A little more
generally, V can be a random vector whose values lie in a
finite dimensional convex set K. The random payment
to the subject who chooses the vector z is

b(@)(V) + c(x),

which in V is linear and supports a strictly convex J at .
Where J is differentiable, (9.8) can be suggestively
written as

(9.8)

J(@) +J' @)V — ). (9.9)

As in Subsection 6.3, it can be asked whether there are
functions S(z; v) that elicit the expected value of a vector
V other than S of the form I(z; v)+f(v), where I is as in
(9.6). The negative answer given in Subsection 6.3 is not
hard to generalize, at least under generous regularity
hypotheses.

The interesting and familiar instance of quadratic S
mentioned in Subsection 6.3 has a hardly less familiar ex-
tension to the present, multidimensional, situation. For
if S is a homogeneous, strictly negative-definite, quadratic
function of z—wv, then

E[S@ — V)] = 8@ — E(V)) + E[S(V — E¥)]

> E[S(V — E(V)] (9-10)

if eZE(V).

A subject who feels sure that V is in a specified closed
convex subset K* of K will have E(V) in K* and there-
fore ought not choose an z not in K*. But, under suitable
regularity hypotheses, such an z is also discredited in the
deeper sense that there is a v in K* for which I(v; )
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>I(z; r) for every r in K*. This is demonstrated in the
next paragraph, which is followed by one showing that
some regularity hypothesis is indispensable.

Suppose that J is differentiable in K* and that the
infimum of L(z; r) as a function of r in K* is attained, say
at r=v. Then, for all r in K¥,

L(z;r) =J(r) —J (@) — b(@)(r — 2) ©.11)

>J@) —J(z) —b(@)@ —2) = Lix;v)
0 < L(z;r) — L(z; v)
= [J'®) — b@)](r — v) + o(r —v).
Therefore, [J'(v) —b(z)](r—v)>0 for all r in K* suffi-
ciently close to v; but if such a linear inequality holds for r
in K* close to v, it holds for all » in K*. Put the facts to-
gether, thus.
L(z;r) — L(v, 1)
=J@) —J(@) = b@)(r —2) +J'@)(r —v)
= [J'®) = b@)](r — v) + L(z; v)
=0,

(9.12)

(9.13)

as asserted.

(In one dimension, as has been seen in Subsection 6.2,
no regularity hypothesis is required for this conclusion,
but the following counterexample shows that some such
hypothesis is needed in two and more dimensions. Let
J(z, y)= | xl -I—Iyl +e(z?+y?) for some small positive e.
This J is strictly convex over the whole plane, and I can
be consistently defined thus.

I(z, y; r, 8)=J(z, y)+(sgn z+2ex)(r—z)+(sgn y
+2ey) (s—y).

Let K be the convex set
{x,y:l <2r+y;2<2,y<3)

Then 1(0,0;r, s) =0 for all (r, s), but, for each (z, ) in K,
inf I(z,y;r,s) < —1+0().)

(r,8)EK

The significance of the general conclusion in case of
regularity is particularly vivid if J is quadratic. For then,
in terms of the Euclidean distance associated with the
quadratic function J, (9.13) says that the point » in K*
closest to « is closer to each point of K* than z is. This is
geometrically rather evident and is easy to prove directly
or as an instance of the general argument.

To apply the argument about K*, if the person is sure
that a linear equality or inequality is satisfied by several
random variables V3, - - -, V,, he will expose himself to
needless loss if the 24, - + -, 2, with which he responds to
any regular J do not satisfy this equality or inequality.
In particular, if some V, is sure to be 1, the person should
choose z,=1; if V, is the indicator of an event, he should
choose x, between 0 and 1; if V, is the indicator of the
union of two disjoint events of which V; and V; are the
indicators, he should so choose that z,=xz;+4z;. As these
remarks show, the program for defining probabilities in
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Section 8 does lead to a probability measure for any per-
son who does not blunder. (More completely, the remarks
do lead directly to the anticipated conclusion when the
program is applied to any J that is regular. But, as was
shown in Section 8, all strictly convex J elicit the same
probabilities.)

9.3 Probability Distributions as Vector Expectations

Consider now the case in which the V, (s=1, - - -, n)
are the indicators of the elements of a partition {D,}. All
previous literature on rate elicitation seems to be con-
fined to this important case. (A few references on the
method not mentioned elsewhere in this article are [7,
42, 54].)

Since it is (especially patently for regular J) wasteful
in the present case for the person to choose any z= {:c,}
other than a probability distribution (that is, an z for
which z,>0 and Zz;=1), K can for many applications be
taken to be the simplex of all probability distributions p.
If J(p) is a differentiable function on K, the person who
chooses « will receive I(x; V), which can, in a somewhat
figurative but not unnatural notation, be written,

I@; V) =J(@) +J' @ —2)

thisis figurative because « cannot be varied one coordinate
at a time and remain in the simplex. In case D, is the
event in the partition that actually obtains, this is,

Ix; V) =J@) — 2,J/ @)z + J/ (). (9.15)

The numbers J,'(z) here are not necessarily derivatives
and are determined only up to an additive constant.
(They can of course be so chosen that =J,(x) =0, but the
symmetry of that particular choice ought not to be in-
vested with much importance.) If J is originally defined
not only on the simplex K but, say, for all positive n-tu-
ples of numbers, then the J, () can be taken to be
aJ (x)/dz,, which would not be meaningful on K alone.

One suggestive choice for J, whether on K or on a
larger set, is J(z) ==x,2. In this case, (9.15) on K becomes

Ix; V) =—Zix2+ 2z,

=—(1—2)— Zt;és z2+1 (9.16)
-2 Vi—2)t+1,

Il

that is, 1 minus the square of the usual Euclidean dis-
tance from z to the vector (0,0, - - -, 1, - - -, 0,0) repre-
senting the D, that actually obtains. The final constant 1
is of course not very important in (9.16). Specialized to a
single event D (with indicator V) and its complement,
(9.16) without its 1 becomes

I@;V)=—[V—al—[1-V)— 1 —-a)]
= —2(V —x)*
—2(1 — x)? if D obtains
N {—2952 if D does not obtain.

(9.17)
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If each of the events D, is treated separately according to
(9.17), the net effect is practically the same as that of
using J =Zz,?; it is exactly the same as using 2J —2.

The most general quadratic function of n variables is

J@) = Dni boiae + Do late + m. (9.18)

To this J corresponds
I@; V) =J(V) = 20t ka(Ve — 2) (Ve — ). (9.19)
If further, J is symmetric in the z,, (9.18) specializes to
J@ =K uat+ k(e + 13wz +m, (9.20)

which is convex if and only if ¥'>0 and k¥'+nk’" >0. For
this J,

I@; V) =JWV) — kD (Ve — z,)?
- k”[zs Ve — xs)]z-

If the V, are the indicators of a partition, ZV,2=2V,=1;
so J(V)=k+k"+I+m, which simplifies (9.21). If
further 2z, =1 as it “ought to,” then (9.21) simplifies to

B +E +14+m) — D (Vi—z)2  (9.22)
which is not essentially different from (9.16).

(9.21)

9.4 Separated Income for Distributions

It is somewhat attractive to seek functions J on the
simplex K such that when D, obtains the income of the
subject will depend on z; alone. The pertinent facts have
been known for some time, a review of them here without
any supplementary hypotheses may be useful. (An early
reference is [37], which attributes the main fact to
Andrew Gleason.)

If n=2, the condition is plainly vacuous, but for n>2
it is very severe—strictly speaking, not quite attainable.
What is wanted is n functions f, on the interval from 0 to
1 (inclusive if possible) such that, for any distribution p,

Etft(xt)pt < thl(pt)pt (9.23)

for every distribution z different from p. As will be shown,
after preliminary discussion, if this is to hold for all p
with each p, strictly positive, then

fo(2) = klogz+1, (9.24)

for some £>0. Whence
J(p) = k2 palog pa+ 20 Lps; (9.25)
L(z; p) = k. pilog 1;-5 : 9.26)

Of course (9.23) and (9.24) are not compatible with any
assignment of a finite value for f,(0).

The loss (9.26) is a constant multiple of what is some-
times called the information of the distribution p with
respect to the distribution z. The scheme of elicitation
implied by (9.25) seems to have been suggested first by
Good [26, p. 112], who confined himself to two-fold
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partitions, for which the uniqueness theorem is not
relevant. An interesting application and discussion are
given by Mosteller and Wallace [38, Section 4.9].

It is not hard to prove (9.24) once it is known that each
fs is sufficiently regular. The next three paragraphs are
devoted to proving that regularity.

Apply (9.23), for n>2, to distributions z and p of the
special form = {yw, gw, @/(n—2), - - -, ®/(n—2) } and
p={qw, qw, w/(n—2), - - -, ®/(n—2)}, where j=1—y,
g=1—q, w=1—w, and 0<y, q, w<1.

filyw)q + f2(gw)q < filqw)q + fo(qw)g  (9.27)

if ys£q. The left side of (9.27) is therefore, in ¢, a strict
linear function of support at y of ¢, where

9u(y) = fLlyw)y + fo(Fw)7.

Therefore, g, is strictly convex in (0, 1). So g, is con-
tinuous in y and, except possibly on a denumerable set,
differentiable in y.

Since fi(yw) —f2(gw) is a slope of support of g, at y, it
is locally of bounded variation, and the same can there-
fore be said of fi(yw) =g.(¥)+F[ilyw)—fo(Gw)] as a
function of y. Therefore each f, has at most a denumerable
number of discontinuities and is differentiable almost
everywhere.

Returning to (9.28) and recalling that g, is continuous
in y, it can be seen that if f is discontinuous at 2, then f,
is discontinuous at w—z for all w between 2z and 1; so fi,
and therefore all f,, must be continuous everywhere.
Therefore, g, is differentiable at all y. Arguing as before,
if f1is not differentiable at 2z, then f; is not differentiable at
w—z. At last, we know that each f is differentiable at all
zin (0, 1). Let f,’ be the derivative of f,.

The rest is straightforward:

(9.28)

d
— gu(¥y) = filyw) — f2(gw)

dy
d
=% {Uilyw)y + fo(qw)g}  (9.29)
= w{ fi )y — 2 Gw)g}
+ f1lyw) — f(gw)
' yw)yw = fo' (Gw)gw. (9.30)

This means that f,/(2)z=k independently of s or z, which
establishes (9.24).

10. PRACTICAL SIDELIGHTS
10.1 Scope of this Section

This article, which is largely about the mathematical
aspects of the procedures for eliciting personal proba-
bilities that are now often called proper scoring rules
(and also admissible probability measurement proce-
dures) would be misleading and incomplete without some
discussion of their actual and potential applications. My
preparation for that is inadequate; for I have done no
practical work in the area nor even followed the practi-
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cally oriented literature with energy and care. But it
seems incumbent on me to mention, to the best of my
knowledge, the sorts of applications that have been en-
visaged, some difficulties that threaten them, and criteria
that might help in selecting among the plethora of proper
scoring rules. The subject is a ramified one, and even a
cursory survey demands considerable space.

One serious omission is discussion of the experiments
that have been done on proper scoring rules, for which
some key references are [12; 52, Sec. 3.4 and Ch. 10-11;
55; 56].

The applications thus far envisaged have tended to
emphasize the elicitation of probabilities over that of
other expectations. For this reason and for vividness, I
focus here on probabilities, but extension of the ideas to
other expectations will often be obvious and ought to be
kept in mind.

10.2 The Uses of Opinions

Strictly proper scoring rules enable us, in principle, to
discover people’s opinions, so possible fields of application
are brought to mind by asking why and when we are in-
terested in opinions.

Often, we want to make use of the opinion of a person
whom we regard as an expert. Does the weatherman
think that it will rain, the doctor that we shall soon get
well, the lawyer that it would be better to settle out of
court, or the geologist that there might be lots of oil at
the bottom of a deep hole? Most of the following subsec-
tions are concerned explicitly with the utilization of
experts.

And often, we want to know a person’s opinions in
order to judge how well informed he is. Every academic
examination can be viewed in that light. It is, therefore,
interesting to explore the possible usefulness of proper
scoring rules in academic examinations, and the final
subsection returns to academic testing. This domain of
application shades into that of trying to determine which
among possible experts are most valuable for a given task
by means of the relation between their past opinions and
reality.

Since public-opinion polls are ostensibly concerned
with finding out the opinions of the public, we might at
first expect proper scoring rules to have important ap-
plications there, in harmony with the remarks of Ha-
avelmo quoted in Section 1. This has, however, appar-
ently never been suggested, partly perhaps because
public-opinion polls are seldom so much concerned with
the opinions of the public as with the preferences of the
public. But investigators do occasionally want to know
how firmly the public believes some as yet unresolved
matter of fact, and in a few of these cases, proper scoring
rules might have some role. Literally paying the par-
ticipants in a poll on the basis of the accuracy of their
predictions would of course ordinarily be infeasible,
especially in the common case of casual, one-time par-
ticipants. Yet scoring rules might be used in training
panelists to assess their own probabilities, perhaps
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partly in paid practice sessions about immediately veri-
fiable predictions. This would seem less farfetched should
scoring rules come to be widely applied in the schools.

One domain of potential application of proper scoring
rules is suggested not so much by the problem of obtaining
the opinions of others as by the difficulty of obtaining our
own. For it is by no means easy to elicit your own proba-
bilities. Vagueness is a major obstacle, and your first reac-
tions are often greatly modified when you reflect upon
their implications. Those who have experimented on
themselves and on others generally feel that frequent
practice with proper scoring rules and with other proba-
bility elicitors helps a person to combat vagueness and to
arrive more promptly and accurately at his personal
probability. This proposition might be difficult to in-
vestigate experimentally and even seems difficult to state
with precision, but its promise of benefit is great. (See,
for example, [12, 59].)

10.3 Yes, No, or Maybe Is Not Enough

Traditionally, experts, except for turf experts, have not
communicated their opinions in probabilities. The doctor
says, “That child will soon be well and then he had better
have his tonsils out.” The geologist says, “That looks like
a good place to drill.” And, until recently, most of us were
content when the weatherman said simply, “Rain to-
night.”

The importance of a system of communication in which
experts express themselves in terms of genuine personal
probabilities and in which those who utilize the opinions
of experts—that is, all of us—are trained in understand-
ing and using such probabilities was energetically under-
lined by Grayson [27]. In recent years, meteorologists
have been announcing forecasts in terms of probability
on some radio and television services, but not all who
offer these probability forecasts think in terms of personal
probability, and some seem to be very vague indeed
about what they mean by probability in a forecast. The
earliest known reference to proper scoring rules is by the
meteorological statistician, Brier [5], and much of the
current literature on proper scoring rules is inspired by
meteorology, as in [21, 39, 40, 41, 46, 53, 58, 59, 60] and
works cited in them.

Applying a proper scoring rule to obtain better opin-
ions from an expert might mean, at one extreme, merely
using the rule to keep score as a training device to give
the expert a mild incentive to understand what proba-
bility means and to ask himself whether it is really his
personal probabilities that he is reporting. At the op-
posite extreme, the scoring rule might be implemented by
substantial cash payments. For example, an oil geologist
willing to buy a $100 interest in a million dollar drilling
investment is saying very clearly that to him, the ex-
pected revenue of the well is greater than the expected
cost. More accurately, that is what he is saying if his ex-
pression of opinion is not affected by nonlinearities in his
utility, possibly reflecting the nonlinearity of income
after taxes and possibly associated with trying to explain
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to his wife how he lost $100 gambling or with a very small
probability of an enormous revenue.

This same example, which suggests so vividly how
any proper scoring rule might be applied to elicit from a
geologist his opinions about the yield of a well that is to be
drilled also serves to illustrate what seems to be an insur-
mountable obstacle to the application of arbitrary scor-
ing rules, and even of any proper scoring rules to all, to
many situations in which opinion is sought as a basis for
decision. If whether the well is to be drilled does not de-
pend on this geologist’s opinion, then any proper scoring
rule concerning its expected yield can be implemented, in
particular by offering to sell shares in the well at various
prices. But if whether to drill the well depends in part on
the opinion of the geologist, then some of the events
about which his opinion is wanted may never be tested
precisely because of his advice, so the scoring-rule con-
tract cannot be offered literally. The phenomenon is
ubiquitous. We can never know what would have hap-
pened had surgery been ventured, had a certain product
been marketed, or had a certain student been admitted.
Business sharing, to be discussed in Subsection 10.12,
seems to offer some possibility of circumventing this
widespread obstacle to the literal application of proper
scoring rules.

10.4 Big Money

The interrogator has an interest in making the possible
fluctuations in the wealth of the expert large. For this
motivates the expert to reflect hard and well before
answering and yet need not add systematically to his
expected fee. The larger the fluctuations are, however,
the more the expert is motivated to report not his real
probabilities but numbers that reflect in part the non-
linearity of his utility. The theory of these distortions
has been somewhat explored by Winkler and Murphy
[60], and some possible ways to avoid them or com-
pensate for them were reported on in Section 3. My own
hope and expectation is that the skillful use of small, or
even purely symbolic, scoring-rule payments (in addition
to the usual compensations) will enable experts to know
and to communicate their opinions much more accurately
than has been usual.

The only practical experience with elicitation involving
substantial cash prizes and losses thus far apparently
consists of observations on gambling behavior that Ward
Edwards has made, and expects soon to publish. The use
of substantial, or even of token, scoring-rule payments in
business would often be a considerable break with tradi-
tion likely to involve legal and other administrative
problems.

10.5 Tiny Probabilities and the Expert

Probabilities corresponding to odds of one in a million
or even less, such as the probabilities of specific disasters
are sometimes important [32]. Any scheme to give an
expert a serious cash incentive to reveal his personal
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probabilities for very improbable events would seem to
court insuperable difficulties with the nonlinearity of
utility. And, even if we do not despair of obtaining sincere
opinions about such matters by engaging sincerely in-
clined experts in the right kind of make-believe, the
difficulty of such make-believe, and the special training
required for it, are in danger of being greatly underrated.

Magnification is sometimes possible. For example,
though it would not be practical to engage me in a mean-
ingful bet that the birth awaited by the recently married
Smiths will be quadruplets, my expectation for the num-
ber of sets of quadruplets among the next million Ameri-
can births (about two, based on a little reading) could be
elicited and might be of some use. But this relief is largely
illusory. For a real expert on multiple births would be
expected to take into account such data as that Mrs.
Smith is herself a twin and a very young bride, so there
is no practical possibility of counting the quadruplet
births in a large number of cases similar in the respects
considered pertinent.

10.6 Employing Expert Opinion

In just what ways can you expect to profit from the
opinions of experts in serious matters? According to a
very broad model, you have an important decision to
make in the light of all sorts of data at your disposal,
and this data may include the behavior of experts. You
could, in principle, explore all sorts of ways of inter-
rogating an expert—not confining yourself to eliciting his
opinions—and study empirically how his responses can
profit your business. Conceivably, pain in the weather-
man’s great toe would better help you plan picnics than
would his opinion about the weather. Yet I presume that
ordinarily little of importance would be lost if you could
obtain only the opinion of the expert, that is, his personal
probabilities. What should be done with such an opinion?
The simplest thing, and sometimes the appropriate thing,
would be to make the expert’s opinion your own.

This is by no means mandatory. For example, an ex-
pert who always ascribes very small probability to
what actually occurs and to nothing else would be as
useful as one who is omniscient, but you would of course
not make the opinions of this perfect fool your own.
Again, you might discover with experience that your
expert is optimistic or pessimistic in some respect and
therefore temper his judgments. Should he suspect you of
this, however, you and he may well be on the escalator to
perdition.

10.7 Divergent Opinion

We often have access to more than one expert, and
what to do when doctors disagree has always been,
and will always be, a quandary. One important thing
to do, but far outside the scope of this paper, is to en-
courage the right kind of communication between the
experts. Exploration of how to do this is, for example,
one of the aims of the Delphi technique [3; 8; 29, Part
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IT]. In general, good communication is what makes the
experts share factual information and help each other
think their opinions through thoroughly, and bad com-
munication is what encourages various vices such as
exaggeration and excessive deference. Sooner or later,
despite all techniques of communication, divergent ex-
pert opinions will have to be faced. Perhaps you will
make some composite of one or more expert opinions and
your own opinion. An extreme way to do that would be
to decide, on the basis of past experience or otherwise,
that a particular one of the experts is the only one worth
listening to and to make his opinion your own. A more
general procedure would be to average the opinions,
that is, to average the probability distributions associated
with the experts (possibly including yourself), giving
each the weight you think appropriate Thus, rather than
simply choose one expert among several, you can choose
among the infinite number of synthetic experts that con-
stitute the convex closure of the several. (A few key
references bearing on the subject of this paragraph are
[10; 11; 47, Ch. 10; 52 p. 65ff; 56].)

10.8 The Expert as an Instrument

When is one expert, real or synthetic, to be preferred to
another? An “expert” in this context is a mechanism,
possibly with human components, generating numbers
that you contemplate using instead of your own personal
probabilities (or, more generally, expectations) in certain
contexts One crude, practical answer sometimes available
and appropriate, is this: Employ, until you have further
experience, that expert whose past opinions, applied to
your affairs, would have yielded you the largest average
income.

No rule of this sort can claim absolute or objective
validity, and this one has been couched especially
roughly for the sake of simplicity. For example, actual
past experience with the experts may be extensive,
moderate, meager, or absolutely lacking. When past ex-
perience is extensive, but not too extensive, the rule often
has much to recommend it; when direct past experience
with the experts is meager, the rule is silly; and when
such experience is altogether lacking, the rule results in a
tie and is therefore empty. Actually, if you have little or
no past experience with the experts, you will have to
ponder them in terms of whatever information it was that
brought you to regard them as promising in the first
place: this well finder is regarded by the whole neighbor-
hood as infallible with the hazel fork; that one is a pro-
fessor of geology and the author of an important treatise
on subsurface hydrology but has never before tried to
help anyone locate a well. In such a context, the subjec-
tive aspect of your decision is thrown into prominence,
but no matter how much direct past experience you may
have with the experts, the ultimate subjectivity of your
choice among them never disappears, though its effects
may become less agonizing—according to the person-
alistic Bayesian theory of statistics, as in [48].

When your past experience with the experts is very ex-
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tensive indeed, it may become profitable for you to refine
the original rough rule by dividing up circumstances into
categories and confiding in different experts for different
categories of decisions. Such discussion could continue
indefinitely; for the situations are innumerable and tend
to parallel the whole field of decision-theoretic statistics.

An interesting process for coordinating the efforts of
experts in different fields known as PIP (for probability
information processing) has been vigorously pursued
[20].

10.9 Slippery Utilities

A different kind of complication in applying, or adapt-
ing, the rough rule is that the notion of average income
may not be readily applicable to your affairs. For one
thing, it may be important to measure your own income
in utility rather than in cash. If this involves only de-
termining your utility for cash, you may be able to do that
reasonably well with moderate effort. If, however, the
consequences of your act are not easily converted into
cash but involve values difficult to weigh against each
other such as beauty, justice, and health, your dilemma
may be especially severe. Raiffa [44] has recently pub-
lished a book largely on these subtle problems of ponder-
ing the imponderable and evaluating the invaluable that
reviews, and contributes to, a considerable literature.

Another difficulty in measuring utility is seen in this
example: You are the person responsible for choosing
which of several televised meteorological forecasters shall
serve your city. There is, I assume for simplicity, abun-
dant evidence of past performance, and the members of
the community who use the forecasts will behave in ac-
cordance with the probabilities announced in them. Since
yours is a public trust, you would like to choose the fore-
caster that in the past would have maximized the mean
income of members of the community.

Subtle welfare-economic decisions about the relative
importance of bent-pin anglers and barn painters could
complicate your problem, but, even more important,
relatively little is really known about the uses to which
public weather information is put and what its economic
consequences are. Thought has been given to the problem
of the economic value of meteorological forecasts, both
for the general public and for special purposes, but
difficult, important empirical aspects of the question
remain to be explored. (Key references are [36, 40].)

10.10 Which Scoring Rule for the Trained Respondent?

There are as many proper scoring rules for a trichot-
omy, for example, as there are convex functions over the
baricentric triangle, or two dimensional simplex. It would
therefore seem important to study in what respects one
scoring rule is better than another. But this question has
thus far proved surprisingly unproductive. Its elusiveness
is brought out by the consideration than an ideal subject
responds to all proper scoring rules, including those in-
volving extremely small payments, in exactly the same
way. Therefore, any criteria for distinguishing among
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scoring rules must arise out of departures of actual sub-
jects from the ideal.

Since we all do depart markedly from the ideal, it
might seem that one proper scoring rule would be much
more effective with a real person than another, and this
presumably is often so. But if a person is reasonably
sophisticated, though far from ideal, the form of a proper
scoring rule for eliciting his probabilities, for, say, a
trichotomy should—provided its amplitude is sufficient
to command attention—have little or no effect on his
response. To see this, put yourself in his place. You are
offered a contract that will result in certain cash pay-
ments to you depending on your choice of three numbers
D, ¢, and r and on whether a certain game ends in win,
lose, or tie. If you know what personal probabilities are
and understand that the contract is so drawn that it is
to your interest to report your personal probabilities,
then the details of the contract seem unimportant; for
no matter which proper scoring rule it corresponds to,
you should ask yourself what your personal probabilities
for the three events are and report them.

Yet, the terms of the contract might make a modest
difference to you. Suppose, for example, that very little
money is to change hands in case of a tie, no matter
what your response is. In this case, you have little incen-
tive to ask yourself carefully the probability of a tie and
are thus left free to focus on the relative probability of a
win given that there is not a tie. In this case, your ques-
tioner will be well served if he is mainly interested in that
conditional probability, and he will be badly served if he
particularly wants to know the probability that you
attach to a tie.

Thus, at least a vague criterion applicable even to
sophisticated but human respondents emerges. Insofar as
responding is hard work, the scoring rule should en-
courage the respondent to work hardest at what the
questioner most wants to know. If this is to be effective,
it must not merely be mathematically true but also plain
to the respondent that he will be rewarded most for
working on the right aspects of his opinion. This is in
part a psychological question of human communication,
subject to much speculation and experimentation. To
illustrate, you are faintly curious to know whether the
respondent thinks that a tie is likely and desperate to
know whether he believes that the home team will win.
You might be best served by entering into two palpably
separate contracts with the respondent, a small one hing-
ing only on whether there is a tie and resulting in a
rough casual elicitation of the respondent’s r, and a
larger one, involving no payment in case of a tie, resulting
in a well considered evaluation of the ratio p:q for the
respondent. Of course the two contracts together amount
to a single scoring rule, though presenting them separately
might work better psychologically.

The appropriate incentive for you to offer a respondent
for his opinion depends not only on the importance for
you of obtaining that opinion with a specified accuracy
but also on the difficulty for the respondent in obtaining
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it from himself. This makes the choice of a scoring rule
designed to evoke the right degree of effort from the
respondent on the various components of his task par-
ticularly subtle.

10.11 There are no Bargain Scoring Rules

Since a scoring rule is a scheme of payments, it might
seem natural to choose the rule that promises to obtain
the required information as cheaply as possible or perhaps
the one that obtains the most for the money. There may
be something to this line of thinking, but not in first ap-
proximation, and I have been unable to make progress
with it.

The respondent will presumably work for what he re-
gards as an acceptable wage. In the presence of a scoring
rule, he will perceive his wage as random with an ex-
pectation that can be adjusted by adding a constant to
the scoring rule. So, within the linearity approximation,
the respondent does not charge extra for submitting to
the scoring rule, and it therefore seems roughly reasonable
to reckon that the questioner is not charged for it.

The higher the amplitude of the scoring rule, the more
incentive it gives the respondent to reply with care. On
this account, the respondent might in principle come to
insist on a higher mean wage for facing a highly fluctuat-
ing scoring rule, and this could tend to deter the ques-
tioner from using high amplitudes. But the important
practical limitation on amplitude would seem to be the
need to avoid the distortion of response induced by the
nonlinearity of the respondent’s utility.

10.12 Business Sharing

In common sense, we feel without any overt reference
to economic models that some responses are not so wrong
as others and ought not to be so heavily penalized. If a
respondent is pretty sure that the home team will win,
and there is in fact a tie, then he is perhaps not so wrong
as if it had lost. Scoring rules reflecting this idea have been
sought and easily found. See, for example, [21, 53]. One
interesting way to adjust the rewards and penalties of the
respondent to the interests of the interrogator, which was
brought out in a dramatic and more radical form in Mec-
Carthy’s [37] pioneering note on proper scoring rules, is
to give the respondent a fractional interest in the busi-
ness involved. To illustrate with an overidealized ex-
ample, an oil prospecting company could give its geologist
a small fraction of all profits and losses with the under-
standing that all decisions in the business would be made
using the geologist’s personal probabilities about geo-
logical uncertainties.

(It would be interesting to consider with some care the
respects in which such an example is realistic and un-
realistic, but I can only go a step or two in that direction
here. Stock in the company would seem to give the
geologist an interest in reporting his probabilities honestly
if he could be assured that they would be adopted as the
personal probabilities of the management for the events
concerned. But this incentive may not be fully in har-
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mony with the expert’s incentives to appear worthy, as
opposed to simply being worthy, of retention and pro-
motion—a complication that affects not only business
sharing but all applications of proper scoring rules to a
professional expert. Business sharing does not present
the expert with an explicit scoring rule in any business
complicated enough to provide a more than mechanical
role for the managers, in particular in any business in
which there are other uncertainties than those about
which the expert is consulted, but an implicit rule is as
effective in principle as an explicit one.)

Long ago, Gauss [25, Sec. 6] proposed that economic
losses (such as those in a game of chance) provide a good
model for the incentive to estimate accurately even in
the most academic contexts. Decisively to uphold or to
overthrow this suggestion does not seem possible. Per-
sonally, it appeals to me. Correspondingly, when we say
that a tie should not be regarded as so distant from a win
as a loss would be, I am inclined to think that that is
because we have in mind various uses for sport forecasts
in which the penality is less for one kind of error than
another. Of course, the penalty need not be a monetary
one; it might involve, for example, loss of social prestige.
Fortunately, the elusive question of whether all that is
good and bad about a forecast can ultimately be referred
to profit and loss in economic decisions, sufficiently,
widely interpreted, need not be resolved in order to show
the interest and utility of viewing proper scoring rules as
a share in a real or a fictional business. For the business
model is certainly a mathematically general model for
all proper scoring rules and a fertile point of view for the
generation of proper scoring rules that penalize some
errors more than others.

The technical point that every proper scoring rule can
be viewed as a share in a business and that every such
share leads to an at least weakly proper scoring rule
should be appreciated. Section 7 makes these points clear.
Every strictly proper scoring rule amounts to the possi-
bility of choosing among acts, only one of which is ap-
propriate to each system of personal probabilities. Con-
versely, a person knowing that an act in a specified
economic situation is to be chosen for him in accordance
with his announced system of personal probabilities will
have no incentive to announce a false one. However, if the
convex function arising from the family of acts has flat
places—technically, is not strictly convex—then the per-
son has no positive incentive to distinguish among certain
systems of probabilities, and the scoring rule is only
weakly proper.

Insofar as business sharing is a practical method of
elicitation, it makes possible the use of a proper scoring
rule even in those situations stressed at the end of Sub-
section 10.3 in which arbitrary proper scoring rules can-
not -be implemented because some of the conditional
probabilities to be elicted will not be tested, depending
on the opinions expressed by the expert.

The parallelism between implementing a scoring rule
by business sharing and the rough rule for rating experts
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according to how their adviee would have affected your
business in the past (discussed in Subsection 10.8) is
evident, but the two things must not be confused. In
particular, the rating rule can be used regardless of what
scoring rule if any is used to elicit the opinions.

10.13 Some Armchair Psychology

Consider now a subject quite untrained in personal
probability and the theory of scoring rules whose only
incentives are provided by the scoring itself. It is ques-
tionable whether, in any serious application, this ought
to be allowed to happen. Though any strictly proper
scoring rule is a sufficient guide for an ideally intelligent
Robinson Crusoe no matter how uninstructed, can we
expect real people to respond well with no other coaching
than is provided by the scoring rule itself or even by ex-
tended experience with the scoring rule? And even if
investigation should yield a somewhat affirmative reply,
is there any point in withholding instruction? Whatever
the answers, it does seem stimulating to speculate on
what kinds of scoring rules presented in what way would
most nearly operate on naive subjects as all strictly
proper scoring rules are supposed to operate on sophisti-
cated ones, and this should lead to ideas of practical value
for subjects of intermediate sophistication.

In the first place, the subject must understand the
scoring rule. If it makes explicit reference to logarithms,
or even to squares, most ordinary people will not under-
stand it at all; and even those with mathematical train-
ing may not be nearly apt enough at calculation to use the
rule effectively. This is an important reason to present
the rule through some vivid tabular or graphic device,
which could, for example, take the elaborate form of
conversational-mode digital computation, or more simply
of some slide-rule device such as those of the Shuford-
Massengill Corporation (Lexington, Mass.), or perhaps
tabulation of the scoring rule itself, possibly very boldly
rounded [14].

Perhaps it is helpful to a subject responding about a
partition of possible events if the economic consequence
of his response is a function only of the element of the
partition that happens to obtain. This condition imposes
no constraint at all for two-fold partitions, but for n-fold
partitions with n>2, it leads to the logarithmic scoring
rules of Subsection 9.4. The possible advantages of the
simplicity might often be outweighed by the inappropri-
ateness of a symmetric scoring rule in asymmetric situa-
tions or of a scoring rule that lays emphasis on the cor-
rect elicitation of small probabilities. I have sometimes
heard the possibility that a subject responding to a
logarithmic scoring rule could be subjected to an infinite
(or at any rate, unlimited) penalty raised as an over-
whelming objection. This possibility does of course imply
that the method cannot be applied literally, but approxi-
mate applications, in which the subject is not allowed to
name probabilities less than, say, 10~2 suggest themselves.
And, as mentioned in Subsection 10.5, obtaining proba-
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bilities very close to 0 by means of direct incentives does
not seem practical by any scoring rule.

10.14 Proper Scoring Rules in School

Proper scoring rules hold forth promise as more sophis-
ticated ways of administering multiple-choice tests in
certain educational situations [14, 49]. The student is
invited not merely to choose one item (or possibly none)
but to show in some way how his opinion is distributed
over the items, subject to a proper scoring rule or a
rough facsimile thereof.

Though requiring more student time per item, these
methods should result in more discrimination per item
than ordinary multiple-choice tests, with a possible net
gain. Also they seem to open a wealth of opportunities
for the educational experimenter.

Above all, the educational advantage of training peo-
ple—possibly beginning in early childhood—to assay
the strengths of their own opinions and to meet risk with
judgment seems inestimable. The usual tests and the
language habits of our culture tend to promote confusion
between certainty and belief. They encourage both the
vice of acting and speaking as though we were certain
when we are only fairly sure and that of acting and
speaking as though the opinions we do have were worth-
less when they are not very strong.

Effects of nonlinearity in educational testing deserve
some thought, but presumably nonlinearity is not a
severe threat when a test consists of a large number of
items. One source of nonlinearity that has been pointed
out to me is this. A student competing with others for a
single prize is motivated to respond so as to maximize
the probability that his score will be the highest of all.
This need not be consistent with maximizing his expected
score, and presumably situations could be devised in
which the difference would be important.

REFERENCES

[1] Aczel, J., Lectures on Functional Equations and Their Ap-
plications, New York: Academic Press, 1966.

[2] Allais, Maurice, “Le Comportement de ’'Homme Rationnel
Devant le Risque: Critique des Postulats et Axioms de
I'Ecole Americaine,” Econometrica, 21 (October 1953), 503-
546.

[3] Ament, Robert H., “Comparison of Delphi Forecasting
Studies in 1964 and 1969,” Futures, 2 (March 1970), 35-44.

[4] Bayes, Thomas, “Essay Towards Solving a Problem in the
Doctrine of Chances,” The Philosophical Transactions, 53
(1763), 370-418. Reprinted in W. Edwards Deming, ed.,
Facsimiles of Two Papers by Bayes, Washington, D.C.: The
Graduate School, The Department of Agriculture, 1940, and
in “Thomas Bayes’s Essay towards Solving a Problem in the
Doctrine of Chances,” Biometrika, 45 (December 1958),
293-315.

[5] Brier, G. W., “Verification of Forecasts Expressed in Terms
of Probability,” Monthly Weather Review, 78 (January 1950),
1-3.

[6] Brown, T. A., “Probabilistic Forecasts and Reproducing
Scoring Systems,” Santa Monica, Calif.: RAND Corpora-
tion, RM-6299-ARPA, June 1970, 65 pp.

[7] Buehler, Robert J., “Measuring Information and Uncer-

Journal of the American Statistical Association, December 1971

tainty,” in Proceedings of the Symposium on Foundations of
Statistical Inference, Toronto: Holt, Rinehart, and Winston,
1971 (in press).

[8] Dalkey, N. C., “An Experimental Study of Group Opinion:
The Delphi Method,” Futures, 1, 5 (September 1969), 408-
26.

[9] de Finetti, Bruno, “La prévision: Ses Lois Logiques, Ses
Sources Subjectives,” Annales de I'Institut Henri Poincaré, 7
(1937), 1-68. English translation in (Kyburg and Smokler,
1964).

[10]

, “La Notion de Distribution d’Opinion comme Base
d’un Essai d’Interpretation de la Statistique,” Publications
de UInstitut de Statistique de U Université de Paris, 1, 2 (1952),
1-19.

[11] , “Media di Decisioni e Media di Opinioni,” Bulletin
de UInstitut International de Statisque, 28th session, 34, 2
(1954), 144-57.

, “Does It Make Sense to Speak of ‘Good Probability
Appraiser’?” in The Scientist Speculates: An Anthology of
Partly-Baked Ideas, New York: Basic Books, 1962, 357-64.
, “Probabilitd Composte e Teoria Delle Decision,”
Rendiconti de Matematica, 23 (1964), 128-34.

, “Methods for Discriminating Levels of Partial
Knowledge Concerning a Test Item,” The British Journal of
M athematical and Statistical Psychology, 18 (May 1965), 87—
123.

[12]

[13]

[14]

[15]

, “Quelques Conventions Qui Semble d’Etre Utile,”
Revue Roumaine de Mathematique Pures et Appliquées, 12,
9 (1967), 1227-33.

, “Probability: Interpretations,” Vol. 12, 496-505, in

the International Encyclopedia of the Social Sciences, New

York: The Macmillan Company, 1968.

, “Logical Foundations and Measurement of Subjec-

tive Probability,” Acta Psychologica, 34 (December 1970),

129-45.

, and Leonard J. Savage, “Sul Modo di Scegliere le
Probabilita Iniziali,” Sui fondament: della statistica, Biblio-
teca del Metron, Series C, 1 (1962), 81-154 (English sum-
mary, 148-151).

[19] Edwards, Ward, “A Bibliography of Research on Behavioral
Decision Processes to 1968,” Memorandum Report No. 7,
Human Performance Center, University of Michigan,
January 1969, 93.

, L. D. Phillips, W. L. Hays, and B. C. Goodman,
“Probability Information Processing Systems: Design and
Evaluation,” IEEE Transactions on Systems Science and
Cybernetics, SSC-4 (1968), 248-65.

[21] Epstein, Edward S., “A Scoring System for Probability
Forecasts of Ranked Categories,” Journal of Applied
Meteorology, 8 (December 1969), 985-7.

[22] Fishburn, Peter C., Utility Theory for Decision Making, New
York: John Wiley and Sons, Inec., 1970.

[23] Friedman, Milton, “Choice, Chance, and Personal Distribu-
tion of Income,” Journal of Political Economy, 61, 4 (August
1953), 277-90.

, and Leonard J. Savage, “The Utility Analysis of
Choices Involving Risk,” Journal of Political Economy, 56
(August 1948), 279-304. Reprinted in Readings in Price
Theory, Chicago: Richard D. Irwin, 1952, and in Landmarks
in Political Economy, edited by Earl J. Hamilton, et al.,
The University of Chicago Press, 1962.

[25] Gauss, Carl Friedrich, “Theoria Combinationis Observa-
tionum Erroribus Minimis Obnoxiae,” Commentationes
Societatis Regiae Scientarum Gotlingensis Recentiores, 5
(1821), 33-90. In German translation, A. Borsch and P.
Simon, Abhandlungen zur Methode der kleinsten Quadrate,
Berlin: Westdruckerei Joachim Frickert, 1887 (reprinted
Wurzburg: Physica-Verlag, 1964). In French translation, J.

[16]

[17]

(18]

[20]

[24]




Personal Probabilities

Bertrand, Methode des Moindres Carrés, Paris: Mallet-
Bachelier, 1855.

[26] Good, I.J., “Rational Decisions,” Journal of the Royal Sta-
tistical Society, Ser. B, 14 (1952), 107-14.

[27] Grayson, Charles Jackson, Decisions under Uncertainty:
Drilling Decisions by Oil and Gas Operators, Boston:
Harvard University, Division of Research, Graduate School
of Business Administration, 1960.

[28] Haavelmo, Trygve, “The Role of the Econometrician in the
Advancement of Economic Theory,” Econometrica, 26
(July 1958), 351-7 (Presidential address, Econometric
Society, Philadelphia, Dec. 29, 1957).

[29] Helmer, Olaf, Social Technology, New York: Basic Books,
1966.

[30] Hendrickson, Arlo D., “Payoffs to Probability Forecasters,”
Technical Report No. 145, University of Minnesota, Septem-
ber 1970.

[31] Kyburg, Henry E., Jr., and Smokler, Howard E., Studies in
Subjective Probability, New York: John Wiley and Sons,
1964.

[32] Maloney, Clifford J., “A Probability Approach to Cata-
strophic Threat,” ARO-D Report 70-2, U. S. Army Research
Office—Durham, Durham, North Carolina, 1970?.

[33] Marschak, Jacob, “Management Research and Behavioral
Science,” Working Paper No. 2, Western Management
Science Institute, University of California, Los Angeles,
1961.

[34] , “Actual Versus Consistent Decision Behavior,” Be-
havioral Science, 9 (April 1964), 103-10.
[35] , “Decision Making: Economic Aspects,” Vol. 4, 42-5,

in the International Encyclopedia of the Social Sciences, New
York: the Macmillan Company, 1968.

[36] Maunder, W. J., The Value of the Weather, London: Meth-
uen, 1970.

[37] McCarthy, John, “Measures of the Value of Information,”
Proceedings of the N ational Academy of Sciences, (1956), 6545

[38] Mosteller, Frederick, and Wallace, David L., Inference and
Disputed Awuthorship: The Federalist, Reading, Mass.:
Addison-Wesley, 1964.

[39] Murphy, Allan H., “The Ranked Probability Score and the
Probability Score: A Comparison,” Monthly Weather Review,
98 (December 1970), 917-24.

, and Allen, R. A., “Probabilistic Prediction in

Meteorology: A Bibliography,” Silver Spring, Md., En-

vironmental Science Services Administration, Technical

Memorandum No. WBTM TDL 35, 1970.

, and Epstein, Edward S., “Verification of Prob-

abilistic Predictions: A Brief Review,” Journal of Applied

Meteorology, 6 (October 1967), 748-55.

, and Winkler, Robert L., “Scoring Rules in Prob-
ability Assessment and Evaluation,” Acta Psychologica, 34
(December 1970), 273-86.

[43] Pratt, John W., “Risk Aversion in the Small and in the
Large,” Econometrica, 32, 1-2 (January—April 1964) 122-36.

[44] Raiffa, Howard, Decision Analysis: Introductory Lectures on

[40]

[41]

[42]

801

Chotices under Uncertainty. Reading, Massachusetts: Addison-
Wesley, 1968.

[45] Roberts, Harry V., “Risk, Ambiguity, and the Savage
Axioms: Comment,” Quarterly Journal of Economics, 77
(1963) 327-42.

[46] , “On the Meaning of the Probability of Rain,” in
Proceedings of the First National Conference on Statistical
Meteorology, Boston: American Meteorological Society
(1968) 133-41.

[47] Savage, Leonard J., The Foundations of Statistics. New York:
John Wiley & Sons, Inc; and London: Chapman and Hall,
1954.

[48]

, “The Foundations of Statistics Reconsidered,” in
Proceedings of the Fourth Berkeley Symposium, Berkeley,
University of California Press (1961) 575-86. Reprinted in
(Kyburg and Smokler, 1964).

[49] Shuford, Emir H., Jr., Albert Arthur, and H. Idward
Massengill, “Admissible Probability Measurement Pro-
cedures,” Psychometrika, 31 (June 1966), 125-45.

[50] Smith, Cedric A. B., “Consistency in Statistical Inference
and Decision,” Journal of the Royal Statistical Society, Ser.
B, 23 (1961), 1-25.

, “Personal Probability and Statistical Analysis,”
Journal of the Royal Statistical Society, Ser. A, 128 (1965),
469-89.

[562] Staél von Holstein, Carl-Axel S., Assessment and Evaluation
of Subjective Probability Distributions, Stockholm: The Eco-
nomic Research Institute at the Stockholm School of Eco-
nomics, 1970.

, “A Family of Strictly Proper Scoring Rules Which
Are Sensitive to Distance,” Journal of Applied Meteorology,
9 (1970), 360-4.

[54] Toda, Masanao, “Measurement of Subjective Probability
Distribution,” Report No. 3, Division of Mathematical Psy-
chology, Institute for Research, State College, Pennsylvania,
1963.

[565] Winkler, Robert L., “The Assessment of Prior Distributions
in Bayesian Analysis,” Journal of the American Statistical
Association, 62 (September 1967), 776-800.

, “The Consensus of Subjective Probability Distri-

butions,” Management Science, 15, 2 (October 1968), B-61-

B-75.

[51]

(53]

(56]

[67] , “Scoring Rules and the Evaluation of Probability
Assessors,” Journal of the American Statistical Association,
64 (September 1969), 1073-78.

, and Allan H. Murphy, “Evaluation of Subjective
Precipitation Probability Forecasts,” in Proceedings of the
First National Conference on Statistical Meteorology, Boston:
American Meteorological Society, 1968, 148-57.

, and Allan H. Murphy, “ ‘Good’ Probability Asses-
sors,” Journal of Applied Meteorology, 7 (October 1968),
751-8.

(58]

[59]

[60] , and Allan H. Murphy, “Nonlinear Utility and the
Probability Score,” Journal of Applied Meteorology, 9

(February 1970), 143-8.



	Article Contents
	p. 783
	p. 784
	p. 785
	p. 786
	p. 787
	p. 788
	p. 789
	p. 790
	p. 791
	p. 792
	p. 793
	p. 794
	p. 795
	p. 796
	p. 797
	p. 798
	p. 799
	p. 800
	p. 801

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 66, No. 336 (Dec., 1971), pp. 672-934
	Volume Information [pp.  927 - 934]
	Front Matter [pp.  673 - 674]
	Forthcoming Articles [p.  672]
	Applications
	Probabilistic Prediction: Some Experimental Results [pp.  675 - 685]
	On the Estimation of Lifetime Income [pp.  686 - 692]
	On the Correlation Between Metropolitan Area In- and Out-Migration by Occupation [pp.  693 - 701]
	The Optimal Measure of Concentration [pp.  702 - 706]
	Tailored Testing, An Application of Stochastic Approximation [pp.  707 - 711]
	Prediction and Control of the Size of an Input-Output System [pp.  712 - 719]
	Processing Survey Data with Ordered Alternative Hypotheses [pp.  720 - 724]
	Experiments in Obtaining Consumer Expenditures by Diary Methods [pp.  725 - 735]
	Inference in Two-Phase Regression [pp.  736 - 743]
	Regression Updating [pp.  744 - 748]
	Interval Estimation for X-Predictions from Linear Y-on-X Regression Lines Through the Origin [pp.  749 - 751]
	A Simple Method for the Construction of Empirical Confidence Limits for Economic Forecasts [pp.  752 - 754]
	An Investigation of the Restraints with Respect to Sample Size Commonly Imposed on the Use of the Chi-Square Statistic [pp.  755 - 759]
	The Power of the Shapiro-Wilk W Test for Normality in Samples from Contaminated Normal Distributions [pp.  760 - 762]
	On Naya and Morgan's Criterion of Accuracy in Trade Recording [pp.  763 - 765]
	On Naya and Morgan's Criterion of Accuracy in Trade Recording: Rejoinder [p.  765]

	Fundamental Queries in Aggregation Theory [pp.  766 - 782]
	Theory and Methods
	Elicitation of Personal Probabilities and Expectations [pp.  783 - 801]
	Asymptotic Optimality of Fisher's Method of Combining Independent Tests [pp.  802 - 806]
	Limiting the Risk of Bayes and Empirical Bayes Estimators--Part I: The Bayes Case [pp.  807 - 815]
	Effect of Dependence on the Level of Some One-Sample Tests [pp.  816 - 820]
	On the Sign Test for Symmetry [pp.  821 - 823]
	Finding a Single Defective in Binomial Group-Testing [pp.  824 - 828]
	Approximately Optimum Stratification on the Auxiliary Variable [pp.  829 - 833]
	Bayes Estimates for Subclasses in Stratified Sampling [pp.  834 - 836]
	Confidence Intervals for Independent Exponential Series Systems [pp.  837 - 840]
	A Problem in Accelerated Life Testing [pp.  841 - 845]
	Objective Criteria for the Evaluation of Clustering Methods [pp.  846 - 850]
	Discrimination and Confidence Bands on Percentiles [pp.  851 - 854]
	Robust Procedures for Estimating Polynomial Regression [pp.  855 - 860]
	A Conservative Confidence Interval for a Likelihood Ratio [pp.  861 - 866]
	A Truncated Test for Choosing the Better of Two Binomial Populations [pp.  867 - 871]
	πPS Sampling Designs and the Horvitz-Thompson Estimator [pp.  872 - 875]
	A Sequential Test for Gamma Distributions [pp.  876 - 878]
	Rank Tests for "Lehmann's Alternative" [pp.  879 - 883]
	The Linear Randomized Response Model [pp.  884 - 888]
	Best Linear Unbiased Estimates of the Parameters of the Logistic Distribution Based on Selected Order Statistics [pp.  889 - 892]
	Best Linear Recursive Estimation [pp.  893 - 896]
	Approximation of Tail Probabilities by Means of the B<sub>n</sub>-Transformation [pp.  897 - 899]
	Maximum Likelihood Estimation of the Linear Expenditure System [pp.  900 - 903]
	Comparison of Tests of the Equality of Dependent Correlation Coefficients [pp.  904 - 908]
	Tables for Shortest Confidence Intervals on the Standard Deviation and Variance Ratio from Normal Distributions [pp.  909 - 912]
	Power Function of the F-Test Under Non-Normal Situations [pp.  913 - 916]

	Book Reviews
	untitled [pp.  917 - 918]
	untitled [pp.  918 - 919]
	untitled [p.  919]
	untitled [pp.  919 - 920]
	untitled [pp.  920 - 921]
	untitled [p.  921]
	untitled [p.  921]
	untitled [p.  922]
	untitled [p.  922]
	untitled [p.  923]
	untitled [p.  923]
	untitled [p.  924]
	untitled [p.  924]
	untitled [p.  924]
	untitled [p.  924]
	untitled [p.  924]
	untitled [p.  924]

	Publications Received [pp.  925 - 926]
	Back Matter



