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1 Introduction

We frequently draw on the experiences of multiple other individuals when making decisions. The

process can be informal. Thus, an executive deciding whether to invest in a new business opportu-

nity will typically consult underlings, each of whom has some specialized knowledge or perspective,

before committing to a decision. Similarly, journal editors secure independent reviews of papers,

and grant review panels and admissions and hiring committees often seek independent evaluations

from individual members who provide input to a group decision process.

In other contexts, the process of eliciting and conveying private information can be institution-

alized. For example, recommender systems gather and aggregate individual ratings and reviews

in order to inform others’ choices. On the Internet, eBay invites buyers and sellers to rate each

other; MovieLens, Amazon, and ePinions invite ratings of movies, books, and other products on a

1-5 scale; and Zagat Survey solicits restaurant ratings on a 1-30 scale on the separate dimensions of

food, decor, and service. The role of institutionalized feedback methods has been greatly enhanced

by the Internet, which can gather and disseminate information from vast numbers of individuals at

minimal cost.

However formal or informal, any system that solicits individual opinions must overcome two

challenges. The first is underprovision. Forming and reporting an opinion requires time and effort,

yet the information only benefits others, not the provider.1 The second challenge is honesty. Raters

may prefer to be nice and withhold negative evaluations.2 They may fear retaliation or have conflicts

of interest. If they care about how they will be perceived, raters may be tempted to report opinions

that will improve others’ perceptions of them, rather than reporting their honest opinions.

Building an explicit reward system for honest rating and effort is the first step in overcoming

these challenges. When objective information will be publicly revealed at a future time, individuals’

reports can be compared to that objective information. For example, old evaluations of stocks can

be compared to their subsequent price movements, and weather forecasts can be compared against

what actually occurs.

This analysis develops methods to elicit feedback effectively when independent, objective out-

comes are not available. It may be that no objective outcome exists, as in evaluations of a product’s

1Despite the rational incentive to free-ride, provision of feedback at eBay is quite common, occurring in more than
50% of transactions for a large sample from 1999 (Resnick and Zeckhauser, 2002).

2Dellarocas (2001) analyzes a model in which, so long as harshness in interpretation of feedback is appropriately
tied with leniency in giving feedback, leniency offers some advantages in deterring seller opportunism. The problem we
are concerned with here is not systematic leniency, but the failure to report negative evaluations, whatever threshold
is in use.
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“quality.” Or, it may be that even though there exists objective information relevant to the issue,

such information is not public and verifiable. For example, while breakdown frequency may be an

objective measure of product quality, this information is only available to others if it is revealed by

the product’s current owners. Or, the outcome may be publicly observable, but not independent

of the raters’ reports. For example, an admissions committee member who can effectively veto the

admission of a particular student can always assure agreement between her rating and the outcome

by submitting a negative rating. Finally, even when independent, objective outcomes do occur,

they may occur too far in the future to provide effective incentives to current raters.

In these situations, one solution is to compare raters’ reports to their peers’ reports.3 Such

comparison processes occur naturally and informally, as people check whether individual reviewers’

opinions differ considerably from those of the rest of the pool. If payoffs are made part of the process,

however, dangers arise. If a particular outcome is highly likely, such as a positive experience with

a seller at eBay who has a stellar feedback history, then a rater who has a bad experience will

still believe that the next rater is likely to have a good experience. If she will be rewarded simply

for agreeing with her peers, she will not report her bad experience. This phenomenon is akin to

the problems of herding or information cascades.4 In this paper, we develop a formal mechanism

to implement the process of comparing with peers. We label this mechanism the peer-prediction

method.

The scheme uses one rater’s report to update a probability distribution for the report of someone

else, whom we refer to as the reference rater. The first rater is then scored not on agreement between

the ratings, but on a comparison between the likelihood assigned to the reference rater’s possible

ratings and the reference rater’s actual rating. Raters need not perform any complex computations:

so long as a rater trusts that the center will update appropriately, she will prefer to report honestly.

Scores can be turned into monetary incentives, either as direct payments or as discounts on

future merchandise purchases. In many online systems, however, raters seem to be quite motivated

by prestige or privileges within the system. For example, at Slashdot.org, users accumulate karma

points for various actions and higher karma entitles users to rate others’ postings and to have their

3Subjective evaluations of ratings could be elicited directly instead of relying on correlations between ratings.
For example, the news and commentary site Slashdot.org allows meta-moderators to rate the ratings of comments
given by regular moderators. Meta-evaluation incurs an obvious inefficiency, since the effort to rate evaluations could
presumably be put to better use in rating comments or other products that are a site’s primary product of interest.
Moreover, meta-evaluation merely pushes the problem of motivating effort and honest reporting up one level, to
ratings of evaluations. Thus, scoring evaluations in comparsion to other evaluations is preferable.

4Yes Men, who say what they think the boss will say present a related hazard: the additional information they
have about the boss’s likely perception makes it impossible to fully extract a Yes Man’s private information from the
report he gives (Prendergast; 1993).
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own postings begin with higher ratings (Lampe and Resnick, 2004); at ePinions.com, reviewers gain

status and have their reviews highlighted if they accumulate points.5

The key insight that the correlation in agents’ private information can be used to induce truthful

revelation has been addressed, albeit in an abstract way, in the mechanism design literature. Sem-

inal papers by d’Aspremont and Gérard-Varet (1979; 1982) and Crémer and McLean (1985; 1988)

demonstrate that it is generally possible to use budget-balancing transfer payments to extract

agents’ private information when types are correlated. Adapting tools from statistical decision

theory, Johnson, Pratt, and Zeckhauser (1990) show how to construct budget-balancing transfer

payments based on “proper scoring rules.” Johnson, Miller, Pratt, and Zeckhauser (2002) ex-

tend those results to the case of multidimensional, continuous private information. Kandori and

Matsushima (1998, section 4.2) consider how to enforce cooperation in repeated games through

correlated equilibria despite the lack of public information about stage game outcomes, and show

how to apply a proper scoring rule to elicit truthful communication of private information about

outcomes.

This paper applies the general insights on the usefulness of proper scoring rules for eliciting

correlated information to the particular problem of eliciting honest reviews of products, papers,

and proposals. Our mechanism is particularly well suited to Internet-based implementations and

could potentially be applied to services such as MovieLens or Amazon.6 Once ratings are collected

and distributed electronically, it is relatively easy to compute posteriors and scores and keep track

of payments.

In Section 2 we show that the reviewing application quite naturally fits an informational re-

quirement, which we call stochastic relevance, that is sufficient to allow the center to elicit the

rater’s private information using a proper scoring rule. We extend the scoring-rule-based approach

to address core theoretical issues that arise in this applied problem, such as the elicitation of effort,

sequential reporting, and discrete reporting based on continuous signals. In Section 3 we address

a number of practical issues that would arise in implementing proper scoring rules in real systems,

including conflicts of interest, estimating the information the mechanism requires from historical

reviewing data, and accommodating differences among raters in both tastes and in prior beliefs

5Similarly, offline point systems that do not provide any tangible reward seem to motivate chess and bridge players
to compete harder and more frequently.

6 It could also be extended to eBay or Bizrate, which rate sellers rather than products. Rating sellers, however,
complicates the analysis. For example, if sellers strategically varied the quality of service they provide over time,
the correlation between one rater’s evaluation and future raters’ evaluations might be severed, disrupting our scoring
mechanism.
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about the distributions of product quality and rater types. We also discuss limitations of the

mechanism. Section 4 concludes.

2 A Mechanism for Eliciting Honest Feedback

A number of raters experience a product and then rate it for quality. The quality of a product does

not vary, but is observed with some idiosyncratic error. After experiencing the product, each rater

sends a message to a common processing facility called the center. The center makes transfers to

each rater, awarding or taking away points, with the amount of the transfers determined by the

ratings. The center has no independent information, so its scoring decisions can depend only on

the information provided by other raters.7 As noted above, points may be convertible to money,

discounts or privileges within the system, or merely to prestige. We assume that raters’ utilities

are linear in points.8 We refer to a product’s quality as its type. We refer to a rater’s perception

of a product’s type as her signal.

Suppose that the number of product types is finite, and let the types be indexed by t = 1, ..., T .

Let p (t) be the commonly held prior probability assigned to the product’s being type t.9 Assume

that p (t) > 0 for all t and
PT
t=1 p (t) = 1.

Let I be the set of raters, where |I| ≥ 3. We allow for the possibility that I is (countably)

infinite. Each rater, judging from her own experience, privately observes a signal of the prod-

uct’s type.10 Conditional on the product’s type, raters’ signals are independent and identically

distributed. Let Si denote the random signal received by rater i. Let S = {s1, ..., sM} be the
set of possible signals, and let f (sm|t) = Pr

¡
Si = sm|t

¢
, where f (sm|t) > 0 for all sm and t,

and
PM
m=1 f (sm|t) = 1 for all t. We assume that f (sm|t) is common knowledge, and that the

conditional distribution of signals is different for different values of t. Let si ∈ S denote a generic
realization of Si. We use sim to denote the event S

i = sm. We assume that raters are risk neutral

and seek to maximize expected wealth.

To illustrate throughout this section, we introduce a simple example. There are only two

product types, H and L, with prior p(H) = .5, and two possible signals, h and l, with f(h|H) = .85
and f(h|L) = .45. Thus, Pr(h) = .5 ∗ .85 + .5 ∗ .45 = .65.

7Given independent verifying power, a variant of the system outlined below would be easier to implement. It could
simply pay raters by how well they predicted the center’s information. Utilizing information from other raters as well
as the center would increase the reliability of the mechanism, but would not affect the incentive to report honestly.

8We consider the impacts of risk aversion in section 3.1.
9We briefly address the issue of non-common priors later.
10We refer to raters as female and to the center as male.
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In the mechanism we propose, the center asks each rater to announce her signal. After all

signals are announced to the center, they are revealed to the other raters and the center computes

transfers. Let ai ∈ S denote one such announcement, and a = ¡
a1, ..., aI

¢
denote a vector of

announcements, one by each rater. Let aim ∈ S denote rater i’s announcement when her signal
is sm, and āi =

¡
ai1, ..., a

i
M

¢ ∈ SM denote rater i’s announcement strategy. Let ā =
¡
ā1, ..., āI

¢
denote a vector of announcement strategies. As is customary, let the superscript “−i” denote a
vector without rater i’s component.

Let τ i (a) denote the transfer paid to rater i when the raters make announcements a, and let

τ (a) = (τ1 (a) , ..., τ I (a)) be the vector of transfers made to all agents. An announcement strategy

āi is a best response to ā−i for player i if for each m:

ES−i
£
τ i
¡
āim, ā

−i¢ |sim¤ ≥ ES−i £τ i ¡âi, ā−i¢ |sim¤ for all âi ∈ S. (1)

That is, a strategy is a best response if, conditional on receiving signal sm, the announcement

specified by the strategy maximizes that rater’s expected transfer, where the expectation is taken

with respect to the distribution of all other raters’ signals conditional on Si = sm. Given transfer

scheme τ (a), a vector of announcement strategies ā is a Nash Equilibrium of the reporting game

if (1) holds for i = 1, ..., I, and a strict Nash Equilibrium if the inequality in (1) is strict for all

i = 1,..., I.

Truthful revelation is a Nash Equilibrium of the reporting game if (1) holds for all i when

aim = sm for all i and all m, and is a strict Nash Equilibrium if the inequality is strict. That is, if

all the other players announce truthfully, truthful announcement is a strict best response. Since

raters receive no direct return from their announcement, if there were no transfers at all then any

strategy vector, including truthful revelation, would be a Nash equilibrium. However, since players

are indifferent between all strategies when there are no transfers, this Nash equilibrium is not strict.

2.1 The Base Case

Our base result defines transfers that make truthful revelation a strict Nash equilibrium. The

analysis begins by noting (Lemma 1) that although Si and Sj are conditionally independent (con-

ditional on the product’s type), they are not necessarily independent. Because each signal is drawn

from the same distribution with unknown parameter t, Si and Sj are generally dependent. In fact,
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our results rely on a form of dependence, which we call stochastic relevance.11

Definition: Random variable Si is stochastically relevant for random variable Sj if and only if

the distribution of Sj conditional on Si is different for different realizations of Si.

More technically, Si is stochastically relevant for Sj if for any distinct realizations of Si, call them

si and ŝi, there exists at least one realization of Sj , call it sj , such that Pr
¡
sj |si¢ 6= Pr ¡sj |ŝi¢.12 Let

g
¡
Sj |Si¢ be the distribution of Sj conditional on Si, and let g ¡sj |si¢ represent Pr ¡Sj = sj |Si = si¢.

Lemma 1: For generic distributions f (sm|t) and p (t), Si is stochastically relevant for Sj for
any two distinct players i and j.13

In the case of product reviews, we will consider two products to be of different types when

they produce different signal distributions. Lemma 1 establishes that in that case, it is only

“by coincidence” that two distinct signals, si and ŝi, yield the same posterior beliefs about the

distribution of another rater’s signal. Such coincidences occur with probability zero and can be

safely ignored.14

Since generically Si is stochastically relevant for Sj , in the remainder of the paper we will

assume that this conditions holds.

Continuing the two-type, two-signal example, suppose that rater i receives the signal l. Recall

that p(H) = .5, f(h|H) = .85, and f(h|L) = .45, so that Pr
¡
sil
¢
= .35. Given i’s signal, the

probability that rater j will receive a signal h is:

g
³
sjh|sil

´
= f (h|H) f (l|H) p (H)

Pr
¡
sil
¢ + f (h|L) f (l|L) p (L)

Pr
¡
sil
¢ = .85

.15 ∗ .5
.35

+ .45
.55 ∗ .5
.35

∼= 0.54.

If i had instead observed h, then:

g
³
sjh|sih

´
= f (h|H) f (h|H) p (H)

Pr
¡
sih
¢ + f (h|L) f (h|L) p (L)

Pr
¡
sih
¢ = .85

.85 ∗ .5
.65

+ .45
.45 ∗ .5
.65

∼= 0.51.

The elicitation of beliefs about the distribution of Sj from an agent who has observed Si is the

11The concept of stochastic relevance is introduced in Johnson, Miller, Pratt, and Zeckhauser (2002).
12This condition is the same as the condition (A4) used in Kandori and Matsushima (1998).
13That is, the closure of the set of distributions for which Si is not stochastically relevant for Sj has Lebesgue

measure zero. See Mas-Colell, Whinston, and Green (1995, p. 595) for a discussion of generic conditions. Proofs
omitted from the main text are contained in Appendix A.
14 In the event that g

¡
sj |si¢ ≡ g ¡sj |ŝi¢ for all sj given the current prior distribution, for any small perturbation of

the prior this condition will no longer hold.
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problem for which proper scoring rules were developed.15 Put simply, suppose agent i privately

observes the realization of Si, which is stochastically relevant for some publicly observable random

variable Sj , and agent i is asked to reveal her private information. A scoring rule is a function

R
¡
sj |ai¢ that, for each possible announcement ai of Si, assigns a score to each possible realization

of Sj . A convenient interpretation is that the scoring rule specifies the payment made (or penalty

assessed) to the agent following each realization Sj . A scoring rule R
¡
sj , ai

¢
is strictly proper if

rater i uniquely maximizes her expected score by announcing the true realization of Si.

The literature contains a number of strictly proper scoring rules.16 The three best known are:

1. Quadratic Scoring Rule: R
³
sjn|ai

´
= 2g

³
sjn|ai

´
−PM

h=1 g
³
sjh|ai

´2
.

2. Spherical Scoring Rule: R
³
sjn|ai

´
=

g(sin|ai)³PM
h=1 g(s

j
h|ai)

2
´ 1
2
.

3. Logarithmic Scoring Rule: R
³
sjn|ai

´
= ln g

³
sjn|ai

´
.

Further, if R (·|·) is a strictly proper scoring rule, then a positive affine transformation of it, i.e.,
αR (·|·)+β, is also a strictly proper scoring rule. The ability of the center to manipulate constants α
and β is useful in inducing the raters to exert effort and ensuring that their participation constraints

are satisfied. Throughout the paper, we will use R
³
sjn|ai

´
to denote a generic strictly proper scoring

rule. At times we will illustrate our results using the logarithmic rule because of its intuitive appeal

and notational simplicity. However, unless otherwise noted, all results continue to hold for any

strictly proper scoring rule.

Transfers based on a strictly proper scoring rule can be used to induce truthful revelation by

agent i as long as her private information is stochastically relevant for some other publicly available

signal. However, in the case we consider each rater’s signal is private information, and therefore

we can only check players’ announcements against other players’ announcements, not their actual

signals. Nevertheless, if a rater believes that other raters will announce their information truthfully,

then transfers based on a strictly proper scoring rule induce the rater to truthfully announce her

own information. That is, truthful reporting is a strict Nash Equilibrium.

Proposition 1: There exist transfers under which truthful reporting is a strict Nash Equilibrium

of the reporting game.

15See Cooke (1991) for an introduction to the use of scoring rules.
16See Cooke (1991, p. 139) for a discussion of strictly proper scoring rules. Selten (1998) provides proofs that

each of the three rules below is strictly proper and discusses other strictly proper scoring rules.
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Proof of Proposition 1: For each rater, choose another rater r (i), the reference rater for i,

whose announcement i will be asked to predict. Let

τ∗i
³
ai, ar(i)

´
= R

³
ar(i)|ai

´
. (2)

Assume that rater r (i) reports honestly: ar(i) (sm) = sm for all m. Since Si is stochastically

relevant for Sr(i), and r (i) reports honestly, Si is stochastically relevant for r (i)’s report as well.

Given that Si = s∗, player i chooses ai ∈ S in order to maximize:

MX
n=1

R
³
sr(i)n |ai

´
g
³
sr(i)n |s∗

´
. (3)

Since R (·|·) is a strictly proper scoring rule, (3) is uniquely maximized by announcing ai = s∗, i.e.,
truthful announcement is a strict best response. Thus, given that player r (i) announces truthfully,

player i’s best response is to announce truthfully as well.¥

We illustrate Proposition 1 using the logarithmic scoring rule. Since 0 < g
³
sjm|sin

´
< 1,

ln g
³
sjm|sin

´
< 0, and so we refer to τ∗i as rater i’s penalty since it is always negative in this

case. Consider the simple example where rater i received the signal l. That signal was unlikely

(Pr
¡
sil
¢
= .35). Moreover, even contingent on that signal it was unlikely that rater j would receive

an l signal ( g
³
sjl |sil

´
= 1 − 0.54 = .46). Thus, if rater i were rewarded merely for matching her

report to the next report, she would prefer to report h. With the log scoring rule, an honest report

of l leads to an expected payoff

ln g
³
sjh|l

´
g
³
sjh|l

´
+ ln g

³
sjl |l
´
g
³
sjl |l
´
= ln (.54) .54 + ln(.46).46 = −0.69.

If, instead, she reports h, rater i’s expected score is:

ln g
³
sjh|h

´
g
³
sjh|l

´
+ ln g

³
sjl |h

´
g
³
sjl |l
´
= ln (.71) .54 + ln(.29).46 = −0.75.

As claimed, the expected score is maximized by honest reporting.

The key idea is that the scoring function is based on the updated beliefs about the next signal,

not simply matching a rater’s report to the next one. The updating takes into account both the

priors and the reported signal, and thus reflects the initial rater’s priors. Thus, she has no reason to

shade her report toward the signal expected from the priors. Note also that she need not perform
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any complex Bayesian updating. She merely reports her signal. As long as she trusts the center to

correctly perform the updating and believes other raters will report honestly, she can be confident

that honest reporting is her best action.17

2.2 Eliciting Effort

The assumption that evaluation and reporting are costless allowed us to focus on the essence of the

scoring-rule based mechanism. However, raters incur costs, including direct costs of effort as well

as the opportunity cost of being an early evaluator rather than waiting for better information from

other evaluators before deciding whether to use a product. If the expected payoff is less than the

sum of these costs, raters will skip the task or provide feedback without doing a good job.18 We

begin by assuming a fixed cost of rating. We then move on to consider how the center can induce

raters to select an optimal effort level when additional costly effort leads to more precise signals.

Suppose there is a fixed cost of evaluating and reporting given by c > 0. To induce effort,

the expected value of incurring effort and reporting honestly must exceed the expected value of

reporting without receiving any signal. As the proof of Proposition 1 makes clear, the truth-

inducing incentives provided by scoring-rule based payments (or any of the scoring rules mentioned

above) are unaffected by a positive rescaling of all transfers; if transfers τ∗i
¡
ai, ar(i)

¢
= R

¡
ar(i)|ai¢

induce truthful reporting, then τ∗i
¡
ai, ar(i)

¢
= αR

¡
ar(i)|ai¢, where α > 0, does as well. Thus,

even strictly proper scoring rules offer significant leeway to adapt the transfers. Since the rater is

better-informed if she acquires a signal than if she doesn’t, and better information always increases

the expected value of a decision problem (Savage, 1954; Lavalle, 1968), increasing the scaling factor

increases the value of effort without affecting the incentives for honest reporting once effort is

expended.

Proposition 2: Let c > 0 denote the cost of acquiring and reporting a signal. If other raters

acquire and report their signals honestly, there exists a scalar α ≥ 0 such that when rater i is

paid according to τ∗i
¡
ai, ar(i)

¢
= αR

¡
ar(i)|ai¢, her best response is to acquire a signal and report it

honestly.

17 In an experiment, Nelson and Bessler (1989) show that, even when the center does not perform the updating for
them, with training and feedback subjects learn that truthful revelation is a best response when rewards are based
on a proper scoring rule.
18At the news and commentary site Slashdot, where users earn "karma" points for acting as moderators, staff have

noticed that occasionally ratings are entered very quickly in succession, faster than someone could reasonably read
and evaluate the comments. They call this “vote dumping.”
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The same scaling ideas can be generalized to a situation where raters can choose to work harder

to obtain better information.19 Without putting additional structure on the distributions under

consideration, the natural notion of “better” information is to think about the rater’s experience as

being a random sample, with better information corresponding to greater sample size.20 Assuming

that the cost of acquiring a sample is increasing and convex in the sample’s size, we can ask when

and how it is possible for the center to induce the raters to acquire samples of a particular size.

We relegate the technical presentation to Appendix B. However, the basic idea is straightfor-

ward. For any sample size, stochastic relevance continues to hold for generic distributions. Thus,

when the rater is paid according to a strictly proper scoring rule, she maximizes her expected score

by truthfully announcing her information (if all other raters do as well). When a rater increases

her sample size from, say, x to x + 1, the additional observation further partitions the outcome

space. Using well-known results from decision theory (Savage, 1954; Lavalle 1968), this implies

that the rater’s optimized expected score increases in the sample size. Let V ∗ (x) denote optimized

expected score as a function of sample size. The question of whether the center can induce the

rater to choose a particular sample size, x∗, then comes down to whether there exists a scaling

factor, α∗, such that

x∗ ∈ argmax
x

α∗V ∗ (x)− c (x) .

If V ∗ (x) is concave in x and c (x) satisfies certain regularity conditions (i.e., c0 (0) = 0, and

limx→∞ c0 (x) =∞), it is possible to induce the agent to choose any desired sample size.21

We return to the question of eliciting effort in Section 2.5.1, where, due to assuming information

is normally distributed, we are able to present the theory more parsimoniously.

2.3 Voluntary Participation and Budget Balance

The transfers constructed in the previous sections induce raters to report truthfully and exert

costly effort. However, the expected payment from truthful reporting (and optimal effort) may

be insufficient to induce the rater to participate in the mechanism in the first place. This is most

apparent when the logarithmic rule is employed, since the logarithmic score is always negative.

However, this problem is easily addressed. Since adding a constant to all payments (i.e., letting

the transfer be given by αiR
¡
ar(i)|ai¢ + ki) will not affect on the incentives for effort or honest

19Clemen (2002) undertakes a similar investigation in a principal-agent model.
20Later, we discuss the case where raters’ beliefs and signals are normally distributed, in which case it is natural

to think of better information in terms of reducing the signal variance.
21Clemen (2002) provides examples of a number of distributions for which V ∗ (x) is concave.
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reporting, the constant ki can be chosen to satisfy either ex ante participation constraints (i.e.,

each agent must earn a non-negative expected return), interim participation constraints (i.e., each

agent must earn a positive return conditional on any observed signal), or ex post participation

constraints (i.e., the agent must earn a positive expected return for each possible
¡
sj , si

¢
pair). To

illustrate using the logarithmic case, since there are a finite number of possible reports, there exists

some maximum penalty. Let τ0 = min
sm,sn∈S

(α ln g (sm|sn)). Define τ+ = τ∗ − τ0. If α is chosen to

induce a desired effort level, transfers τ+ will attract voluntary (ex post) participation while still

inducing effort and honest reporting.

It is often desirable for the center to balance its budget. Clearly, this is important if scores are

converted into monetary payments. Even if scores are merely karma points or some other currency

that the center can generate at will, uncontrolled inflation would make it hard for users to interpret

point totals. As long as there are at least three raters, the center can balance the budget by

reducing the base transfer τ∗ to each rater by an amount equal to some other rater’s base transfer.

Though all the transactions actually occur between raters and the center, this creates the effect of

having the raters settle the transfers among each other.22 Let b (i) be the rater whose base transfer

i settles (paying if τ∗ is positive, and collecting if it is negative), and let b (i) be a permutation such

that b (i) 6= i and r (b (i)) 6= i. The net transfer to rater i is then:

τ i (a) = τ∗i
³
ai, ar(i)

´
− τ∗b(i)

³
ab(i), ar(b(i))

´
. (4)

These transfers balance. The only raters whose reports can influence the second term are b (i) and

rater b (i)’s reference rater, r (b (i)), and by construction of b (·) they are both distinct from rater

i. Since all reports are revealed simultaneously, rater i also cannot influence other players’ reports

through strategic choice of her own report. Thus, the second term in (4) does not adversely affect

rater i’s incentive to report honestly or put forth effort.

The balanced transfers in (4) do not guarantee voluntary participation. Each player’s expected

gain from honest reporting is zero so long as the expected value of τ∗i is the same for all players. If,

however, a player knows that her own signals are less precise than those of other players, then her

expected base transfer τ∗i from the proper scoring rule will be less than the expected τ∗b(i). Even

if the expected gain is zero or positive, in particular cases it may be negative. One way to assure

ex-post voluntary participation is to collect bonds or entry fees in advance, and use the collected

22Since each player will receive her own base transfer and fund one other player’s, the addition of τ0 to each has
no net effect, so we phrase the discussion in terms of the raw penalties τ∗ rather than the net payments τ+.
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funds to ensure that all transfers are positive. For example, with the logarithmic scoring rule,

min τ ≤ min τ∗ = τ0. If −τ0 is collected from each player in advance, and then returned with

the transfer τ , each player will receive positive payments after the evaluations are reported. Some

raters will still incur net losses, but the bond prevents them from dropping out after they learn

of their negative outcome. Alternatively, it may be sufficient to threaten to exclude a rater from

future participation in the system if she is unwilling to act as a rater or settle her account after

a negative outcome. Of course, when payments are made in points maintained by the system, as

with karma points or chess ratings, the system need not secure raters’ acquiescence when changing

their point totals, and ex-post voluntary participation is not a constraint.

2.4 Sequential Interaction

In the scenario above, raters report their experiences simultaneously. Sequential reporting may be

desirable, since it makes superior use of information by allowing later raters to make immediate

use of the information provided by their predecessors. The mechanism adapts readily to sequential

situations.23 The transfer to rater i can be determined using any subsequent rater as a reference

rater. To balance the budget, the transfer can be funded by any subsequent rater other than rater

i’s reference rater.

More formally, suppose an infinite sequence of raters, indexed by i = 1, 2, ..., interacts with the

product in order. We will designate rater i+ 1 as rater i’s reference rater, i.e., i’s report is used to

predict the distribution of rater i+ 1’s report. Initially, the commonly held prior distribution for

the product’s type is given by p (t). Let p1
¡
t|s1¢ denote the posterior distribution after rater 1

receives signal s1. That is,

p1
¡
t|s1¢ = f

¡
s1|t¢ p (t)
Pr (s1)

, (5)

where Pr
¡
s1
¢
=
PT
t=1 f

¡
s1|t¢ p (t). Rater 1’s posterior belief about the probability that S2 = s2

is given by

g
¡
s2|s1¢ = TX

t=1

f
¡
s2|t¢ p1 ¡t|s1¢ . (6)

Given the distribution specified in (6), rater 1 can be induced to truthfully reveal s1 using the

scoring rule specified in Proposition 1. Rater 1 announces her signal. The center computes a

23Hanson (2002) applies a scoring-rule based approach in a model in which a number of experts are sequentially
asked their belief about the distribution of a random event, whose realization is revealed after all experts have
reported. In our model, the product’s type is never revealed, and therefore we must rely on other agents’ reports to
provide incentives.
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posterior distribution of rater 2’s announcements. The penalty is determined by rater 2’s actual

report.

By iteratively updating beliefs about the product using Bayes’ rule (as in (5)), each player’s

announcement feeds into the information used to score subsequent players. Let pi−1 (t) be the prior

distribution over types computed from the announcements of the first i−1 raters. Although pi−1 (t)
depends on the history of announcements s1, ..., si−1, we suppress this dependence for notational

simplicity. Conditional on observing signal si, rater i’s posterior beliefs about the distribution of

types is given by:

pi
¡
t|si, pi−1

¢
=
f
¡
si|t¢ pi−1 ¡t|s1, ..., si−1¢

Pr (si|pi−1) , (7)

where Pr
¡
si|pi−1

¢
=
PT
t=1 f

¡
si|t¢ pi−1 (t). Rater i’s computed posterior beliefs about the distrib-

ution of rater i+ 1’s announcement is given by:

g
¡
si+1|si¢ = TX

t=1

f
¡
si+1|t¢ pi ¡t|si, pi−1¢ . (8)

The sequential elicitation game has each rater i observe si, report it, and then be scored based on

the implied distribution of the subsequent rater’s (i.e., rater i+1’s) signal. We continue to assume

that, conditional on product type, signals are independent, so that prior raters’ announcements

affect how current players are scored, but not the signals they receive. Transfers constructed

according to (2) using the conditional distribution specified in (8) elicit truthful announcement.

This announcement then becomes common knowledge and is used to update beliefs about the

product according to (7). Incentives to rater i + 1 are then constructed using a scoring rule that

incorporates these updated beliefs.

To balance the budget, let rater i’s transfer be paid by rater i + 2. For all raters after the

first two, the net transfer will be τ∗i − τ∗i−2. Raters 1 and 2 present the only complication since

they do not pay transfers to anyone. For example, under the logarithmic rule these raters pay a

penalty (since the logarithmic score is negative) but do not receive one from another player. To

ensure voluntary participation, the center can provide an additional payment of τ0 to them, as in

the previous section. The budget remains nearly though not exactly in balance. After transfers are

paid to the ith rater (i ≥ 2), the budget will be out of balance by the amount τ∗i −2q. Presumably,
if necessary, the center could recover the initial expenditure of −2q by charging a small fixed fee to
later raters.
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When a finite string of raters experience the product, the process of checking each rater’s

announcement against that of a later rater could unravel. The last rater has no incentive to lie,

but also none to tell the truth, since there is no future signal upon which to base her reward. If

the final announcement is unreliable, the previous raters cannot be induced to report truthfully,

and so on up the line. Worse, if reporting is costly, the final rater may not submit a report at all,

again leading the system to collapse.

Fortunately, the center can group some raters together and treat the groups as if they report

simultaneously, creating reporting “rings” that provide appropriate incentives for every rater. Sup-

pose there are 10 raters. Consider the last three: 8, 9, and 10. The center can score rater 8 based

on 9’s announcement, 9 based on 10’s, and 10 based on 8’s. As long as the center can avoid

revealing these three raters’ announcements until all three have announced, effective incentives can

be provided using our earlier techniques, and the chain will not unravel. The transfers can also

be made within the ring in order to balance the budget for the ring. To balance the overall bud-

get exactly, rather than approximately as in the infinite case, multiple rings could be created, e.g.,

{1, 2, 3, 4}, {5, 6, 7}, and {8, 9, 10}. Within each ring, reports would be revealed simultaneously, but
the reports of each ring would be available to the next ring, maintaining some of the advantages of

sequential reporting.

There are other ways to avoid unraveling and to balance the budget exactly. For example, the

center could withhold the reports of the first rater and the third-to-last rater until after the final

rater reports. The last two raters are scored against the report of rater 1, and otherwise rater i is

scored against rater i+ 2. Rater i’s transfer is paid by rater i+ 1, except for the last rater, whose

transfer is paid by rater 1. Since all penalties are assessed against reports that have not yet been

revealed, the transfers induce effort and honest reporting. Since all transfers are paid by a rater

who has not yet reported at the time the transfer is computed, the transfers do not affect incentives

for effort or honest reporting.

2.5 Continuous Signals

Until now, we have considered a model where type and signal spaces are discrete. All of our

results translate to the continuous case in a natural way (e.g., density functions replace discrete

distributions, integrals replace sums, etc.). For example, if rater i reports signal si, the logarithmic

score is computed as ln
¡
g
¡
sj |si¢¢, where g ¡sj |si¢ is now the posterior density of sj given si. Most

importantly, the scoring rules we have discussed continue to be strictly proper in the continuous
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case.

In this section, we briefly consider two particularly interesting aspects of the problem with

continuous signals and product-type spaces, a comparison of the three scoring rules when prior

and sample information are normally distributed, and the problem of eliciting discrete information

when signals are continuous.

2.5.1 Effort elicitation with normally distributed noise: A comparison of scoring rules

Let q denote the unknown quality of the good, and suppose that raters have prior beliefs that q is

normally distributed with mean µ and precision θq, where precision equals 1/variance. Suppose

each rater observes real-valued signal si of the object’s quality that is normally distributed with

mean q and precision θi. That is, each rater receives a noisy but unbiased signal of the object’s

quality. Conditional on observing si, the rater’s posterior belief about q is that q is distributed

normally with mean µ̂ and precision θq + θi, where:24

µ̂ =

¡
µθq + s

iθi
¢

(θq + θi)
. (9)

Suppose that rater j observes signal sj on the object’s quality, where sj is normally distributed

with mean q and precision θj . Conditional on observing si, rater i’s posterior belief about the

distribution of sj is that sj is normally distributed with mean µ̂ and precision θ, where θ =

θq + θi + θj .

Since different observation-precision combinations lead to different posterior beliefs about the

distribution of sj , our stochastic relevance condition is satisfied, and payments based on a proper

scoring rule can induce effort and honest reporting. As before, rater i will prefer to be scored on

her posterior for the reference rater j, and this is achieved by honestly reporting her observation

and her precision, allowing the center to correctly compute her posterior.25

We assume that by exerting effort, raters can increase the precision of their signals. Let c (θi)

represent the cost of acquiring a signal of precision θi ≥ 0, where c0 (θi) > 0, c0 (0) = 0, c0 (∞) =∞,
and c00 (θi) ≥ 0. To compare the logarithmic, quadratic, and spherical scoring rules, it is necessary
24See Pratt, Raiffa, and Schlaifer (1965).
25Ottavianni and Sorensen (2003) consider a related model, with normally distributed information of fixed precision

for each rater. In their analysis, however, each rater attempts to convince the world of their expertise (i.e., that they
have precise signals.) With that objective function, there is no equilibrium where signals are fully revealed. By
contrast, we introduce an explicit scoring function that is not based solely on the inferred or reported precision of
raters’ signals, and full information revelation can be induced.
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to ensure that the rater is choosing the same signal precision under each rule. As suggested by our

analysis in Section 2.2, the center can induce the rater to choose more or less effort by multiplying

all transfers by a larger or smaller constant.

Let f (x) be the probability density function of a normal random variable with mean µ and

precision θ. Under the logarithmic scoring rule, the maximized expected utility as a function of

precision (i.e., when the rater announces truthfully) is given by:

vl (θi) =

Z
log (f (x)) f (x) dx =

Z (
−θ (x− µ)

2

2
− log

Ãr
2π

θ

!)
f (x) dx

=
−θE (x− µ)2

2
− log

Ãr
2π

θ

!
= −1

2
+
1

2
log

µ
θ

2π

¶
.

It is straightforward to verify that vl (θi) is increasing and concave in θi. Thus, as in the discrete

case, by varying the multiplicative scaling factor, the center can induce the rater to choose any

particular level of precision.

The scaling factor α that induces a particular θi is found by solving:

max
θi

α

µ
−1
2
+
1

2
log

µ
θ

2π

¶¶
− c (θi) .

Setting the derivative of this expression equal to zero yields that choosing α = 2 (θq + θi + θj) c
0 (θi) ≡

αl induces precision θi under the logarithmic rule.

Under the quadratic rule, the rater’s expected score if he announces truthfully is:

vq (θi) =

Z
2f (x)2 dx−

Z
f (x)2 dx =

√
θ

2
√
π
=

√
θ

2
√
π
,

since
R
f (x)2 dx =

√
θ

2
√
π
. Again, the maximized expected score, vq (θi), is increasing and concave in

θi. To find the optimal scaling factor, solve:

max
θi

α

Ã √
θ

2
√
π

!
− c (θi) ,

which yields that choosing α = 4
√
π (θq + θi + θj)

1
2 c0 (θi) ≡ αq induces precision θi under the

quadratic rule.
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Repeating the same computation for the spherical rule, the expected score is:

vs (θi) =

Ã √
θ

2
√
π

!1
2

,

which is increasing and concave in θi. Solving

max
θi

α

Ã √
θ

2
√
π

! 1
2

− c (θi)

yields that α = 4
√
2π1/4 (θq + θi + θj)

3/4 c0 (θi) ≡ αs induces precision θi under the spherical rule.

Thus, when information is normally distributed the center can induce a desired level of pre-

cision and truthful revelation using any of these rules. And, since a constant can be added to

any of the scoring rules without affecting either truth-telling or effort-inducing incentives (though

possibly participation incentives), the expected payment under the different rules cannot be used

to discriminate between them. One salient dimension over which the rules differ is the variability

of the payments needed to induce a particular effort level. Variability may become important if

raters have limited liability or are risk averse. The variance and range of the transfers needed to

induce a particular precision (effort) level under each of the rules is:26

Rule Variance of transfers Min Max Range

Log. 2θ2c0 (θi)2 −∞ ln
¡

θ
2π

¢
θc0 (θi) ∞

Quadratic
16(2

√
3−3)
3 θ2c0 (θi)2 −2θc0 (θi) 2

¡
2
√
2− 1¢ θc0 (θi) 4

√
2θc0 (θi)

Spherical
16(2

√
3−3)
3 θ2c0 (θi)2 0 4

√
2θc0 (θi) 4

√
2θc0 (θi)

Several important features emerge from this analysis. First, the quadratic and spherical rules

have the same variance and range of payments. This is because when information is normally

distributed both rules specify scores that are linear in f (x). Thus, when the two rules are scaled

to induce the same precision, they differ only by an additive constant. Second, the logarithmic

rule has the smallest variance (163
¡
2
√
3− 3¢ ' 2. 475 2). If scores are used to evaluate the raters

(for example, to decide whether to invite them back as reviewers in the future), a lower variance

will allow more reliable evaluation based on fewer trials, and thus the logarithmic rule may be

preferred. On the other hand, the range of payments is infinite with the logarithmic scoring

26Supporting computations for this table are available from the authors upon request.
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rule because limx→0 ln (x) = −∞. Thus, the logarithmic rule may not be an attractive option

when probabilities become small and raters’ limited liability is a concern. However, while small-

probability events play a role when information is normally distributed, they need not always be

important, and the logarithmic rule may be preferable to the other rules in particular cases. We

return to the relative merits of the rules in Section 3.2.

2.5.2 Eliciting Coarse Reports

Raters’ information is often highly complex. For example, it may take pages of description to

completely summarize all of the relevant information about a person’s experience in a restaurant.

Although a proper scoring rule could elicit such information (as long as it is stochastically relevant),

it is often impractical to do so. Further, complex information will likely be more difficult for

subsequent users to interpret than coarser measures of quality, such as 1 to 5 stars, etc. In this

section, we consider situations where the center offers raters a choice between several “coarse”

reports, and asks when it is possible to design payments that induce people to be as truthful as

possible, i.e., to choose the admissible report closest to their true signal.

In general, the problem of coarse reporting is both subtle and complex. Proper scoring rules

induce people to truthfully announce their exact information. One might hope that if the environ-

ment were sufficiently smooth, then, when offered a restricted set of admissible reports to announce,

a rater will choose the one that is “closest” to her true information. However, this intuition relies

on two assumptions: that closeness in signals corresponds to closeness in posteriors over product

types, and that close beliefs in product-type space correspond to close beliefs about the distribu-

tion of a reference rater’s announcement. Although it remains an open question whether these

assumptions hold in general, it is possible to show that they hold when there are only two types of

products.

Suppose raters receive signals drawn from the unit interval and that there are only two types

of objects, good (type G) and bad (type B). Their signal densities are f (s|G) and f (s|B). Let

p ∈ (0, 1) denote the prior probability (commonly held) that the object is good. We assume that
densities f (s|G) and f (s|B) satisfy the monotone likelihood ratio property (MLRP):

f (s|G)
f (s|B) is strictly increasing in s.

MLRP implies the distribution for type G first-order stochastically dominates the distribution for

18



B (see Gollier, 2001). If a rater observes signal si, then she assigns posterior probability p
¡
G|si¢

to the object’s being good, where

p
¡
G|si¢ = pf

¡
si|G¢

pf (si|G) + (1− p) f (si|B) .

MLRP ensures that p
¡
G|si¢ is strictly increasing in s. Thus, MLRP embodies the idea that higher

signals provide stronger evidence that the object is good. We divide the signal space into a finite

number of intervals, which we call bins, and construct a scoring rule such that it is a best response

for a rater to announce the bin in which her signal lies if she believes that all other raters will do

the same.

The construction of reporting bins and a scoring rule capitalizes on a special property of the

quadratic score. Friedman (1983) develops the notion of “effective” scoring rules. A scoring rule is

effective with respect to a metric if the expected score from announcing a distribution increases as

the announced distribution’s distance from the rater’s true distribution decreases. When distance

between distributions is measured using the L2-metric, the quadratic scoring rule has this property.

Also, when there are only two types, the L2-distance between two distributions of reference raters’

announcements is proportional to the product type beliefs that generate them (if such beliefs exist).

Proposition 3: Suppose there are two types of objects with signal densities that satisfy MLRP.

Then, for any integer L, there exists a partition of signals into L intervals and a set of transfers

that induce Nash Equilibrium truthful reporting when agents can report only in which interval their

signal lies.

The essence of Proposition 3 is as follows. After observing si, rater i’s belief about the product’s

type (PT belief) is summarized by rater i’s posterior probability that the product is good, p
¡
G|si¢.

We begin by dividing the space of PT beliefs into L equal-sized bins. Since p
¡
G|si¢ is monotone,

these PT-belief bins translate to intervals in the rater’s signal space that we refer to as signal bins.

Note that the signal bins need not be of equal size. A rater who announces her signal is in the lth

bin of signals is treated as if she had announced beliefs about the product type at the midpoint

of the lth PT bin, which implies some distribution for the reference rater’s announcement (RRA).

Each signal bin announcement thus maps to PT beliefs and then to an RRA distribution that we

score using a quadratic scoring rule.

Since the quadratic scoring rule is effective, given a choice among this restricted set of admissible
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RRA distributions the rater chooses the RRA distribution nearest (in the L2 metric) to her true

one. This turns out to be the one with PT belief nearest her true PT belief, p
¡
G|si¢. If si is in the

lth signal bin, the closest available PT belief is the midpoint of the lth PT bin. Thus the quadratic

scoring rule induces truthful (albeit coarse) bin announcements.

One interesting feature of the construction is that the bins are constructed by dividing the PT

space rather than the signal space into equal-sized bins; while closeness of PT beliefs corresponds

to closeness of RRA beliefs, close signals do not translate linearly to close PT beliefs. For example,

suppose a rater observes signal si = 0.5, and that p (G|0.5) = 0.3. It is possible that p (G|0.4) = 0.2
while p (G|0.6) = 0.35. Thus, although the distance between signals 0.5 and 0.6 is the same as the
distance between signals 0.5 and 0.4, the PT beliefs (and therefore the RRA beliefs) are closer for

the first pair than for the second.27

Even in the simple case of only two product types, it is somewhat complicated to show that

raters will want to honestly reveal their coarse information. It remains an open question whether

it is possible to elicit honest coarse reports in more complex environments.

3 Issues in Practical Application

The previous section provides a theoretical framework for inducing effort and honest reporting.

Designers of practical systems will face many challenges in applying it. Many of these challenges

can be overcome with adjustments in the transfer payment scheme, computation of parameters

based on historical data, and careful choice of the dimensions on which raters are asked to report.

3.1 Risk Aversion

Until now, we have assumed that raters are risk neutral, i.e., that maximizing the expected transfer

is equivalent to maximizing expected utility. If raters are risk averse, then scoring-rule-based

transfers will not induce truthful revelation. Risk aversion can be addressed in a number of ways;

we present three.

If the center knows the rater’s utility function, the transfers can be easily adjusted to induce

truthful reporting. If U () is the rater’s utility function and R is a proper scoring rule, then choosing

transfers τ = U−1 (R) induces truthful reporting, since U
¡
U−1 (R)

¢ ≡ R (Winkler 1969).
27Our construction not unique. Others may work as well, and it is likely that the equal-sized bins of signals

approach works for some specifications of the underlying distributions.
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If the rater’s utility function is not known, risk-neutral behavior can be induced by paying the

rater in “lottery tickets” for a binary-outcome lottery instead of in money (Smith 1961; Savage

1971). In effect, the score assigned to a particular outcome gives the probability of winning a fixed

prize. Since von-Neumann Morgenstern utility functions are linear in probabilities, an expected-

utility maximizer will also maximize the expected probability of winning the lottery. Thus this

procedure induces individuals with unknown non-linear utility functions to behave as if they are

risk neutral. Experimental evidence suggests that, while not perfect, the binary-lottery procedure

can be effective in controlling for risk aversion, especially when raters have a good understanding

of how the procedure works.28

A third method of dealing with risk averse raters uses the fact that raters’ risk aversion is likely

to be less important when the variability in payments is small. Although we have presented our

results for the case where each rater is scored against a single reference rater, the variability of

the rater’s final payment (measured in terms of its variance) can be reduced if the rater is scored

against multiple raters and paid the average of those scores.29 As the number of reference raters

becomes large, the Law of Large numbers implies that, given the object’s true type, the rater’s

payment from reporting truthfully under this scheme converges to the expected score of a truthful

report for that type of object. Thus, by paying the rater the average score from a sufficiently

large number of reference raters, the center can effectively eliminate the idiosyncratic noise in the

reference raters’ signals. However, the systematic risk due to the object’s type being unknown

cannot be eliminated.30

28See Roth (1995, pp 81-83) and the references therein.
29Since the score from being scored against a particular reference rater depends only on that rater’s announcement,

it is straightforward to show that truthful revelation remains a best response when scored against multiple reference
raters. That this procedure reduces the variance of final payments follows from the Cauchy-Schwartz inequality. At
least in the normal information case (Section 2.5.1), the scaling factor needed to induce a particular effort level is
the same whether the rater is scored against a single reference rater or is paid the average score from a number of
reference raters.
30 Interestingly, if the rater is scored against the average report of a group of reference raters (as opposed to

being scored independently against a number of raters and then paid the average score), this can actually increase
the variability in the rater’s payment. Holding effort constant, the distribution of the average report of a group of
reference raters tends to become more concentrated as the number of reference raters grows. This, however, increases
the variability of the density of reference rater announcements (as announcements near the median reference-rater
announcement become very likely and extreme announcements become very unlikely). Since the scoring rules studied
here depend on the level of the density (as opposed to the level of the random report), this tends to increase the
variability in the rater’s payment.

21



3.2 Choosing a Scoring Rule

Given a choice, which of the three scoring rules we have discussed is best? Since the logarithmic,

quadratic, and spherical rules are all strictly proper, each will elicit truthful revelation. Each rule

has its relative strengths and weaknesses, and none emerges as clearly superior.

Of the three, the logarithmic rule is the simplest, giving it a modest advantage in comprehension

and computational ease. The logarithmic rule is also “relevant” in the sense that it depends only on

the likelihood of events that actually occur, and our results in Section 2.5.1 show that the payments

needed to induce a particular effort level have lower variance under the logarithmic rule than under

either of the other two rules, at least when information is normally distributed.31 On the other

hand, as we mentioned earlier, log (x) decreases to −∞ as x decreases to zero, which may present

problems if raters have limited liability, or if the support of the raters’ posterior distributions

changes with their information. On a related note, under the logarithmic rule small changes in

low-probability events can significantly affect a rater’s expected score, which may be undesirable

if raters have difficulty properly assessing low-probability events. A final disadvantage to the

logarithmic score is that, in contrast to the quadratic rule, there is no metric with respect to which

the logarithmic rule is effective (Nau 1985). That is, a rater’s expected score from announcing a

particular distribution need not increase as its distance (as measured by any valid metric) from the

true distribution decreases.

As discussed above, the quadratic rule is effective with respect to the L2-metric, which is what

allowed us to solve the coarse reporting problem in Section 2.5.2. However, the quadratic rule is

not relevant, so it can have the perverse property that, given two distributions, the quadratic score

may be higher for the distribution that assigns lower probability to the event that actually occurs

(Winkler, 1996).

The spherical rule shares many properties with the quadratic rule (although its payments are

always positive). As we saw in the normal-information case, once the spherical and quadratic rules

are scaled to induce the same rating effort, they become identical up to an additive constant. The

spherical rule is effective with respect to a renormalized L2-metric (see Friedman, 1983).

Jensen and Peterson (1973) compare the three scoring rules in head-to-head experimental trials.

They conclude that there is essentially no difference in the probabilities elicited from raters. They

do note that subjects seem to have trouble understanding scoring rules involving both positive

31Relevance is important in Bayesian models of comparing different probability assessors (Winkler 1969; Staël Von
Holstein 1970).
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and negative payments; while the quadratic rule has this property, it is easily addressed by adding

a constant to all payments. Thus, except for situations where some events have low-probability

or raters’ information affects the set of possible events (i.e., moving support), in which cases the

logarithmic score is undesirable, there is no clear reason to prefer one scoring rule over the others.

3.3 Conflicts of Interest

Raters may have conflicts of interest. The restaurant owner’s friends and family may prefer to give

favorable reviews, even if they think the food is mediocre. A vendor might offer bribes to reviewers.

In reviewing papers, proposals, or candidates, a reviewer may have a personal or disciplinary interest

in the outcome. Advisors may stand to gain or lose financially if an investment is made. In some

situations, random selection of reviewers, anonymous reporting, and recusing of reviewers will

reduce these conflicts.

It is also possible to adjust the scoring function to try to overwhelm individuals’ outside pref-

erences. The same parameter α that was used to scale payments τ∗ in order to induce effort can

be used to counteract outside preferences. Suppose that a rater gains utility c from a particular

report. Although c represented the cost of effort in Proposition 2, the proof of Proposition 2 applies

equally well here. Recall that the maximum expected value of any report made without acquiring

a signal is αZi(0). The proof of Proposition 2 shows how to choose α so that getting a signal and

reporting it honestly is worth at least c more than making the rater’s externally preferred report.

Thus, raters can be induced to ignore any conflict of interest up to the utility they get from some

constant c that the system designer chooses. Of course, since there is only one parameter α, if

raters can exert variable effort, then setting α to overcome conflicts of interest may also create

incentives for raters to exert more than optimal effort.

3.4 Estimating Types, Priors, and Signal Distributions

In many situations, there will be sufficient rating history available for the center to estimate the

prior probabilities of alternative types and signals so as to start the rating process. One technique

would define the product types in terms of the signal distributions they generate. For example,

suppose that there are only two signals h and l. Products are of varying quality, which determines

the percentage of users who submit h ratings for the product. The type space is continuous in

principle, but in practice the site could approximately capture reality by defining a set of discrete

types that partitions the space. For illustrative purposes, we define a fairly coarse partition of
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types, 1,..,9, with f(h|i) = i
10 . That is, products of type 1 get rated h 10% of the time, and those

of type 7 get rated h 70% of the time. The site would then estimate the prior distribution function

p(i) based on how many products in the past accumulated approximately 10i% ratings.32

Table 1 illustrates updating of beliefs about the probability that a product is of any of the nine

types. Note that the initial distribution is symmetric about type 5, implying that initial probability

of h is .5. After receiving a report h, types that have higher frequencies of h signals become more

likely, as shown in the second row of the table. After receiving two conflicting reports, h and l,

the distribution is again symmetric about type 5, but the extreme types are now seen as less likely

than they were initially.

after signal p (1) p (2) p (3) p (4) p (5) p (6) p (7) p (8) p (9) pr (h)

.05 .1 .1 .1 .3 .1 .1 .1 .05 .5

h .01 .04 .06 .08 .3 .12 .14 .16 .09 .59

h, l .02 .08 .1 .12 .36 .12 .1 .08 .02 .5

Table 1: Initial and updated probabilities of nine types

defined by their probability of yielding signal h.

3.5 Taste Differences Among Raters

Suppose that raters differ systematically in their tastes. For example, raters of type A might be

generally harsher in their assessments than those of type B, so that, with binary signals, they would

be more likely to perceive goods of any particular type as being low quality, fA (l|t) > fB (l|t). The
same problems could arise if the differences among raters’ perceptions covaried with the product

types. For example, an action movie aficionado might perceive most action movies to be h and most

romantic comedies to be l; perceptions would reversed for fans of comedies. Similarly, economists

on a review panel might tend to perceive economics proposals more favorably than computer science

proposals, and vice versa for the computer scientists.

When tastes differ systematically, the center will need to model rater types explicitly. Given a

particular rater’s known type or the distribution of types that the rater is drawn from, and given

for each rater type the signal densities conditional on product types, the center can compute from

a reported signal the posterior distribution of product types. Given a known type for another rater

32Obviously, the partition could be finer, for example with types 1-99 defined by percentage of raters rating the
product h. In addition, the partition need not be uniform: more types could be defined in the region that occur most
often on a particular site.
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or a distribution from which the other rater’s type will be drawn, the center can then compute a

distribution of signals for the other rater implied by the first rater’s report.

As in the simpler case in section 3.4, given a sufficient history the center can estimate the

distribution of user types and for each type the signal distributions. An individual rater’s history

provides additional information for inferring the distribution her type is drawn from.

For example, a variety of recommender systems or collaborative filtering algorithms rely on the

past ratings of a set of users to make personalized predictions of how well each individual will like

products they have not yet rated.33 Often these algorithms merely predict a scalar value for an

individual’s rating, but they could be extended to predict a distribution over signals for each rater

(or each rater type) for each product not yet rated. That is, instead of predicting that rater j will

like movie X 4.27 on a 1− 5 scale, the algorithm could predict that the probability j would score

the movie a 5 is .4, the probability of a 4 is .3, and so on. When an additional rating is added from

rater i, the predicted distributions for each other rater for that product would be updated.

3.6 Non-Common Priors and Other Private Information

Individuals’ private information may affect the ratings they are likely to report. For example,

suppose that the National Science Foundation creates a new program solicitation on a topic (home-

land security, say) that has been the subject of few proposals in the past. The program officer and

each reviewer will form beliefs about the distribution of quality of the initial round of submissions,

but their assessments may differ. When the program gets established, there will be a shared prior

history, but individuals may have private histories that they weight strongly in forming their own

prior beliefs. Similarly, individual raters may have beliefs about the distribution of rater types

or of certain types’ signal distributions. For example, a reviewer may recognize the names and

affiliations of other reviewers on the panel and conclude that 70% are economists even though the

center has not classified so many that way.

The incentives for effort and honest reporting depend critically on the center’s ability to compute

a posterior distribution for another rater’s signal that the current rater would agree with, if only

she had the information and computational ability available to the center. Problems may arise if

raters have relevant private information beyond their own signals. Knowing that the center will not

33Some algorithms adopt an explicitly Bayesian approach, while others compute weights for other raters in a
neighborhood. Others decompose the matrix of ratings, identifying implict underlying dimensions and expressing
raters and products as linear combinations of the underlying types. See, for example, Breese, Heckerman, and Kadie
(1998) and Sarwar et al. (2000).
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use that other private information, the rater will no longer be confident that an honest report of

her signal will lead to scoring based on her true posterior beliefs about the distribution of another

rater’s signals. If she can intuit the correct direction, she may distort her reported signal so as to

cause the center to score her based on posterior beliefs closer to what she would compute herself.

Fortunately, the mechanisms in this paper easily adapt if raters can report any private infor-

mation they have about the distribution of product types, rater types, or signals contingent on

product and rater types.34 By exactly the same arguments that made honest reporting of signals

optimal in the base case, raters will prefer to honestly report their signals and other relevant priors:

honest reports will lead the center to score based on a correct posterior distribution of signals for

the next rater, and a correct posterior maximizes the score.

Once a rater has received a signal about the current product’s type, she may unconsciously

update her priors about the distribution of product types or of signals conditional on product types.

Ideally, however, she should want to report her unupdated priors because that is the information

that will lead the center to make the best predictions about the next rater’s distribution of signals.

Thus, when raters’ priors over product types or distributions of signals contingent on product types

is to be reported, it is preferable to elicit this information before the rater is exposed to the product.

In most practical situations, it will not be necessary to elicit all possible private information.

Where the center has a sufficient history of past ratings, most raters will trust the center’s inferences

about the distribution of product types, rater types, and signals conditional on product and rater

types. In those cases, raters need only report what they saw. However, when raters may have

beliefs that diverge from the center’s, it will be useful to offer raters an opportunity to report those

beliefs, lest the unreported beliefs create incentives for distorting signal reports.

3.7 Other Potential Limitations

Three other potential limitations could interfere with the smooth functioning of a scoring system

based on the peer-prediction method. First, while we have shown there is a Nash equilibrium

involving effort and honest reporting, raters could collude to gain higher transfers. Of course, with

balanced transfers it will not be possible for all of the raters to be better off through collusive

34Note that for peer-prediction scoring to work, we need to compare one rater’s posterior to another rater’s reported
signal, so it is critical to elicit raters’ signals separately from any other information that is also elicited from them.
It would not work to have raters compute the posteriors themselves and report them, because the center would
be unable to extract the raters’ signal from the other private information she used to calculate her posterior, and
thus would be unable to use the rater’s signal as an outcome in computing a previous rater’s score. In any case,
reporting private information separately will often be far easier for a rater and lead to far more accurate computation
of posteriors than if raters computed the posteriors themselves.

26



actions, and it is unclear whether a subset of the raters could collude to gain at the expense of

the remaining raters who exerted effort and reported honestly. For example, one rater can gain by

knowing what a colluding reference rater will report, but it is not clear whether the gain would

outweigh the losses for the colluding reference rater when she is scored against some other, honest

rater. Even if such collusion were profitable, the center has two approaches available to deter it.

The selection of who will serve as a reference rater for each rater can be randomized and delayed

until after ratings are reported, so that collusion would be harder to coordinate. In addition, the

center may be able to detect suspicious rating patterns through statistical analysis, and then employ

an outside expert to independently evaluate the product.35.

A second potential limitation may arise when raters perceive multidimensional signals. Our

scoring system can generalize easily to handle multiple dimensions by eliciting reports on several

dimensions, such as food, decor, and service for restaurants. Scores can then be computed based on

implied distributions for reports on one or all of the dimensions. If, however, some dimensions are

not elicited, two problems emerge. First, information may not be captured that would be valuable

to consumers. More troubling, in some situations the information not elicited from a rater may

be useful in predicting the next report, in which case the rater may be tempted to manipulate the

report that is requested.

Consider, for example, an interdisciplinary review panel. An economist with some knowledge of

computer science may evaluate proposals as other economists do, but may perceive some partially

independent signal about how computer scientists will perceive the proposals. Suppose she is asked

to report only her perception of the proposal’s quality. The center then computes an updated

distribution of signals for the next rater, accounting for both raters’ types as in Section 3.5. But

the economist’s secondary signal about how well computer scientists will like the proposal may allow

her to compute a more accurate distribution than the center can, and thus she will sometimes want

to report dishonestly in order to make the center more closely approximate her true beliefs.

Canice Prendergast’s (1993) model of Yes-Men is one example of this type of situation. In that

model, the first rater receives one signal about the expected value of a business action and another

signal about how well the next rater (the boss) will like that action. There is no scoring function

that will elicit reports from which the center can infer just the rater’s direct signal as opposed to

her signal about the boss’ signal. Thus, she will become, at least partially, a Yes-Man, who says

35This would be analogous to a University Provost who normally accepts promotion and tenure recommendations
with a minimal review, but may undertake the costly option of personally evaluating the portfolios of candidates from
units whose recommendation patterns are suspicious, or employing an outside expert to evaluate those portfolios.
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what she thinks the boss will think.

The best approach to this problem is to find a set of dimensions on which raters are asked to

report such that any other signals the raters get are not relevant for predicting the next player’s

report. For example, if restaurant reviewers are asked to report separately on food, decor, and

service, the transfer payments can induce honest reporting so long as any other independent signals

that reviewers may receive (such as the number of people in the restaurant that night) are not

useful in predicting how other raters will perceive food, decor, or service. On an interdisciplinary

review panel, reviewers might be asked to separately report quality from the perspective of each

of the disciplines involved. When scores are computed, they can be based on the probabilities for

another player’s report on any one dimension, or on all of them.

Given the computational power and the information resources available to the center, it will

not always be necessary to elicit from raters all of their weakly stochastically relevant signals. For

example, suppose the center performs a complex collaborative filtering algorithm to predict the

next rater’s distribution, and the individual rater either lacks the computational resources or the

history of everyone’s previous ratings, or does not know in advance which rater she will be scored

against. Although an additional private signal might make rater i think that, say, signal h is more

likely for some raters than the center would otherwise compute, she will be unable to determine

whether giving a false report on the dimensions that the center elicits would increase or decrease

her payoff.

A third potential limitation is trust in the system: people may not believe that effort and

honest reporting are optimal strategies. In individual instances, raters who follow that strategy

will have negative transfers, and they may incorrectly attribute such outcomes to their strategy

rather than to the vagaries of chance. Few raters will be willing or able to verify the mathematical

properties of the scoring system proven in this paper, so it will be necessary to rely on outside

attestations to ensure public confidence. Professional experts could be invited to investigate the

working of the systems, or independent auditors could be hired. The threat of public disclosure of

false claims, or even litigation, might reinforce the belief that honesty was the best policy.

4 Conclusion

Buyers derive immense value from drawing on the experience of others. However, they have the

incentive to shirk from the collective endeavor of providing accurate information about products,
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be they microwave ovens or movies, academic papers or appliances. Peer-prediction methods,

capitalizing on the stochastic relevance between the reports of different raters, in conjunction with

appropriate rewards, can create incentives for effort and honest reporting.

Implementors of such systems will face a number of design choices, ranging from rating di-

mensions and procedures for selecting reviewers to technology platforms and user interfaces. This

paper provides only a conceptual roadmap, not a detailed implementation plan, and only for those

design decisions that involve incentives for effort and honest reporting. It is an important roadmap,

however, because the most obvious approach to peer comparison, simply rewarding for agreement

in reviews, does not offer the right incentives.

The basic insight is to compare implied posteriors. rather than an actual report, to the report of

a reference rater. A rater need not compute the implications of her own signal for the distribution of

the reference rater, so long as she trusts the center to do a good job of computing those implications.

There remain many pitfalls, limitations, and practical implementation issues, for which this paper

provides conceptual design guidance.

Recommender and reputation systems require that ratings be widely collected and disseminated.

To overcome incentive problems, raters must be rewarded. Whether those rewards are monetary

or merely grades or points in some scoring system that the raters care about, intense computa-

tional methods are required to calibrate appropriate rewards. The upward march of information

technology holds promise.
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A Proofs

Proof of Lemma 1: We argue by contradiction. By Bayes’ Rule:
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f (sm|t) and p (t) that satisfy it is closed and has Lebesgue measure zero.36¥
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so that the expected value of getting a signal and reporting it is αZi(1). Savage’s analysis of
the partition problem (1954, Chapter 7) shows that acquiring the signal strictly increases the
buyer’s expected score whenever it changes the rater’s posterior belief about the other raters’
announcements (see also Lavalle (1968)). Thus Zi (1) > Zi (0) when stochastic relevance holds.

Pick α > c
Zi(1)−Zi(0) . Thus αZi(1) − αZi(0) > c, so the best response is to pay the cost c to

acquire a signal and report it.¥

Proof of Proposition 3: Divide the space of product type (PT) beliefs, which are just prob-
abilities that the product is of the good type, into L equal-sized bins, with the lth bin being
Bl = [ l−1L ,

l
L), and BL =

£
L−1
L , 1

¤
. Given these bins, the rater’s PT belief induces a reference

rater bin announcement (RRA) belief. Let P lG =
R l
l−1
L
f (s|G) ds and P lB =

R l
l−1
L
f (s|B) ds, the

probabilities assigned to the reference rater announcing the lth bin if the object is known to be
good or bad, respectively. If the rater observes si, the likelihood of the reference rater’s announcing

36To show this, note that (10) is satisfied only if all ∆t = 0, or, failing this, f (sm|t) satisfies a linear equation of
the form

PK
t=1 xt∆t = 0. It is straightforward to show that these restrictions are only satisfied non-generically.
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the lth bin is:
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; i.e., raters observing signals in B̃l have PT

beliefs in Bl. A rater who announces that her signal is in B̃l is paid using the quadratic scoring
rule based on the RRA distribution for a rater who has PT belief ml =

2l−1
2L . Thus, if a rater

always prefers to be scored on the PT bin that contains her true beliefs, she will report the signal
bin that contains her true signal. The remainder of the proof is to show that it is optimal for a
rater to be scored against the midpoint of the PT bin that contains her true posterior PT belief.

First, we show that closeness of PT beliefs corresponds to closeness of RRA beliefs. The distance
between two PT beliefs p1 and p2 is simply their absolute difference, |p1 − p2|. For the distance
between two RRA distributions, we use the L2-metric. That is, if P and P̂ denote two RRA
distributions, the L2-distance between them, d
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A rater who observes signal si assigns probability P l
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the reference rater announcing bin l. The distance between the posterior distributions of a rater
observing si and a rater observing ŝi is therefore given by:
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Expression (11) establishes that the L2-distance between two RRA distributions is proportional to
the distance between the PT beliefs that generate them.

The final step is to show that, given the choice between being scored based on the RRA distri-
bution for m1, ...,mL, a rater observing si maximizes her expected quadratic score by choosing the
ml that is closest to p

¡
G|si¢, i.e., her true PT beliefs. This follows from a result due to Friedman

(1983, Proposition 1), who shows that the expected quadratic score of a rater with true RRA P

is larger from reporting P̂ than from reporting P̃ if and only if d
³
P̂ , P

´
< d

³
P̃ , P

´
.37 Thus

Friedman’s result, in conjunction with (11), establishes that if a rater believes the reference rater
will truthfully announce her bin, then she maximizes her expected quadratic score by selecting the
PT bin that contains her true beliefs.¥

B Eliciting Effort

To consider the issue of effort elicitation, the rater’s experience with the product is encoded not as
a single outcome, but as a sequence of outcomes generated by random sampling from distribution
f (sm|t). Greater effort corresponds to obtaining a larger sample. Let xi denote the number of

37Friedman (1983) calls metric-scoring rule pairs that have this property “effective.”
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outcomes observed by rater i, i.e., her sample size. We require the rater to put forth effort to learn
about her experience, letting ci (xi) be the cost of observing a sample of size xi, where ci (xi) is
strictly positive, strictly increasing, and strictly convex, and assumed to be known by the center.38

For a rater who already observes a sample of size x, learning the x + 1st component further
partitions the outcome space, i.e., larger samples correspond to better information.39 We begin
by arguing that, holding fixed the agents’ sample sizes, scoring-rule based payments can elicit this
information. We then ask how the mechanism can be used to induce agents to acquire more
information, even though such acquisition is costly.

For any fixed xi, the information content of two possible xi component sequences depends only
on the frequencies of the various outcomes and not on the order in which they occur. Consequently,
let Y i (xi) be theM -dimensional random variable whosemth component counts the number of times
outcome sm occurs in the first xi components of the agent’s information.40 Let yi =

¡
yi1, ..., y

i
M

¢
denote a generic realization of Y i (xi), where yim is the number of times out of xi that signal sm is
received, and note that

PM
m=1 y

i
M = xi. Rater i’s observation of Y i (xi) determines her posterior

beliefs about the product’s type, which are informative about the expected distribution of the other
players’ signals. Since different realizations of Y i (xi) yield different posterior beliefs about the
product’s type, we can extend Lemma 1 to the multiple signal case. In the remainder of this
section, we let g

¡
yj (xj) |yi (xi)

¢
denote the distribution of Y j (xj) conditional on Y i (xi).

Lemma 2: Consider distinct players i and j, and suppose xi, xj ≥ 0 are commonly known. For
generic distributions f (sm|t) and p (t), Y i (xi) is stochastically relevant for Y j (xj). If agent i is
asked to announce a realization of Y i (xi) and is paid according to the realization of Y j (xj) using
a strictly proper scoring rule, i.e., R

¡
yj (xj) |yi (xi)

¢
, then the rater’s expected payment is uniquely

maximized by announcing the true realization of Y i (xi).

Proof: The proof of the first part is analogous to the proofs of Lemma 1. The second part follows
from the definition of a strictly proper scoring rule.

Proposition 4 restates Proposition 1 in the case where the sizes of the raters’ samples are fixed
and possibly greater than 1, i.e., xi ≥ 1 for i = 1,..., I. It follows as an immediate consequence of
Lemma 2.

Proposition 4: Suppose rater i collects xi ≥ 1 signals. There exist transfers under which truthful
reporting is a strict Nash Equilibrium of the reporting game.

Proof of Proposition 4: The construction follows that in Proposition 1, using Y i (xi) for the
information received by rater i and constructing transfers as in (2) and (4). Under the equilibrium
hypothesis, j = r (i) announces truthfully. Let ai denote rater i’s announcement of the realization
of Y i (xi), and let transfers be given by:

τ∗i
¡
yj |ai¢ = R ¡yj |ai¢ . (12)

Under these transfers, truthful announcement is a strict best response. ¥

Proposition 4 establishes that truthful reporting remains an equilibrium when raters can choose
how much information to acquire. We next turn to the questions of how and whether the center
38 In a single-agent context, Clemen (2002) examines the incentive problem when the center does not know ci (xi).
39Savage (1954) formally studied this approach, which he calls the “partition problem.”
40Y i (xi) is a multinomial random variable with xi trials and M possible outcomes. On any trial, the probability

of the mth is f (sm|t), where t is the product’s unknown type.
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can induce a rater to choose a particular xi. Let j denote the rater whose signal player i is asked
to predict (i.e., let r (i) = j), and suppose rater j has a sample of size xj and that she truthfully
reports the realization of Y j (xj) . For simplicity, we omit argument xj in what follows. Further,
suppose that rater i is paid according to the scoring-rule based scheme described in (12). Since xi
affects these transfers only through rater i’s announcement, it is optimal for rater i to truthfully
announce Y i (xi) regardless of xi.

Since xi is chosen before observing any information, rater i’s incentive to choose xi depends on
her ex ante expected payoff before learning her own signal. This expectation is written as:

Zi (xi) = EY i
¡
EY jR

¡
Y j |Y i (xi)

¢¢
.

Lemma 3 establishes that raters benefit from better information, and is a restatement of the well-
known result in decision theory that every decision maker benefits from a finer partition of the
outcome space (Savage 1954).

Lemma 3: Zi (xi) is strictly increasing in xi.

Proof of Lemma 3: Fix xi and let yi be a generic realization of Y i (xi). Conditional upon
observing yi, rater i maximizes her expected transfer by announcing distribution g

¡
Y j |yi¢ for rater

j’s information. Suppose rater i observes the xi + 1st component of her information. By Lemma
2, i’s expected transfer is now strictly maximized by announcing distribution g

¡
Y j | ¡yi, sm¢¢, and

rater i increases her expected value by observing the additional information. Since this is true for
every yi, it is true in expectation, and Zi (xi + 1) > Zi (xi).¥

Lemma 3 establishes that as xi increases, rater i’s information becomes more informative regard-
ing rater j’s signal as xi increases. Of course, the direct effect of rater i’s gathering more information
is to provide her with better information about the product, not about rater j. Nevertheless, as
long as rater i’s information is stochastically relevant for that of rater j, better information about
the product translates into better information about rater j.

When transfers are given by (12), the expected net benefit to rater i from collecting a sample
of size xi and truthfully reporting her observation is Zi (xi)− c (xi). Hence, transfers (12) induce
rater i to collect a sample of size x∗i ∈ argmax (Zi (xi)− cxi).

Rater i’s incentives to truthfully report are unaffected by a uniform scaling of all transfers
in (12). Therefore, by a judicious rescaling of the payments to rater i, the center may be able
to induce the agent to acquire more or less information. Expression (13) extends the transfers
described in (12) to allow for multiple signals and a rescaling of all payments by multiplier αi > 0:

τ∗i
³
ai, yr(i)

´
= αiR

³
yr(i)|ai

´
. (13)

Under transfers (13), the maximal expected benefit from a sample of size xi is αiZi (xi). Hence the
center can induce rater i to select a particular sample size, x̂i, if and only if there is some multiplier
α̂ > 0 such that x̂i ∈ argmax α̂Zi (xi) − c (xi). The simplest case has Zi (xi) concave, i.e., where
Zi (xi + 1)− Zi (xi) decreases in xi.

Proposition 5: If Zi (xi + 1) − Zi (xi) decreases in xi, then for any sample size x̂i ≥ 0 there
exists a scalar α̂i ≥ 0 such that when paid according to (13), rater i chooses sample size x̂i.

Proof of Proposition 5: Since Zi (x) is concave, sample size x̂i is optimal if there exists α̂i
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satisfying

α̂iZi (x̂i)− ci (x̂i) ≥ α̂iZi (x̂i + 1)− ci (x̂i + 1) , and
α̂iZi (x̂i)− ci (x̂i) ≥ α̂iZi (x̂i − 1)− ci (x̂i − 1) .

Solving each condition for α̂i,

α̂i ≤ ci (x̂i + 1)− ci (x̂i)
Zi (x̂i + 1)− Zi (x̂i) , and

α̂i ≥ ci (x̂i)− ci (x̂i − 1)
Zi (x̂i)− Zi (x̂i − 1) .

Such an α̂i exists if and only if
Zi(x̂i)−Zi(x̂i−1)
Zi(x̂i+1)−Zi(x̂i) ≥

ci(x̂i)−ci(x̂i−1)
ci(x̂i+1)−ci(x̂i) . By our assumptions, this expression

is always true.¥

If Zi (xi + 1) − Zi (xi) does not decrease in xi, then there may be some sample sizes that are
never optimal.41 Nevertheless, increasing the scaling factor never decreases optimal sample size,
and so while the center may not be able to perfectly control the raters’ effort choices, it can always
induce them to put forth greater effort if it wishes.

In practice, the center will not know each individual’s cost of procuring additional informa-
tion. However, the center may be able to estimate costs, and then pick a scaling factor that, in
expectation, induces each rater to acquire an optimal-size sample.42

41While we are not aware of any general results pertaining to the shape of the Z () function, Clemen (2002) provides
a number of examples of cases in which Zi (xi + 1)−Zi (xi) decreases in xi. The problem of finding the set of sample
sizes that maximize αZi (xi)−c (xi) for some α when Zi (xi) is not concave is isomorphic to the problem in production
theory of finding the set of outputs that maximize profit for some output price when the production function is not
concave. The solution involves finding the set of outputs that remain on the convex closure of the technology set.
See, for example, Mas-Colell, Whinston, and Green (1985, Section 5.D).
42The center chooses the scale that induces the optimal ex ante precision. Ex post, if raters know their costs, they

will tend to choose lower precision if they are high cost and vice versa.
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