
Homework #2

CS699 Fall 2017

Due Friday Nov 10, by 04:00pm

General Instructions The following assignment is meant to be challenging. Feel free to discuss
with fellow students, though please write up your solutions independently and acknowledge everyone
you discussed the homework with on your writeup. We also expect that you will not attempt
to consult outside sources, on the Internet or otherwise, for solutions to any of these
homework problems. Finally, unless otherwise stated please provide a formal mathematical proof
for all your claims.

Note To submit the homework, you may either email it to Li, hand it to him in person, or drop it
off in the box which we will make available in SAL 246 on Friday. If you need more time, consider
using one of your late days.

Problem 1. (10 points)
Recall that, in the online learning setting with n actions and T time steps, the multiplicative

weights algorithm we saw in class achieves average external regret O

(√
logn
T

)
. One deficiency of

this algorithm, in the form it was presented in class, is that it required knowledge of T in advance
(recall that we used T in order to set the parameter ε). One might want an online learning algorithm
which guarantees vanishing regret for all T simultaneously. Such an algorithm would be useful in
scenarios in which the number of decisions T is finite and unknown, as well as scenarios in which
the algorithm is designed to be run in perpetuity over an infinite time horizon.

Show, by way of a black-box reduction, how to construct an algorithm with average external

regret O

(√
logn
T

)
for all T simultaneously. You may assume that you have access to an algorithm

with the same guarantees as the multiplicative weights algorithm. However, you may only invoke
such an algorithm as a black box.

Problem 2. (15 points)
Recall that a two-player zero sum game can be described by a matrix A ∈ Rm×n, where Aij

is the row player’s utility when the row player chooses action i and the column player chooses
action j. (The column player’s utility is −Aij). Also recall that the value of the game, de-
fined as the row player’s utility at equilibrium, is given by v∗ = maxx∈∆m miny∈∆n x

TAy =
miny∈∆n maxx∈∆m x

TAy. (The latter equality is the minimax theorem). In class, we showed that
if a zero-sum game is played repeatedly using no-external-regret dynamics, then the row player’s
utility converges to v∗, and the column player’s utility converges to −v∗.
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a. (8 points). As in class, let T be the number of time steps, and let xt ∈ ∆m and yt ∈ ∆n denote
the row player and column player’s mixed strategies at time step t ∈ {1, . . . , T} when both players
are using a no-external-regret algorithm. Show that the average history of joint play, defined as

the mixed strategy profile (
∑T

t=1 xt

T ,
∑T

t=1 yt
T ), converges to the set of Nash equilibria of the game

as T grows large, in the following sense: the mixed strategy profile (
∑T

t=1 xt

T ,
∑T

t=1 yt
T ) is an ε-Nash

equilibrium for ε = ε(T ) tending to 0 as T →∞.

b. (7 points). Show that there exists a two-player non-zero-sum game for which no-external-regret
dynamics do not converge to a Nash equilibrium. Do this by explicitly describing such a game, and
showing that when both players use the the multiplicative weights algorithm, the average history
of joint play is far from a Nash equilibrium regardless of the time horizon T .

Problem 3. (10 points)
Given m independent samples s1, . . . , sm, drawn from the probability distribution p : [n] → [0, 1],
the empirical distribution p̂m : [n]→ [0, 1] is defined as follows: for all i ∈ [n],

p̂m(i) =
|{j ∈ [m] | sj = i}|

m
.

The total variation distance between two distributions p, q : [n] → [0, 1] is defined as dTV(p, q) :=
maxA⊆[n] |p(A) − q(A)| = (1/2) ·

∑n
i=1 |p(i) − q(i)|, where p(A) denotes

∑
i∈A p(i). We showed in

class that, for m = O(n/ε2), it holds dTV(p, p̂m) ≤ ε with probability at least 9/10.
Show that, for m = O((n+log(1/δ))/ε2), it holds dTV(p, p̂m) ≤ ε with probability at least 1−δ.

Problem 4. (10 points)
Consider the setting of a single-buyer, single-item auction. As discussed in class, this is a special
case of Myerson’s auction and the optimal auction is one which posts a “take it or leave it” price
p maximizing p · (1− F (p)), where F is the CDF of the buyer’s valuation distribution. We showed
that if the distribution of the buyer’s valuation is in the interval [0, 1], then after O(1/ε2) samples,
we can compute a posted-price whose revenue is at least (1− ε)-times the optimal revenue. We also
showed that if the distribution is arbitrary, no finite sample upper bound is possible.

In this problem, we explore the same question for the family of Monotone Hazard Rate (MHR)
distributions. Recall that a distribution over R+ with pdf f(x) and CDF F (x) is called MHR if
the function f(x)/(1 − F (x)) is non-decreasing. Show an upper bound on the number of samples
required to compute a posted-price whose revenue is at least (1−ε)-times the optimal revenue when
the buyer’s valuation is known to be MHR.
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