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Learning problems usually come in two types.

1. Unsupervised: Discover hidden structure in a set of unlabeled data points, e.g., a
set of points in Rn.

2. Supervised: Make predictions based on labeled data

Machine learning in some sense is the automatic extraction of useful information
from raw data. Examples include:

1. Classification, clustering;

2. Text categorization, fraud detection;

3. Web search, prediction(weather, finance, etc);

4. Automatically writing complex software;

1 Basics of Learning Theory
In learning theory, we specify a mathematical model for learning and prove formal
results within that model. To do so, we need to answer the following questions.

1. Who is learning: Since machine learning is automatic, we usually assume the
learner is a computer program, whose goal is to minimize sample complexity and
running time;

2. What are we learning: A hypothesis or function, e.g., a classfication rule.

3. How does learning obtain raw data: The learner obtains information from
given examples, which are data-label pairs (x, f(x)). Such example could be given
to the learner in a random or malicious way.

4. How to measure accuracy: We often assume the data is labeled according to
some ground truth (or target hypothesis) and then measure the distance between
the output hypothesis and the ground truth.
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Each of these questions have multiple answers and that give raise to different learning
models. We will start with simplest setting: statistical learning framework where we
want to learn a binary classification rule with random samples..

2 Statistical Learning Framework
Let X be the domain or instance space (i.e., set of object to label). For example, X
could be {0, 1}d or Rd. Let Y be the label set. In binary classification, Y = {0, 1}.

The learner receives its training data S = {(x1, y1), (x2, y2), · · · , , (xm, ym)} ⊆
(X × Y)m. Note that m = |S| is the size of the training data or the number of samples
the learner receives.

Once the learner performs some computation on the training data, it needs to
output a prediction rule h : X → Y (also called predictor, hypothesis, classifier, etc.),
which predicts the labeling of unseen domain points.

2.1 Data Generation Model
In the most basic setting, we assume each xi in the training data is drawn i.i.d. from
some distribution D over X and yi = f(xi) where f is the unknown target hypothesis
(or ground truth). Note that both D and f are unknown to the learner as it only
interacts with the training data sampled from D.

The error of a hypothesis h (with respect to D and f) is defined as

LD,f = Pr
x∼D

[h(x) 6= f(x)].

Given the training data S = {(xi, yi)}mi=1, one very natural algorithm is called Em-
pirical Risk Minimization (ERM). The empirical risk (or training error) of a hypothesis
h is defined as

LS(h) = |{i ∈ [m] : h(xi) 6= yi}|
m

.

Let U be the uniform distribution over S (also called the empirical distribution). Then
LS(h) can also be written as Prx∼U(S)[h(x) 6= f(x)].

ERM just minimizes the empirical risk. So ERM will output the following hypothesis
hS

hS = arg min
h
LS(h) (1)
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2.2 Overfitting
Although very natural, ERM might fail miserably without being careful. Consider the
following example of learning rectangles. Let B be a big rectangle with area 2 and C
be a small rectangle contained inside B with area 1. Let D be the uniform distribution
over rectangle B. Let the target hypothesis f be the indicator function of rectangle C.

Given any training data S, the following hypothesis is consistent with ERM 1:

hS(x) =

yi if there exists i such that xi = x

0 otherwise
(2)

No matter how large m is, the error of hS is always 1
2 as it almost surely labels

every point in B as 0, while the target hypothesis f labels half of them as 1. Intuitively,
overfitting occurs when the hypothesis fits the training data too well. We need to apply
ERM over a restricted search space to obtain any meaningful results.

2.3 Hypothesis Class
Let H be a family of hypotheses. The restricted ERM rule ERMH now finds h ∈ H
with smallest empirical error. By restricting the learner to choose h from H, we bias
the learner towards a particular set of solution. The choice of H is usually based on
domain knowledge of the learning problem.

3 Finite Hypothesis Class
In this section, we will prove that ERM works on a finite hypothesis class once it
receives enough training samples. Recall in ERMH , we have hS = arg minh∈H LS(h)
where LS is the empirical loss.

Realizability assumption: There exists h∗ ∈ H such that LD,f (h∗) = 0. We call
h∗ the consistent hypothesis.

Theorem 1. If H is finite, then ERMH achieve errors ε and success probability 1− δ
with m ≥ log |H|

δ

ε
samples.

Proof. This implies that with probability 1, LS(h∗) = 0 and LS(hs) ≤ LS(h∗) = 0. We
want to prove with probability at least 1− δ, LD,f (hS) ≤ ε. This is equivalent to upper
bounding PrS|X∼Dm [LD,f (hS) > ε].

1In some sense, this is memoization: just output what you see.
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Let HB = {h ∈ H : LD,f(h) > ε} be the set of bad hypotheses. Let M = {S|X :
∃h ∈ HB s.t. LS(h) = 0} be the set of misleading examples that fools ERM to output
a bad hypothesis. Note that M = ∪h∈HB{S|X : LS(h) = 0}, so, by union bound,
Pr[M ] ≤ ∑

h∈HB Pr[LS(h) = 0].
Now fix any h ∈ HB with LD,f(h) > ε, Pr[LS(h) = 0] = ∏m

i=1 Pr[h(xi) = f(xi)] ≤
(1− ε)m ≤ e−mε. So PrS[LD,f (hS) > ε] ≤ |H|e−mε. By equating δ and |H|e−mε, we have
m ≥ log(|H|/ε)

ε
.

4 PAC Learnability
Definition 2 (PAC-Learnability). H is PAC-learnable if ∃mH : [0, 1]2 → N and learner
such that for all ε, δ, for all D over X and target concept f : X → Y, the learner
outputs a hypothesis h with LD,f(h) ≤ ε with probability at least 1 − δ after at least
mH(ε, δ) samples.

To obtain a more general model of learning, we remove the realizability assumption
(thus agnostic) and go beyong binary labels.

In particular, let Z be the new domain space and let l : H × Z be the new loss
function. For prediction problems, let Z = X × Y .

Definition 3 (Agnostic PAC-Learnability). H is agnositcally PAC-learnable w.r.t. set
Z and loss function l : H×Z → R if ∃mH : [0, 1]2 → N and learner such that for all ε, δ,
for all D over Z, the learner outputs a hypothesis h with LD(h) ≤ minh′∈H LD(h′) + ε
with probability at least 1− δ after at least mH(ε, δ) samples.

5 Learning via Uniform Convergence
Theorem 4. Let H be finite and l : H ×Z → [0, 1] be a bounded loss function, then
ERMH is an agnostic learner if m ≥ O( log(|H|/δ)

ε2
).

Note that the dependence on ε is now 1
ε2

instead of 1
ε

as in the realizable case. We will
prove the above theorem via uniform convergence, but let us first define representative
sample.

Definition 5 (Representative sample). A training set S is called ε-representative if
for all h ∈ H we have |LD(h)− LS(h)| ≤ ε.

Lemma 6. If S is ε/2-representative, then ERM satisfies LD(hS) ≤ minh∈H LD(h)+ε.
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Proof. Let h∗ = arg minh∈H LD(h).

LD(hS) ≤ LS(hS) + ε/2 (3)
≤ LS(h∗) + ε/2 (4)
≤ LD(h∗) + ε (5)

The first and third inequality follows from S being ε-representative. The second
inequality follows from the fact that hS is ERM.

Theorem 7 (Uniform convergence). With high probability, S is ε-representative if
m ≥ O( log(|H|/δ)

ε2
).

Proof. Fix any h ∈ H, with high probability LS(h) approximates LD(h) by Hoeffding
bound. Then apply union bound over all hypotheses in H.
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