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Learning problems usually come in two types.

1. Unsupervised: Discover hidden structure in a set of unlabeled data points, e.g., a
set of points in R".

2. Supervised: Make predictions based on labeled data

Machine learning in some sense is the automatic extraction of useful information
from raw data. Examples include:

1. Classification, clustering;
Text categorization, fraud detection;

Web search, prediction(weather, finance, etc);
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Automatically writing complex software;

1 Basics of Learning Theory

In learning theory, we specify a mathematical model for learning and prove formal
results within that model. To do so, we need to answer the following questions.

1. Who is learning: Since machine learning is automatic, we usually assume the
learner is a computer program, whose goal is to minimize sample complexity and
running time;

2. What are we learning: A hypothesis or function, e.g., a classfication rule.

3. How does learning obtain raw data: The learner obtains information from
given examples, which are data-label pairs (z, f(z)). Such example could be given
to the learner in a random or malicious way.

4. How to measure accuracy: We often assume the data is labeled according to
some ground truth (or target hypothesis) and then measure the distance between
the output hypothesis and the ground truth.
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Each of these questions have multiple answers and that give raise to different learning
models. We will start with simplest setting: statistical learning framework where we
want to learn a binary classification rule with random samples..

2 Statistical Learning Framework

Let X be the domain or instance space (i.e., set of object to label). For example, X
could be {0,1}? or R%. Let Y be the label set. In binary classification, Y = {0, 1}.

The learner receives its training data S = {(x1,11), (®2,42), -y, (T, Ym)} <
(X x Y)™. Note that m = |S| is the size of the training data or the number of samples
the learner receives.

Once the learner performs some computation on the training data, it needs to
output a prediction rule h : X — Y (also called predictor, hypothesis, classifier, etc.),
which predicts the labeling of unseen domain points.

2.1 Data Generation Model

In the most basic setting, we assume each z; in the training data is drawn i.i.d. from
some distribution D over X and y; = f(x;) where f is the unknown target hypothesis
(or ground truth). Note that both D and f are unknown to the learner as it only
interacts with the training data sampled from D.

The error of a hypothesis h (with respect to D and f) is defined as

Lo = Prlh(z) # f(z)]

Given the training data S = {(x;, y;)}1*,, one very natural algorithm is called Em-
pirical Risk Minimization (ERM). The empirical risk (or training error) of a hypothesis

h is defined as
[{i € [m] : h(z:) # yz}‘

Ls(h) = -

Let U be the uniform distribution over S (also called the empirical distribution). Then
Lg(h) can also be written as Pr.s)[h(x) # f(x)].
ERM just minimizes the empirical risk. So ERM will output the following hypothesis
hs
hs = arg m}}n Lg(h) (1)
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2.2 Overfitting

Although very natural, ERM might fail miserably without being careful. Consider the
following example of learning rectangles. Let B be a big rectangle with area 2 and C'
be a small rectangle contained inside B with area 1. Let D be the uniform distribution
over rectangle B. Let the target hypothesis f be the indicator function of rectangle C'.
Given any training data S, the following hypothesis is consistent with ERM [[}

(2)

he(z) y; if there exists ¢ such that z; =«
€Tr) =
i 0 otherwise

No matter how large m is, the error of hg is always % as it almost surely labels

every point in B as 0, while the target hypothesis f labels half of them as 1. Intuitively,
overfitting occurs when the hypothesis fits the training data too well. We need to apply
ERM over a restricted search space to obtain any meaningful results.

2.3 Hypothesis Class

Let H be a family of hypotheses. The restricted ERM rule ERMpyg now finds h € H
with smallest empirical error. By restricting the learner to choose h from H, we bias
the learner towards a particular set of solution. The choice of H is usually based on
domain knowledge of the learning problem.

3 Finite Hypothesis Class

In this section, we will prove that ERM works on a finite hypothesis class once it
receives enough training samples. Recall in ERMpy, we have hg = argmingcy Lg(h)
where Lg is the empirical loss.

Realizability assumption: There exists h* € H such that Lp f(h*) = 0. We call
h* the consistent hypothesis.

Theorem 1. If H is finite, then ERMpy achieve errors € and success probability 1 — 0

|H]
with m > log% samples.

Proof. This implies that with probability 1, Lg(h*) = 0 and Lg(hs) < Lg(h*) = 0. We
want to prove with probability at least 1 —§, Lp s(hg) < e. This is equivalent to upper
bounding PrS|X~’Dm {Lp7f(hs> > 6].

'In some sense, this is memoization: just output what you see.
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Let Hg = {h € H : Lp s(h) > €} be the set of bad hypotheses. Let M = {S|X :
dh € Hp s.t. Lg(h) = 0} be the set of misleading examples that fools ERM to output
a bad hypothesis. Note that M = Upep,{S|X : Ls(h) = 0}, so, by union bound,
Pr{M] < Tycn, PrlLs(h) = 0]

Now fix any h € Hp with Lp ¢(h) > €, Pr[Lg(h) = 0] = IT[%, Pr[h(z;) = f(2;)] <
(1—e)™ <e ™. So Prs[Lp s(hs) > € < |H|e ™. By equating § and |H|e~™¢, we have
> los(HI/) =

4 PAC Learnability

Definition 2 (PAC-Learnability). H is PAC-learnable if Imy : [0,1)> = N and learner
such that for all €,0, for all D over X and target concept f : X — Y, the learner
outputs a hypothesis h with Lp ;(h) < € with probability at least 1 — 0 after at least
mp(€,0) samples.

To obtain a more general model of learning, we remove the realizability assumption
(thus agnostic) and go beyong binary labels.

In particular, let Z be the new domain space and let [ : H X Z be the new loss
function. For prediction problems, let Z = X x ).

Definition 3 (Agnostic PAC-Learnability). H is agnositcally PAC-learnable w.r.t. set
Z and loss function ] : Hx Z — R if 3my : [0,1]*> — N and learner such that for all €, §,
for all D over Z, the learner outputs a hypothesis h with Lp(h) < ming ey Lp(h') + €
with probability at least 1 — § after at least my(e,d) samples.

5 Learning via Uniform Convergence

Theorem 4. Let H be finite and | : H x Z — [0, 1] be a bounded loss function, then

ERMy is an agnostic learner if m > O(bgi%).

Note that the dependence on € is now e% instead of % as in the realizable case. We will
prove the above theorem via uniform convergence, but let us first define representative
sample.

Definition 5 (Representative sample). A training set S is called e-representative if
for all h € H we have |Lp(h) — Lg(h)| <.

Lemma 6. If S is ¢/2-representative, then ERM satisfies Lp(hs) < minpeny Lp(h)+€.
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Proof. Let h* = argmingey Lp(h).

Lp(hs) < Ls(hs) +€/2 (3)
< Ls(h*) +¢/2 (4)

The first and third inequality follows from S being e-representative. The second
inequality follows from the fact that hg is ERM. [

Theorem 7 (Uniform convergence). With high probability, S is e-representative if
m > O(log(lgfl/&).

Proof. Fix any h € H, with high probability Ls(h) approximates Lp(h) by Hoeffding
bound. Then apply union bound over all hypotheses in H. O
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