
CSCI699: Topics in Learning & Game Theory
Lecture 10

Lecturer: Shaddin Dughmi Scribes: Omkar Thakoor

Crowdsourcing Information
In this setting, we have a principal, and n agents. We have a set Ω of possible states of
nature, where a particular ω ∈ Ω is drawn from a common prior P (ω). Each agent i
receives a signal (a.k.a. type) ti from a finite set T of possible types. For any agent i,
and any t ∈ T , P (t|ω) denotes Pr[ti = t|ω], thereby, t1, . . . , tn are conditionally i.i.d.
given any ω ∈ Ω. The goal of the principal is to incentivize agents to report their
types truthfully, in order to update his belief about ω. That is, he wants to learn the
posterior P (ω|t1, . . . , tn).

Running Example

Let the state of nature denote whether a new iPhone edition is good, or bad. Accordingly,
let Ω = {G, B} with the associated prior P (G) = 0.6, P (B) = 0.4. Let the types of
people denote whether they like or dislike the iPhone, thus, let T = {L, D}. When
the iPhone is good, let the type of an agent be distributed as per P (L|G) = 0.75
(⇔ P (D|G) = 0.25) and, similarly, let the distribution when the iPhone is bad, be
P (D|B) = 0.75 (⇔ P (L|B) = 0.25).

In this case, if n = 4 agents report their types to be L, L, L, D respectively, the
principal’s posterior estimate is P (G|L, L, L, D) = 0.6·0.753·0.25

0.6·0.753·0.25+0.4·0.253·0.75 ≈ 0.93 (⇔
P (B|L, L, L, D) ≈ 0.07)

This problem can be modeled in several ways.

Model 1: Observable Model
In this model, we make the following assumptions.

We assume that the principal solicits the types from agents today, ω is directly revealed
to the principal tomorrow, and the principal may pay to the agents day after
tomorrow.
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We also assume that the principal knows P (ω) and P (t|ω). (Equivalently, he knows
the joint distribution P (ω, t).)

Finally, we make a technical assumption that types t 6= t′ induce distinct posterior
distributions w.l.o.g., i.e.∃ ω ∈ Ω : P (ω|t) = P (ω|t′).

With the last assumption, reporting a type t can be considered equivalent to reporting
the distribution P (ω|t). Hence, the principal can simply use a strictly proper scoring
rule to incentivize the agents to report the respective distributions P (w|t) truthfully.
With these truthful reports, with the knowledge of P (ω) and P (t|ω) as mentioned in
the second model assumption, and the inherent property that ti’s are i.i.d. given any ω,
the principal can apply the Bayes’ theorem to compute his posterior estimate.

Next, we consider another model which may suit for certain problem scenarios.

Model 2: Peer Prediction
This model consists of the following assumptions.

As in the case of the Observable model, we assume that the principal knows the joint
distribution P (ω, t).

A key difference with the previous model is that the principal never directly sees ω.
He must decide payments solely based on type reports r1, . . . , rn.

Finally, we make a technical assumption. Consider P (tj|ti) = ∑
ω P (ω|ti)P (tj|ω). We

assume that P (tj|ti = t) 6= P (tj|ti = t′) ∀t 6= t′.
To intuitively understand this, consider the iPhone example introduced earlier.
One would expect that agent 1 liking iPhone should raise the probability estimate
that 2 likes as well. (Note that this holds for the distributions P in general
position, even by fixing P (t|ω).)

Now, as per the last assumption, agent i reporting a type is equivalent to him
reporting a posterior distribution on the type of some agent j 6= i. Let qt ∈ ∆(T ) be the
conditional distribution of tj given ti = t for any j 6= i. (Note that it doesn’t depend
on i, j.) Then, the Peer prediction protocol is as follows:

1. To each agent i, assign agent î 6= i as his peer.

2. Solicit type reports r1, . . . , rn from the agents, with each ri ∈ T .
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3. Let S : ∆(T )× T → R be a strictly proper scoring rule. Pay agent i a value of
S(qri

, rî) (computation depends on P (ω)).

For the solution above, we prove the following result.

Theorem 1. In the Peer prediction protocol, reporting ri = ti ∀i is a strict Bayes-Nash
equilibrium.

Proof. Assume all agents except i (including î) report truthfully. Given ti, i believes
t̂i ∼ qti

). In step 3 of the protocol, the payment to i is S(qri
, t̂i) (since we assume

rî = t̂i). Since S is a strictly proper scoring rule, i’s best strategy is to report posterior
qti

on t̂i, hence he must report ri = ti.

Model 3 : Bayesian Truth Serum
The assumptions here are as follows:

The principal does not know P (ω), nor P (t|ω) (even though he knows they exist and
that they determine the agents’ behavior).

We assume n→∞ (This assumption can be removed by using results from follow-up
work).

We propose a protocol, called the Bayesian truth serum protocol. The idea is as
follows. The principal solicits from agent i, not only the type report ri ∈ T , but also a
prediction yi ∈ ∆(T ) of the the empirical type frequency x̄ with each x̄j defined as the
fraction of agents reporting j as their type. Having received ri, and yi from each agent
i, the principal rewards him for a “surprisingly common” type report, i.e., if ri is more
common in the empirical distribution than estimated by the other agents. Secondly, an
agent is also rewarded for a truthful prediction yi using a strictly proper scoring rule.
Formally,

1. Solicit type report ri ∈ T , as well as a predictionyi ∈ ∆(T ) of the the empirical
type frequency x̄.

2. Define ȳ so that ∀k ∈ T : log ȳk = 1
n

∑
i log yi

k.

3. Pay agent i a value of F (ri) + G(yi), where, F (j) = log x̄j

ȳj
is the reward for

“surprisingly common” type reports, and, G(yi) = Ek∼x̄[S(yi, k)] is the reward for
accurately predicting x̄ with yi, (by choosing S to be a strictly proper scoring
rule).
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G(yi) can be denoted as S(yi, x̄) as per the notation established in Lecture 9. Clearly,
this is maximized at yi = x̄.

In the next lecture, we will prove the following result for this protocol.

Theorem 2. In the Bayesian truth serum protocol, Each agent i reporting ri = ti and
yi as their posterior belief on x̄ given ti, is a Bayes-Nash equilibrium.


