CSCI699: Topics in Learning and Game Theory
Lecture 12

Lecturer: Ilias Diakonikolas Scribes: Cheng Cheng, Anastasia Voloshinov

1 Review

Up-to-now, we have showed that learning a discrete distribution over [n]| requires
O(n) samples when total variation distance (dry ) is used as the measurement metric.
However, the problem arises when the distribution is continuous, since the above sample
complexity no longer stays true. There are two directions to solve it:

1. We can use a weaker measurement metric, e.g. the Kolmogorov-Smirnov distance.

2. We can impose assumptions on the distribution. Then, we can use dry, but need
to use kernels in this case.

1.1 Kernal Density Esitmation

Kernal Density Estimation provides a way for us to estimate the probability density
function f of a random variable X using finite data samples. We convolute the discrete
data with a continous kernal function K (z) and the resulting continous function will
give us a smooth estimation for f.

2 Settings

This lecture studies the paper "Optimal Nonparametric Estimation of First-Price
Auctions” (Econometrica 2000), by Guerre, Perrigne, and Vuong. The paper shows a
kernel-based estimator to learn the distribution of bidder’s valuation using the actual
bids under First Price Auction. The problem is set up as follows:

e Data from m First Price Auctions
e 1, bidders

e the valuation v; of bidder ¢ = 1, ..., n are i.i.d samples from cumulative distribution
function (CDF) F' with probability density function (pdf) f
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o [irst Price Auction

— n bidders has valuations v; for ¢ = 1,...,n drawn i.i.d from distribution F’,
which is known to all bidders

— Call that the first price auction is not truthfull. So, bidders give b; for
¢ = 1, ...,n not truthfully, which means b;’s are different from v;’s

— the seller can only observe b;’s, but wants to learn F' and f

3 Formal Proof

Assumption 1. Bidders play according to Bayesian-Nash Equilibrium, s.t. b; = b(v;)

Assumption 2. The CDF F' is strictly increasing, continuous, and differentiable in
the interval [0,v] (CDF: F,(u) = Pr(X < wu)). Hence, the pdf is always bigger than or
equal to some positive constant.

Lemma 3. Under Assumption (1] and[3, the equilibrium of the First Price Auction is
unique, symmetric, and

v

b(v) =v — F(2)" dz

Fori
Fv)»=tJo
for0<v<w,b0)=0, and b(v) =b < 0. n is the number of players.

From Lemma (3| we can prove that b is strictly increasing, continuous and differen-
tiable. And our following goal is to learn F'(v) by observing the distribution of the
bids.

3.1 Identification

We want to show that we can solve the problem in principle. In other words, suppose
that an infinite number of bids are provided. We want to show that in this case, we
can reconstruct the distribution of the values.

We will do this by looking at the relation between bids and values by using the
conditions of a symmetric BNE.

Let b(v), where v ~ F, be the bidding distribution. Let G be the CDF of b(v) and
let g be the pdf.

Since a player is playing according to an equilibrium, we can connect his bid with
his value by the best response condition. Recall that the best response condition says
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that if other people’s actions our fixed, you cannot increase your utility by changing
actions, and this must hold true for all players.

If a player submits a bid of b, what is the probability that he wins is G(b)" . Since
this is a first price auction, he only wins if everyone else bids lower than him. So, each
of the n — 1 players have a G/(b) probability of bidding less than him.

The expected utility of a player who submits a bid of b is u(b,v) = (v — b)G(b)" L.
The maximum utility is thus attained at b = b(v). So, the derivative of this function
should be 0 at b(v).

Since b(v) maximizes the utility, we must have

du(b,v)

b =0

b=b(v)

The derivative is

du(b,v)
ob
Then if we set it equal to 0, plug in b(v) for b and rearrange, we get that

— —GB)" + (v —b)(n — 1)G(b)"2g(b)

G(b(v))
(n —1)g(b(v))

We want to reverse engineer the distribution of v from the distribution of b, so we
want to have a function of b instead of a function of v. Since b is monotone and strictly
increasing, it is therefore invertible, so we can do a change of variable.

Let £(z) = b~!(x), so then we get

v—>bv) =

where b ~ G.
Now, we have the value written as a function of b. Note that £(b) is a function that
is strictly increasing, continuous, and differentiable.

Claim 4. We can approximate G and g by samples, since we have access to samples
from the distribution, the bids. If we had G and g exactly, we could construct samples
from the values, by drawing bids and applying the formula, which would give us samples
from the values distribution. Then, we could get an infinite amount of samples from
the values.
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If we know G and g, then given the bid b of a player, we can reverse engineer his
value. Let v = £(b). Therefore, we can identify F, the distribution of the values. Thus,
we get

F(v) = Pr(V <v) = Pr(b(V) < b(v)) = G(b(v)) = G(£™' (v))

where the second equality follows because b is strictly increasing and invertible, so
the events are the same.
Thus, we have explicitly defined the distribution of the values.

4 Finite Sample Case

We have seen that we can find the distribution of the values if we have an infinite
amount of samples of bids. Now, what if we have a finite number of samples?

In this case, we will take samples and estimate G and g, so that G ~ G and g~ g.
Three Stage Algorithm:

1. Compute estimates G and g of the true bid distribution. Thus will be done by
taking a finite number of samples of b.

2. Invert each bid to compute a value, using

b=E0D)=b+

As a result, we will be able to find F and f , which will be close to the true
distribution F' and f.

3. Learn the distribution of the pseudo-values (0).

We will estimate G and F' in the following way, which works by DKW.

N 1™
Gb) == Tu<
t=1

mi

and

. 1 m
Fo) == 1<
mi= -

To estimate g and f , we will use kernel density estimation. We get that
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and

Assumption 5. f is A\-Lipschitz. This means that for all x,y, | f(z) — f(y)] < Mz —1y].
Intuitively, this means that the function doesn’t change very rapidly, which we need to
estimate f.

Theorem 6. Under assumptz’ons@ and@ when ky and ky are uniform kernels, m is the
number of samples, hg = O(—7), hy = O(—17), then for any interval C,(e) — [¢,0 — €]
if m = Q(1), then with probabzlzty greater than or equal to 1 — delta,

Supvec’v(e)’f(v) )| < O((log 1/5)1/5) .

m

Thus, will small enough ¢ and large enough m, we can learn f with under total
variation distance.
The analysis for this requires DKW and kernels, which we will do next class.

5 Kernel Density Estimation

Given samples x1, ..., ,, from unknown f, we estimate the density by

fo = oK ()
nh =

where h is the bandwidth and K : R — R is the kernel function, and [ K (u)du = 1.
Examples:

1. Uniform
2. Epanechnikov, Ki(u) = 3(1 — u?)1qj<1

3. K[M(U) = \/%eﬂﬁﬂ

Definition 7. The order of a kernel is the smallest non-zero moment. Examples 1 and
2 both have order 2.
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