CSCI699: Topics in Learning and Game Theory Lecture 13

Lecturer: Ilias
Scribes: Reem Alfayez, Sarah Al-Hussaini

Last lecture studies the paper 'Optimal Nonparametric Estimation of First-Price Auctions' (Econometrica 2000), by Guerre, Perrigne, and Vuong. The paper shows a kernel-based estimator to learn the distribution of bidder's valuation using the actual bids under First Price Auction. We also had this formula:

$$
\begin{gather*}
\xi(b)=b+\frac{G(b)}{(n-1) g(b(v))} \tag{1}\\
b(v)=v-\frac{1}{F(v)^{n-1}} \int_{0}^{v^{\prime}} F(z)^{(n-1)} d z \tag{2}
\end{gather*}
$$

Where:
$\mathrm{b}=\mathrm{bid}$.
$\mathrm{F}=\mathrm{CDF}$.
$\mathrm{f}=\mathrm{PDF} . \hat{v}=$ maximum possible v .
$\mathrm{b}(\mathrm{v})=$ the bid when the value is v . We want to learn (F, f) on values, but we have (G, g) distribution on bids, by pretending that we know them exactly where $\mathrm{G}=\mathrm{CDF}$ and $\mathrm{g}=\mathrm{PDF}$ then we take a single sample from that distribution of bids then use formula 1 to generate a sample.

$$
\begin{equation*}
\hat{\xi}(b)=b+\frac{\hat{G}(b)}{(n-1) \hat{g}(b)} \tag{3}
\end{equation*}
$$

We will explain what are kernels and why do we need them. Kernels were used to learn continuous distributions by smoothing out discrete approximations. A kernel has two important parameters:

- Kernel function.
- Bandwidth which is not automated and need to be changed if the problem changed.

Kernel density estimation

Given n samples:

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{n}
$$

idd from unknown distribution with PDF f. The estimation:

$$
\begin{aligned}
& \hat{f}(x)=\frac{1}{n \cdot h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) \\
& K: R \rightarrow R \int_{-\infty}^{\infty} K(u) d u=1
\end{aligned}
$$

where h is the bandwidth and K is the kernel function. Example of Kernels are:

- uniform Kernel.
- Epanechnikov Kernel.
- Gaussian Kernel.

Very important property of a kernel is its order. The order of a kernel is the smallest j where

$$
M_{j}(k)=\int u^{j} k(u) d u \neq 0
$$

where M is a moment. The higher order of a kernel is the better the approximation, convergence, smoothing and learning become. What can we do with kernels? Assumptions:

- f is r-times differentiable.
- K has order $\geq \mathrm{r}$

$$
\begin{gathered}
\hat{f}(x) \xrightarrow{n \rightarrow \infty} f(x) \\
\text { Mean Square Error } M S E(\hat{f}(x))=\mathbb{E}\left[(\hat{f}(x)-f(x))^{2}\right] \\
=\operatorname{Bias}(\hat{f}(x))^{2}+\operatorname{Variance}[\hat{f}(x)] \\
\simeq\left(\frac{1}{r!} f^{r}(x) M_{r}(k) . h^{r}\right)+\frac{f(x) R(k)}{n h} \int_{-\infty}^{\infty} k^{2} d u[\because \text { Bias }=\mathbb{E}[(\hat{f}(x)]-f(x)]
\end{gathered}
$$

The two sides are competing with each other. Our goal is to find a value h that makes both sides equal.

$$
\mathbb{E}[\hat{f}(x)]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\frac{1}{n} k \frac{x_{i}-x}{h}\right]=\int_{-\infty}^{\infty} k(u) f(x+h u) d u
$$

By Taylor's theorem

$$
\begin{gathered}
\mathbb{E}[\hat{f}(x)]=f(x)+\frac{1}{r!} f^{r}(x) M_{r}(k) h^{r}+o\left(h^{r}\right) \\
h^{2 r} \simeq \frac{1}{n h} \\
h^{2 r+1}=\frac{1}{n}
\end{gathered}
$$

There are formal justification based on the central limit theorem:

$$
d_{k}(\hat{f}(x)-f(x)) \xrightarrow{n \rightarrow \infty} 0
$$

We are interested in a result that holds for a finite sample.

Finite sample approximation

Suppose that:

$$
f \in \Delta([0,1]), \delta-\text { Lipschitz }:|f(x)-f(y)| \leqslant \delta|x-y| \forall x, y \in[0,1]
$$

Use kernel density estimation of uniform kernel that has order 2. Look at TV distance between $f(x), \hat{f}(x)=\frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{x_{i}-x}{h}\right)$
Where: n is the number of samples and h is the bandwidth.

$$
\begin{gathered}
2 d_{T V}(\hat{f}, f)=\int_{0}^{1}|\hat{f}(x)-f(x)| d x=\int_{0}^{1}\left|f(x)-\frac{1}{n h} \sum_{i} k \frac{\hat{x}_{i}-x}{h}\right| d x \\
\int_{0}^{1}\left|f(x)-\frac{1}{2 n h} \sum\right|\left\{i: x_{i} \in[x-h, x+h]\right\}| | d x \\
=\int\left|f(x)-\frac{1}{2 h} \frac{\hat{f}([x-h, x+h])}{\hat{f}(x+h)-\hat{f}(x-h)}\right| d x \\
{[w \cdot p \geq 1-\delta] \stackrel{D K W}{=} \int_{0}^{1}\left|f(x)-\frac{1}{2 h} F([x-h, x+h]) \pm O\left(\frac{\sqrt{\lg \frac{1}{\delta}}}{\sqrt{n}}\right)\right| d x} \\
\leqslant \int_{0}^{1}\left|f(x)-\frac{1}{2 h} F([x-h, x+h])\right| d x+O\left(\frac{\sqrt{\lg \frac{1}{\delta}}}{2 h \sqrt{n}}\right)
\end{gathered}
$$

$$
\begin{gathered}
F([x-h, x+h])=\int_{x-h}^{x+h} f(t) d t \\
=\int_{0}^{1}\left|f(X)-\frac{1}{2 h} \int_{x-h}^{x+h} f(t) d t\right| \\
=\int_{0}^{1}\left|\frac{1}{2 h} \int_{x-h}^{x+h} f(X)-f(t) d t\right| d x \\
\left.\left.\leq \int_{0}^{1} \frac{1}{2 h} \int_{x-h}^{x+h} \right\rvert\, f(x)-f(t)\right) \mid d t d x \\
\quad f(x)-f(t) \leq \delta(x-t) \\
\leq \int_{0}^{1} \frac{1}{2 h} \int_{x-h}^{x+h} \delta|(x-t)| d t d x \\
\quad \leq \delta h+O\left(\frac{\sqrt{\lg \frac{1}{\delta}}}{2 h \sqrt{n}}\right)
\end{gathered}
$$

Choose h:

$$
\begin{gathered}
\delta h^{2} \simeq\left(\frac{\sqrt{\lg \frac{1}{\delta}}}{\sqrt{n}}\right) \Rightarrow h=\frac{1}{\sqrt{\delta}}\left(\frac{\lg \frac{1}{\delta}}{n}\right)^{\frac{1}{4}} \\
\text { Final error }=\sqrt{\delta}\left(\frac{\lg \frac{1}{\delta}}{n}\right)^{\frac{1}{4}}
\end{gathered}
$$

Que. We have just bounded $d_{T V}$. But what if we want to bound $\sup _{x}|\hat{f}(x)-f(x)|$?
Ans. We can bound this using the same calculation without integration. However, we will get a different bound with that approach.

Algorithm

We know,

$$
\begin{gathered}
b(v)=v-\frac{1}{F(v)^{n-1}} \int_{0}^{\bar{v}} F(z)^{n-1} d z \quad \text { is Nash Equilibrium } \\
\xi(b)=b+\frac{G(b)}{(n-1) g(b)} \quad \text { is value } v \text { for bid } b
\end{gathered}
$$

The algorithm has two stages:

1. Compute \hat{G}, \hat{g}
2. Invert each bid using:

$$
\hat{v}_{t}=\hat{\xi}\left(b_{t}\right)=b_{t}+\frac{\hat{G}\left(b_{t}\right)}{(n-1) \hat{g}\left(b_{t}\right)}
$$

Estimate \hat{F}, \hat{f} using pseudo samples $\hat{v}_{t} \mathrm{~s}$

$$
\begin{gathered}
\hat{G}(b)=\frac{1}{m} \sum_{t=1}^{m} 1_{\left\{b_{t} \leq b\right\}} \\
\hat{F}(v)=\frac{1}{m} \sum_{t=1}^{m} 1_{\left\{v_{t} \leq v\right\}} \\
\hat{g}(b)=\frac{1}{m} \sum_{t=1}^{m} \frac{1}{h_{g}} K_{g}\left(\frac{b_{t}-b}{h_{g}}\right) \\
\hat{f}(b)=\frac{1}{m} \sum_{t=1}^{m} \frac{1}{h_{f}} K_{g}\left(\frac{v_{t}-v}{h_{f}}\right) \\
K_{f}=K_{g}=K_{u}(z)=\frac{1}{2} 1_{\{|z|<1\}}
\end{gathered}
$$

A1. Assumption 1. CDF F is continuous, differentiable; the r.v. is in $[0, \bar{v}]$ A2. Assumption 2. f is λ-Lipschitz

Theorem

Under A1, A2 and $K_{g}=K_{f}=K_{u}, h_{g}=O\left(\frac{1}{m^{\frac{1}{4}}}\right), h_{f}=O\left(\frac{1}{m^{\frac{1}{8}}}\right)$
for any $C_{v}(\epsilon) \in[\epsilon, \bar{v}-\epsilon]$, w.p. $\geq 1-\delta$,

$$
\sup _{v \in C_{v}(\epsilon)}|\hat{f}(v)-f(v)| \leq O\left(\left(\frac{\log \frac{1}{\delta}}{m}\right)^{\frac{1}{8}}\right)
$$

-For this, what is m ?
-Since the algorithm has two stages, we need to bound the error in two stages

First Stage

Lemma 2: According to DKW, w.p. $\geq 1-\lambda$,

$$
\sup |\hat{G}(b)-G(b)| \leq O\left(\frac{\sqrt{\log \frac{1}{\delta}}}{\sqrt{m}}\right)
$$

The next lemma is to bound $f(b), \hat{f}(b)$
Lemma 3: w.p. $\geq 1-\delta$,

$$
\sup |g(b)-\hat{g}(b)| \leq \lambda_{g} h_{g}+\frac{1}{h_{g}} O\left(\frac{\sqrt{\log \frac{1}{\delta}}}{\sqrt{m}}\right)
$$

How to prove? Under A1 and A2, g is λ-Lipschitz (can be proven with calculus) with a different constant λ_{g}. Then use the result from first part of the lecture to show this.

$$
\begin{aligned}
h_{g} & =O\left(\left(\frac{1}{m}\right)^{\frac{1}{4}}\right) \\
\text { Error } & =O\left(\left(\frac{\log \frac{1}{\delta}}{m}\right)^{\frac{1}{4}}\right)
\end{aligned}
$$

Note: Earlier, we defined F for $[0, \bar{v}]$ values. But later we took $[0,1]$. That is not a problem. This is just requires larger number of samples that is dependent on \bar{v} with a weird relation.

Inversion Error

Lemma 4: For any interior set of the bid dis. domain,

$$
\sup |\hat{\xi}(b)-\xi(b)| \leq O\left(\left(\frac{\log \frac{1}{\delta}}{m}\right)^{\frac{1}{4}}\right)
$$

Proof:

$$
\begin{align*}
|\hat{\xi}(b)-\xi(b)| & =\left|b+\frac{\hat{G}(b)}{(n-1) \hat{g}(b)}-b-\frac{G(b)}{(n-1) g(b)}\right| \\
& =\frac{1}{(n-1) g(b) \hat{g}(b)}|\hat{G}(b) g(b)-G(b) \hat{g}(b)| \tag{4}\\
& =\frac{1}{(n-1) g(b) \hat{g}(b)}|(\hat{G}(b)-G(b)) g(b)+G(b)(g(b)-\hat{g}(b))| \\
& \leq \frac{1}{(n-1) g(b) \hat{g}(b)}(|\hat{G}(b)-G(b)| g(b)+G(b)|g(b)-\hat{g}(b)|)
\end{align*}
$$

From Lemma $1 \& 2,|\hat{G}(b)-G(b)| \rightarrow 0$ and $|g(b)-\hat{g}(b)| \rightarrow 0$
Now if $g(b), \hat{g}(b)$ are close to zero, the total term can be large.
But according to A1, A2,
$g(b)$ is not close to 0
$\therefore \hat{g}(b)$ is also not close to 0 since $\hat{g}(b) \rightarrow g(b)$

$$
\therefore|\hat{\xi}(b)-\xi(b)| \rightarrow 0
$$

Errors due to Estimated Inverted Values

We will show that the estimated $\operatorname{pdf}(\hat{f})$ from m samples is close to the ideal pdf (f), i.e., $\hat{f} \rightarrow f$

Suppose, if we had infinitely many samples, the estimated pdf would be \tilde{f}
Since $\hat{f} \rightarrow \tilde{f}$, we just need to prove $\tilde{f} \rightarrow f$
Let

$$
\tilde{f}_{h}(v)=\frac{1}{m} \sum_{t=1}^{m} \frac{1}{h} K_{u}\left(\frac{v-v_{t}}{h}\right)
$$

Note: for $\hat{f}_{h}(v), v_{t}$ would be replaced by \hat{v}_{t}.
Lemma 5: Under A2,

$$
\sup \left|\tilde{f}_{h}(v)-f(v)\right| \leq \lambda_{f} h+\frac{1}{h} O\left(\frac{\log \frac{1}{\delta}}{\sqrt{m}}\right)
$$

Lemma 6: For $h_{f}=O\left(\frac{1}{m^{\frac{1}{8}}}\right), h_{g}=O\left(\frac{1}{m^{\frac{1}{4}}}\right)$, w.p. $\geq 1-\delta$,

$$
\sup \left|\tilde{f}_{h}(v)-f(v)\right| \leq O\left(\left(\frac{\log \frac{1}{\delta}}{m}\right)^{\frac{1}{8}}\right)
$$

We need both upper bounds and lower bounds
Upper bounds: Let,

$$
\Delta=O\left(\left(\frac{\log \frac{1}{\delta}}{m}\right)^{\frac{1}{4}}\right)
$$

Now,

$$
\begin{align*}
\hat{f}(v) & =\frac{1}{m} \sum_{t=1}^{m} \frac{1}{h_{f}} 1_{\left\{\left|v-\hat{v}_{t}\right| \leq h_{f}\right\}} \\
& \leq \frac{1}{m} \sum_{t=1}^{m} \frac{1}{h_{f}} 1_{\left\{\left|v-v_{t}\right| \leq h_{f}+\Delta\right\}}\left[\because \hat{v}_{t} \text { and } v_{t} \text { are } \Delta-\text { close, Lemma }-4\right] \\
& \leq \frac{h_{f}+\Delta}{h_{f}} \frac{1}{m} \sum_{f=1}^{m} \frac{1}{h_{f}+\Delta} 1_{\left\{\left|v-v_{t}\right| \leq h_{f}+\text { Delta }\right\}} \tag{5}\\
& =\frac{h_{f}+\Delta}{h_{f}} \tilde{f}_{h_{f}+\Delta}(v)\left[\text { from the equation of } \tilde{f}_{h}(v)\right. \text { (before Lemma 5)] } \\
& \leq \frac{h_{f}+\Delta}{h_{f}}\left(f(v)+\lambda_{f}\left(h_{f}+\Delta\right)+\frac{1}{h_{f}+\Delta} O\left(\frac{\log \frac{1}{\delta}}{\sqrt{m}}\right)\right. \text { [Lemma 5] } \\
& =\left(1+\frac{\Delta}{h_{f}}\right)\left(f(v)+\lambda_{f}\left(h_{f}+\Delta\right)+\frac{1}{h_{f}+\Delta} O\left(\frac{\log \frac{1}{\delta}}{\sqrt{m}}\right)\right)
\end{align*}
$$

By picking $h_{f}=O\left(\frac{1}{m^{\frac{1}{8}}}\right)$,
$\hat{f}(v)$ and $f(v)$ are close to each other point-wise.

