
CSCI699: Topics in Learning and Game Theory
Lecture 13

Lecturer: Ilias Scribes: Reem Alfayez, Sarah Al-Hussaini

Last lecture studies the paper ‘Optimal Nonparametric Estimation of First-Price
Auctions’ (Econometrica 2000), by Guerre, Perrigne, and Vuong. The paper shows a
kernel-based estimator to learn the distribution of bidder’s valuation using the actual
bids under First Price Auction. We also had this formula:

ξ(b) = b+ G(b)
(n− 1)g(b(v)) (1)

b(v) = v − 1
F (v)n−1

∫ v′

0
F (z)(n−1)dz (2)

Where:
b=bid.
F=CDF.
f=PDF. v̂ = maximum possible v.
b(v)= the bid when the value is v. We want to learn (F,f) on values, but we have

(G,g) distribution on bids, by pretending that we know them exactly where G=CDF and
g=PDF then we take a single sample from that distribution of bids then use formula 1
to generate a sample.

ξ̂(b) = b+ Ĝ(b)
(n− 1)ĝ(b) (3)

We will explain what are kernels and why do we need them. Kernels were used to
learn continuous distributions by smoothing out discrete approximations. A kernel has
two important parameters:

• Kernel function.

• Bandwidth which is not automated and need to be changed if the problem
changed.
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Kernel density estimation

Given n samples:
x1, x2, x3, ...., xn

idd from unknown distribution with PDF f. The estimation:

f̂(x) = 1
n · h

n∑
i=1

K(xi − x
h

)

K : R→ R
∫ ∞
−∞

K(u)du = 1

where h is the bandwidth and K is the kernel function. Example of Kernels are:

• uniform Kernel.

• Epanechnikov Kernel.

• Gaussian Kernel.

Very important property of a kernel is its order. The order of a kernel is the smallest j
where

Mj(k) =
∫
ujk(u)du 6= 0

where M is a moment. The higher order of a kernel is the better the approximation,
convergence, smoothing and learning become. What can we do with kernels?
Assumptions:

• f is r-times differentiable.

• K has order ≥ r

f̂(x) n→∞→ f(x)

MeanSquareErrorMSE(f̂(x)) = E
[
(f̂(x)− f(x))2

]
= Bias(f̂(x))2 + V ariance[f̂(x)]

' ( 1
r!f

r(x)Mr(k).hr) + f(x)R(k)
nh

∫ ∞
−∞

k2du [∵ Bias = E
[
(f̂(x)

]
− f(x)]

The two sides are competing with each other. Our goal is to find a value h that makes
both sides equal.

E
[
f̂(x)

]
= 1
n

n∑
i=1

E
[ 1
n
k
xi − x
h

]
=
∫ ∞
−∞

k(u)f(x+ hu)du
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By Taylor’s theorem

E
[
f̂(x)

]
= f(x) + 1

r!f
r(x)Mr(k)hr + o(hr)

h2r ' 1
nh

h2r+1 = 1
n

There are formal justification based on the central limit theorem:

dk(f̂(x)− f(x)) n→∞→ 0

We are interested in a result that holds for a finite sample.

Finite sample approximation

Suppose that :

f ∈ ∆([0, 1]), δ − Lipschitz : |f(x)− f(y)| 6 δ |x− y| ∀x, y ∈ [0, 1]

Use kernel density estimation of uniform kernel that has order 2. Look at TV distance
between f(x), f̂(x) = 1

nh

∑n
i=1 k(xi−x

h
)

Where: n is the number of samples and h is the bandwidth.

2dTV (f̂ , f) =
∫ 1

0

∣∣∣f̂(x)− f(x)
∣∣∣ dx =

∫ 1

0

∣∣∣∣∣f(x)− 1
nh

∑
i

k
x̂i − x
h

∣∣∣∣∣ dx
∫ 1

0

∣∣∣∣f(x)− 1
2nh

∑
|{i : xi ∈ [x− h, x+ h]}|

∣∣∣∣ dx
=
∫ ∣∣∣∣∣∣f(x)− 1

2h
f̂([x− h, x+ h])

f̂(x+ h)− f̂(x− h)

∣∣∣∣∣∣ dx
[w.p ≥ 1− δ] DKW=

∫ 1

0

∣∣∣∣∣∣f(x)− 1
2hF ([x− h, x+ h])±O(

√
lg 1

δ√
n

)

∣∣∣∣∣∣ dx
6
∫ 1

0

∣∣∣∣f(x)− 1
2hF ([x− h, x+ h])

∣∣∣∣ dx+O(

√
lg 1

δ

2h
√
n

)
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F ([x− h, x+ h]) =
∫ x+h

x−h
f(t)dt

=
∫ 1

0

∣∣∣∣∣f(X)− 1
2h

∫ x+h

x−h
f(t)dt

∣∣∣∣∣
=
∫ 1

0

∣∣∣∣∣ 1
2h

∫ x+h

x−h
f(X)− f(t)dt

∣∣∣∣∣ dx
≤
∫ 1

0

1
2h

∫ x+h

x−h
|f(x)− f(t))| dtdx

f(x)− f(t) ≤ δ(x− t)

≤
∫ 1

0

1
2h

∫ x+h

x−h
δ |(x− t)| dtdx

≤ δh+O(

√
lg 1

δ

2h
√
n

)

Choose h:

δh2 ' (

√
lg 1

δ√
n

)⇒ h = 1√
δ

(
lg 1

δ

n

) 1
4

Final error =
√
δ

(
lg 1

δ

n

) 1
4

Que. We have just bounded dTV . But what if we want to bound supx |f̂(x)−f(x)|?
Ans. We can bound this using the same calculation without integration. However,

we will get a different bound with that approach.

Algorithm

We know,

b(v) = v − 1
F (v)n−1

∫ v̄

0
F (z)n−1dz is Nash Equilibrium

ξ(b) = b+ G(b)
(n− 1)g(b) is value v for bid b

The algorithm has two stages:
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1. Compute Ĝ, ĝ

2. Invert each bid using:

v̂t = ξ̂(bt) = bt + Ĝ(bt)
(n− 1)ĝ(bt)

Estimate F̂ , f̂ using pseudo samples v̂t s

Ĝ(b) = 1
m

m∑
t=1

1{bt≤b}

F̂ (v) = 1
m

m∑
t=1

1{vt≤v}

ĝ(b) = 1
m

m∑
t=1

1
hg
Kg(

bt − b
hg

)

f̂(b) = 1
m

m∑
t=1

1
hf
Kg(

vt − v
hf

)

Kf = Kg = Ku(z) = 1
21{|z|<1}

A1. Assumption 1. CDF F is continuous, differentiable; the r.v. is in [0, v̄]
A2. Assumption 2. f is λ-Lipschitz

Theorem

Under A1, A2 and Kg = Kf = Ku, hg = O
(

1
m

1
4

)
, hf = O

(
1
m

1
8

)
for any Cv(ε) ∈ [ε, v̄ − ε], w.p. ≥ 1− δ,

sup
v∈Cv(ε)

|f̂(v)− f(v)| ≤ O
((

log 1
δ

m

) 1
8
)

-For this, what is m?
-Since the algorithm has two stages, we need to bound the error in two stages
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First Stage

Lemma 2: According to DKW, w.p. ≥ 1− λ,

sup |Ĝ(b)−G(b)| ≤ O
(√log 1

δ√
m

)
The next lemma is to bound f(b), f̂(b)

Lemma 3: w.p. ≥ 1− δ,

sup |g(b)− ĝ(b)| ≤ λghg + 1
hg
O
(√log 1

δ√
m

)

How to prove? Under A1 and A2, g is λ-Lipschitz (can be proven with calculus) with a
different constant λg. Then use the result from first part of the lecture to show this.

hg = O
(( 1

m

) 1
4
)

Error = O
((

log 1
δ

m

) 1
4
)

Note: Earlier, we defined F for [0, v̄] values. But later we took [0, 1]. That is not a
problem. This is just requires larger number of samples that is dependent on v̄ with a
weird relation.

Inversion Error

Lemma 4: For any interior set of the bid dis. domain,

sup |ξ̂(b)− ξ(b)| ≤ O
((

log 1
δ

m

) 1
4
)

Proof:
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|ξ̂(b)− ξ(b)| = |b+ Ĝ(b)
(n− 1)ĝ(b) − b−

G(b)
(n− 1)g(b) |

= 1
(n− 1) g(b) ĝ(b) |Ĝ(b)g(b)−G(b)ĝ(b)|

= 1
(n− 1) g(b) ĝ(b) |(Ĝ(b)−G(b)) g(b) +G(b) (g(b)− ĝ(b))|

≤ 1
(n− 1) g(b) ĝ(b)

(
|Ĝ(b)−G(b)| g(b) +G(b) |g(b)− ĝ(b)|

)
(4)

From Lemma 1 & 2, |Ĝ(b)−G(b)| → 0 and |g(b)− ĝ(b)| → 0
Now if g(b), ĝ(b) are close to zero, the total term can be large.
But according to A1, A2,
g(b) is not close to 0
∴ ĝ(b) is also not close to 0 since ĝ(b)→ g(b)

∴ |ξ̂(b)− ξ(b)| → 0

Errors due to Estimated Inverted Values

We will show that the estimated pdf (f̂) from m samples is close to the ideal pdf
(f), i.e., f̂ → f

Suppose, if we had infinitely many samples, the estimated pdf would be f̃

Since f̂ → f̃ , we just need to prove f̃ → f

Let
f̃h(v) = 1

m

m∑
t=1

1
h
Ku

(v − vt
h

)

Note: for f̂h(v), vt would be replaced by v̂t.

Lemma 5: Under A2,
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sup |f̃h(v)− f(v)| ≤ λfh+ 1
h
O
( log 1

δ√
m

)
Lemma 6: For hf = O

(
1
m

1
8

)
, hg = O

(
1
m

1
4

)
, w.p. ≥ 1− δ,

sup |f̃h(v)− f(v)| ≤ O
((

log 1
δ

m

) 1
8
)

We need both upper bounds and lower bounds

Upper bounds: Let,

∆ = O
((

log 1
δ

m

) 1
4
)

Now,

f̂(v) = 1
m

m∑
t=1

1
hf

1{|v−v̂t|≤hf}

≤ 1
m

m∑
t=1

1
hf

1{|v−vt|≤hf +∆} [∵ v̂t and vt are ∆− close, Lemma− 4]

≤ hf + ∆
hf

1
m

m∑
f=1

1
hf + ∆1{|v−vt|≤hf +Delta}

= hf + ∆
hf

f̃hf +∆(v) [from the equation of f̃h(v) (before Lemma 5)]

≤ hf + ∆
hf

(f(v) + λf (hf + ∆) + 1
hf + ∆O

(
log 1

δ√
m

)
[Lemma 5]

=
(
1 + ∆

hf

)
(f(v) + λf (hf + ∆) + 1

hf + ∆O
(
log 1

δ√
m

)
)

(5)

By picking hf = O
(

1
m

1
8

)
,

f̂(v) and f(v) are close to each other point-wise.


