CSCI699: Topics in Learning and Game Theory
Lecture 13
Lecturer: Ilias Scribes: Reem Alfayez, Sarah Al-Hussaini

Last lecture studies the paper ‘Optimal Nonparametric Estimation of First-Price
Auctions’ (Econometrica 2000), by Guerre, Perrigne, and Vuong. The paper shows a
kernel-based estimator to learn the distribution of bidder’s valuation using the actual
bids under First Price Auction. We also had this formula:
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Where:
b=bid.
F=CDF.

f=PDF. © = maximum possible v.

b(v)= the bid when the value is v. We want to learn (F,f) on values, but we have
(G,g) distribution on bids, by pretending that we know them exactly where G=CDF and
g=PDF then we take a single sample from that distribution of bids then use formula
to generate a sample.
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We will explain what are kernels and why do we need them. Kernels were used to
learn continuous distributions by smoothing out discrete approximations. A kernel has
two important parameters:

e Kernel function.

e Bandwidth which is not automated and need to be changed if the problem
changed.



Kernel density estimation

Given n samples:
T1,L2, T3y .cccy Ty

idd from unknown distribution with PDF f. The estimation:
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where h is the bandwidth and K is the kernel function. Example of Kernels are:

e uniform Kernel.
e Epanechnikov Kernel.

e Gaussian Kernel.

Very important property of a kernel is its order. The order of a kernel is the smallest j
where

M; (k) = /ujk(u)du £0

where M is a moment. The higher order of a kernel is the better the approximation,
convergence, smoothing and learning become. What can we do with kernels?
Assumptions:

o f{is r-times differentiable.

e K has order > r
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The two 51des are competing with each other. Our goal is to find a value h that makes
both sides equal.
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By Taylor’s theorem
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There are formal justification based on the central limit theorem:
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We are interested in a result that holds for a finite sample.

Finite sample approximation

Suppose that :
f e A([0,1)),6 — Lipschitz : | f(z) — f(y)| < I |z —y|Vx,y € [0,1]

Use kernel density estimation of uniform kernel that has order 2. Look at TV distance

between f(x), f(x) = 5 Siy k(%57)
Where: n is the number of samples and h is the bandwidth.
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Que. We have just bounded dry. But what if we want to bound sup, | f(z) — f(z)|?
Ans. We can bound this using the same calculation without integration. However,

we will get a different bound with that approach.

Final error = V8 (
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Algorithm
We know,
1 v
b(v) =v— F(U)"l/o F(2)"'dz is Nash Equilibrium
G(b) . :
£(b) =b+4+ ——— 1is value v for bid b
RN 7I0

The algorithm has two stages:



1. Compute @, i

2. Invert each bid using:
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Estimate F, f using pseudo samples ¥; S
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Al. Assumption 1. CDF F is continuous, differentiable; the r.v. is in [0, 9]
A2. Assumption 2. f is \-Lipschitz

Theorem

Under A1, A2 and K, = K; = Ky, hy = O(2 ), by = O()
for any C,(¢) € [e,0 — €], w.p. > 1—0,

sup |f(v) = f(v)] < O((%)%

veCy (€)

-For this, what is m?
-Since the algorithm has two stages, we need to bound the error in two stages



First Stage

Lemma 2: According to DKW, w.p. > 1— A,
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sup |G(b) — G(b)| < o( T

The next lemma is to bound f(b), f(b)

Lemma 3: w.p. > 1—9,

sup ]g(b) - f](b)\ < )‘ghg +
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How to prove? Under Al and A2, g is A-Lipschitz (can be proven with calculus) with a
different constant A,. Then use the result from first part of the lecture to show this.

n=0((3))
prror - 0 (242)7)

Note: Earlier, we defined F for [0, v] values. But later we took [0, 1]. That is not a
problem. This is just requires larger number of samples that is dependent on v with a
weird relation.

Inversion Error

Lemma 4: For any interior set of the bid dis. domain,

sup [£(b) — £(b)| < O((Mf*)
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Proof:
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From Lemma 1 & 2, |G(b) — G(b)] — 0 and |g(b) — §(b)] — 0
Now if g(b), §(b) are close to zero, the total term can be large.
But according to A1, A2,

g(b) is not close to 0

. g(b) is also not close to 0 since §(b) — g(b)

L |€(b) — £(b)| = 0
Errors due to Estimated Inverted Values

We will show that the estimated pdf ( f ) from m samples is close to the ideal pdf
(f)sie, f—f

Suppose, if we had infinitely many samples, the estimated pdf would be f
Since f — f, we just need to prove f — f

Let

Note: for fh(v), vy would be replaced by ;.

Lemma 5: Under A2,
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Lemma 6: For hy = O(g),hg = O(ﬁ), w.p. > 1—9,

sup | fu(v) — f(v)] < O(<l09(1;>é>
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We need both upper bounds and lower bounds

Upper bounds: Let,
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By picking hy = O(m—lé),

f(v) and f(v) are close to each other point-wise.



