CSCI699: Topics in Learning and Game Theory
Lecture 2

Lecturer: Ilias Diakonikolas Scribes: Li Han

Today we will cover the following 2 topics:
1. Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

2. Introduction to unsupervised learning and density estimation.

1 Learning Infinite Hypothesis Class

In the first lecture, we showed that a hypothesis class is PAC-learnable if it is finite.
What about infinite hypothesis class? First we give a simple example showing the
possibility of PAC-learning an infinite hypothesis class.

Consider the family of threshold functions defined on the real line. In particular,
let the domain X = R and the label set J) = {—1,1}. A threshold function f : R — Y

is defined as,
1 ifx <4
folx) = { . (1)

—1  otherwise

Given m samples in the form {(x;, v;)}7, where y; = fo(z;), there exists a separator
6 € R that divides the samples (1 e., for all samples labeled +1 we have z; < 4, for
those labeled —1 we have z; > «9) We output the following hypothesis h based on 0
and this defines our learning algorithm.

h<m>:{1 if v <0 @

—1 otherwise

We need to show that Pr,.p[f(z) # h(z)] < e with high probability. Let R be the
interval between the rightmost +1 data point and the leftmost —1 data point. In
other words, R is the set of valid choices for 6. Note that R is a random interval that
depends on the samples. If R is narrow enough, then 6 would be very close to the true
6, implying a small error. In particular, one can see that if Pr,.p[z € R] < € then our
algorithm works.
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Choose 6y and 0, such that Pr,.p[f; <2 < 0] =eand Pr,pld <z < 0] =€ If we
take m samples, the probabiltiy that no sample is inside [0y, 0] is equal to (1 — €)™ and
likewise for [f, 65]. Therefore, it we choose m > O(% log %), then with high probability
we would have at least one sample inside both [#;,60] and [0, 6,]. This would imply
Pr,.p[R] < 2¢ and we are done.

1.1 VC-Dimension

Let H be the hypothesis class over a domain X. Assume ) = {0,1}. In the following,
we might represent a hypothesis h : X — ) by its support {z € X' : h(z) = 1}.

Definition 1 (Shattering). A subset S C X is shattered by H if for all T C S, there
exists h € H such that hN S =T (where hNS :={z € X : h(z) =1} NS). The
VC-dimension of H is the size of the largest subset S C X that is shattered by H.

To show H has VC-dimension d, we need to prove two things:
1. I set S with |S| = d that is shattered by H;
2. No set S with size d 4 1 is shattered by H.

Example 2. Let X = {1,2,3,4,5}. Let hy = {1,2,3}, ho = {2,4,5}, hy = {3,4},
hy ={1,2,5}, hs = {1,3,5} and hg = {5}.

One can check that H shatters subset S = {2,4}, so VC(H) > 2. In order to shatter
a subset of size 3, you need at least 8 = 23 hypotheses, so VC(H) < 3. Therefore,
VC(H) = 2.

Also, we just proved VC(H) < log, |H|.

Example 3. Let X = R and H = all closed intervals [a,b]. We will show that
VC(H) = 2. Given any subset S C R of size 2, say {c,d}. We can choose [c,d],
le, ], [d,d], [c — 2,c — 1] to shatter {c,d}, {c}, {d} and 0,respectively. This proved
VC(H) > 2. Howewver, if one has 3 points S = {c,d, e} where ¢ < d < e, the subset
T = {c,e} cannot be shattered by any interval. So VC(H) < 3 and VC(H) = 2.
Note that the family of all intervals is an infinite hypothesis class, and yet it has finite
VC-dimension.

1.2 VC-Dimension as a Lower Bound

In this section, we lower bound learnability by VC-dimension.
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Theorem 4. Let H be any hypothesis class with VC(H) = d. Then any PAC-learner
must use at least (%) samples.

Proof. As a warm-up, we would prove this for constant € and §. As VC(H) = d, let
S ={z', 2% --- 2%} C X be shattered by H. Let D be the uniform distribution over
S. Suppose our learner A uses only g samples, then A knows at most g values of f(z")
where f is the target function. Let Hg = {hy, hy,--- ,hoa} be the 2 functions that
shatter S. Let P be the uniform distrbutionover Hg. Suppose that the target function
f is drawn from P, it would be hard for A to learn.

Fix any sample T of size d/2, suppose A output hy. As there are at least d/2 unseen
points from S, no matter how the (random) target function labels them A would still
output the same hypothesis. So on the unseen half of S, any algorithm would make at
least d/4 mistakes in expectation. Then Elerror(h)] > 1, thus by Markov’s inequality
Prlerror(h) < g] < 2. O

It turns out that VC-dimension exactly characterizes learnability, whether the
hypothesis class is infinite or not.

Theorem 5. The following statements are equivalent to binary classification.
1. VC(H) =d;
2. H is PAC-learnable with (dlog* +log 5) samples;
8. H is agnostically PAC-learnable with %(dlog < + log 5) samples;

4. H admits uniform convergence with 5 (dlog X + log +) samples.
€ € é

1.3 VC-dimension as an Upper bound

Consider S C X, let my(S) ={hN S : h € H}, which is equal to the set of subsets of
S induced by H.

Example 6. Let X =R, H = all intervals and S = {1,2,3}. mu(S) =25 — {{1,3}}
We are usually interested in the size of 75 (S) rathar than the set my(.S) itself.
Definition 7. The growth function wy(m) := maxgcx.|sj=m |7 (5)|.

It is easy to see that H shatters S < |7 (S)| = 2/°!, so VC(H) = largest m such that
mg(m) = 2™. In the worst case, the growth function 75 (m) can grow exponentially in
m, where 7y (S) contains all possible subsets of S. However, with small VC-dimension,
the growth function would grow only polynomially after a certain point. In particular,
we have the following lemma.
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Lemma 8 (Sauer’s Lemma). If VC(H) = d, then

o ifm<d
mi(m) = {O(md) otherwise )

In most cases, whenever union bound is applied over a set of hypothesis, one can
replace it by a union bound over 7wy (m) many hypotheses, resulting in smaller sample
complexity.

2 Rademacher Complexity

Recall the defintion of a representative sample.

Definition 9. A sample S = {21,292, ,zm} is e-representative (w.r.t domain Z,
hypothesis class H and loss function l(h, z)) if
sup [Lp(h) — Ls(h)| <'e, (4)
heH

where Lp(h) = E..pll(h,2)] and Lg(h) = E. s [l(h,z)] U(S) is the uniform distri-
bution over S).

For each hypothesis h, we can rewrite I(h,z) = fi(z) and f, : Z2 — R. Let
F={fn,:he H}. Then

Repp(F, S) Z?[ug!LD(f) — Ls(f)]- (5)
€
The problem is that we don’t know what the true distribution D is, so we can split the
training samples into 2 equal-size sets S; and S,.

fer

Repo(F,8) % sup|Ls, (/) — L, ()] = = D o 20, )

where 0; = +1 if 1 € S and 0; = —1 otherwise.
Inspired by this observation, the Rademacher complexity of F' (w.r.t sample S) is
defined as . .
Rs(F) = —E,, |sup » o,f(2)] 7
(F)=— [feF; (2)] (7)
where each o; is an independent {—1,1} coin flip. The next lemma shows that the rate
of uniform convergence is governed by Rademacher complexity.
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Lemma 10.
Es. .pm[Repp(F,S)] < 2Es.pm[Rs(F)] (8)

As uniform convergence guarantees learnability of ERM, this implies an upper
bound on the error of ERM learner.

3 Unsupervised Learning

In this section, we introduced an important unsupervised learning problem called
‘density estimation’.

Definition 11. Let F' be a family of probability distribution. Given i.i.d samples from
an unknown distribution p € F, output h € F so that h is ‘close’ to p with high
probability.

We have been vague about what ‘closeness’ means in the above definition and
different notions of closeness will lead to different density-estimation problems.

3.1 Most basic setting

Here we consider what might be the most simple density estimation problem: learning
discrete distribution under total variation distance.

Let F' be the family of all distribution over [n]. The total variation distance is
defined as drv(p, ¢) = maxacs [p(A) — q(4)] = 3llp - 1.

Similar to the Emprical Risk Minimization learner, we can output the empirical
histogram. In particular, let hg(i) = %m‘%:z}' Next we will discuss the performance
of this empirical-histogram learner.

Theorem 12. Learning a discrete distribution over [n] requires at least O(n) samples.
Theorem 13. Let hg be the histogram for sample S and m > O(%). Then with
high probability, drv(hs,p) < €.

Proof. To upper bound the total variation distance between p and hg, one only needs
to upper bound |p(A) — hg(A)| simultaneously for all A C [n].
Fix an arbitrary A C [n], one can use Hoeffding bound to prove Pr[|p(A) —hg(A)| >

1
e < 2 whenm > O(%). The proof follows from applying union bound over all 2"
possible subsets. O
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