
CSCI699: Topics in Learning and Game Theory

Lecture 2
Lecturer: Ilias Diakonikolas Scribes: Li Han

Today we will cover the following 2 topics:

1. Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

2. Introduction to unsupervised learning and density estimation.

1 Learning Infinite Hypothesis Class
In the first lecture, we showed that a hypothesis class is PAC-learnable if it is finite.
What about infinite hypothesis class? First we give a simple example showing the
possibility of PAC-learning an infinite hypothesis class.

Consider the family of threshold functions defined on the real line. In particular,
let the domain X = R and the label set Y = {−1, 1}. A threshold function fθ : R→ Y
is defined as,

fθ(x) =

1 if x ≤ θ

−1 otherwise
(1)

Given m samples in the form {(xi, yi)}mi=1 where yi = fθ(xi), there exists a separator
θ̂ ∈ R that divides the samples (i.e., for all samples labeled +1 we have xi ≤ θ̂, for
those labeled −1 we have xi > θ̂). We output the following hypothesis h based on θ̂
and this defines our learning algorithm.

h(x) =

1 if x ≤ θ̂

−1 otherwise
(2)

We need to show that Prx∼D[f(x) 6= h(x)] ≤ ε with high probability. Let R be the
interval between the rightmost +1 data point and the leftmost −1 data point. In
other words, R is the set of valid choices for θ̂. Note that R is a random interval that
depends on the samples. If R is narrow enough, then θ̂ would be very close to the true
θ, implying a small error. In particular, one can see that if Prx∼D[x ∈ R] ≤ ε then our
algorithm works.
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Choose θ1 and θ2 such that Prx∼D[θ1 ≤ x ≤ θ] = ε and Prx∼D[θ ≤ x ≤ θ2] = ε. If we
take m samples, the probabiltiy that no sample is inside [θ1, θ] is equal to (1− ε)m and
likewise for [θ, θ2]. Therefore, it we choose m ≥ O(1

ε
log 1

δ
), then with high probability

we would have at least one sample inside both [θ1, θ] and [θ, θ2]. This would imply
Prx∼D[R] ≤ 2ε and we are done.

1.1 VC-Dimension
Let H be the hypothesis class over a domain X . Assume Y = {0, 1}. In the following,
we might represent a hypothesis h : X → Y by its support {x ∈ X : h(x) = 1}.

Definition 1 (Shattering). A subset S ⊆ X is shattered by H if for all T ⊆ S, there
exists h ∈ H such that h ∩ S = T (where h ∩ S := {x ∈ X : h(x) = 1} ∩ S). The
VC-dimension of H is the size of the largest subset S ⊆ X that is shattered by H.

To show H has VC-dimension d, we need to prove two things:

1. ∃ set S with |S| = d that is shattered by H;

2. No set S with size d+ 1 is shattered by H.

Example 2. Let X = {1, 2, 3, 4, 5}. Let h1 = {1, 2, 3}, h2 = {2, 4, 5}, h3 = {3, 4},
h4 = {1, 2, 5}, h5 = {1, 3, 5} and h6 = {5}.

One can check that H shatters subset S = {2, 4}, so V C(H) ≥ 2. In order to shatter
a subset of size 3, you need at least 8 = 23 hypotheses, so V C(H) < 3. Therefore,
V C(H) = 2.

Also, we just proved V C(H) ≤ log2 |H|.

Example 3. Let X = R and H = all closed intervals [a, b]. We will show that
V C(H) = 2. Given any subset S ⊆ R of size 2, say {c, d}. We can choose [c, d],
[c, c], [d, d], [c − 2, c − 1] to shatter {c, d}, {c}, {d} and ∅,respectively. This proved
V C(H) ≥ 2. However, if one has 3 points S = {c, d, e} where c < d < e, the subset
T = {c, e} cannot be shattered by any interval. So V C(H) < 3 and V C(H) = 2.
Note that the family of all intervals is an infinite hypothesis class, and yet it has finite
VC-dimension.

1.2 VC-Dimension as a Lower Bound
In this section, we lower bound learnability by VC-dimension.
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Theorem 4. Let H be any hypothesis class with V C(H) = d. Then any PAC-learner
must use at least Ω(d

ε
) samples.

Proof. As a warm-up, we would prove this for constant ε and δ. As V C(H) = d, let
S = {x1, x2, · · · , xd} ⊆ X be shattered by H. Let D be the uniform distribution over
S. Suppose our learner A uses only d

2 samples, then A knows at most d
2 values of f(xi)

where f is the target function. Let HS = {h1, h2, · · · , h2d} be the 2d functions that
shatter S. Let P be the uniform distrbutionover HS. Suppose that the target function
f is drawn from P , it would be hard for A to learn.

Fix any sample T of size d/2, suppose A output hT . As there are at least d/2 unseen
points from S, no matter how the (random) target function labels them A would still
output the same hypothesis. So on the unseen half of S, any algorithm would make at
least d/4 mistakes in expectation. Then E[error(h)] ≥ 1

4 , thus by Markov’s inequality
Pr[error(h) < 1

8 ] ≤ 6
7 .

It turns out that VC-dimension exactly characterizes learnability, whether the
hypothesis class is infinite or not.
Theorem 5. The following statements are equivalent to binary classification.

1. V C(H) = d;

2. H is PAC-learnable with 1
ε
(d log 1

ε
+ log 1

δ
) samples;

3. H is agnostically PAC-learnable with 1
ε2

(d log 1
ε

+ log 1
δ
) samples;

4. H admits uniform convergence with 1
ε2

(d log 1
ε

+ log 1
δ
) samples.

1.3 VC-dimension as an Upper bound
Consider S ⊆ X , let πH(S) = {h ∩ S : h ∈ H}, which is equal to the set of subsets of
S induced by H.
Example 6. Let X = R, H = all intervals and S = {1, 2, 3}. πH(S) = 2S − {{1, 3}}

We are usually interested in the size of πH(S) rathar than the set πH(S) itself.
Definition 7. The growth function πH(m) := maxS⊆X:|S|=m |πH(S)|.

It is easy to see that H shatters S⇔ |πH(S)| = 2|S|, so V C(H) = largest m such that
πH(m) = 2m. In the worst case, the growth function πH(m) can grow exponentially in
m, where πH(S) contains all possible subsets of S. However, with small VC-dimension,
the growth function would grow only polynomially after a certain point. In particular,
we have the following lemma.
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Lemma 8 (Sauer’s Lemma). If V C(H) = d, then

πH(m) =

2m if m ≤ d

O(md) otherwise
(3)

In most cases, whenever union bound is applied over a set of hypothesis, one can
replace it by a union bound over πH(m) many hypotheses, resulting in smaller sample
complexity.

2 Rademacher Complexity
Recall the defintion of a representative sample.

Definition 9. A sample S = {z1, z2, · · · , zm} is ε-representative (w.r.t domain Z,
hypothesis class H and loss function l(h, z)) if

sup
h∈H
|LD(h)− LS(h)| ≤ ε, (4)

where LD(h) = Ez∼D[l(h, z)] and LS(h) = Ez∼U(S)[l(h, z)] (U(S) is the uniform distri-
bution over S).

For each hypothesis h, we can rewrite l(h, z) = fh(z) and fh : Z → R. Let
F = {fh : h ∈ H}. Then

RepD(F, S) = sup
f∈F
|LD(f)− LS(f)|. (5)

The problem is that we don’t know what the true distribution D is, so we can split the
training samples into 2 equal-size sets S1 and S2.

RepD(F, S) ≈ sup
f∈F
|LS1(f)− LS2(f)| = 2

m

m∑
i=1

σif(zi), (6)

where σi = +1 if i ∈ S1 and σi = −1 otherwise.
Inspired by this observation, the Rademacher complexity of F (w.r.t sample S) is

defined as
RS(F ) = 1

m
Eσi [sup

f∈F

m∑
i=1

σif(zi)], (7)

where each σi is an independent {−1, 1} coin flip. The next lemma shows that the rate
of uniform convergence is governed by Rademacher complexity.
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Lemma 10.
ES∼Dm [RepD(F, S)] ≤ 2ES∼Dm [RS(F )] (8)

As uniform convergence guarantees learnability of ERM, this implies an upper
bound on the error of ERM learner.

3 Unsupervised Learning
In this section, we introduced an important unsupervised learning problem called
‘density estimation’.

Definition 11. Let F be a family of probability distribution. Given i.i.d samples from
an unknown distribution p ∈ F , output h ∈ F so that h is ‘close’ to p with high
probability.

We have been vague about what ‘closeness’ means in the above definition and
different notions of closeness will lead to different density-estimation problems.

3.1 Most basic setting
Here we consider what might be the most simple density estimation problem: learning
discrete distribution under total variation distance.

Let F be the family of all distribution over [n]. The total variation distance is
defined as dTV(p, q) = maxA⊆S |p(A)− q(A)| = 1

2‖p− 1‖1.
Similar to the Emprical Risk Minimization learner, we can output the empirical

histogram. In particular, let hS(i) = |{j∈[m]:sj=i}|
m

. Next we will discuss the performance
of this empirical-histogram learner.

Theorem 12. Learning a discrete distribution over [n] requires at least O(n) samples.

Theorem 13. Let hS be the histogram for sample S and m ≥ O(n+log 1
δ

ε2
). Then with

high probability, dTV(hS, p) ≤ ε.

Proof. To upper bound the total variation distance between p and hS, one only needs
to upper bound |p(A)− hS(A)| simultaneously for all A ⊆ [n].

Fix an arbitrary A ⊆ [n], one can use Hoeffding bound to prove Pr[|p(A)−hS(A)| >
ε] ≤ δ

2n when m ≥ O(n+log 1
δ

ε2
). The proof follows from applying union bound over all 2n

possible subsets.
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