CSCI699: Topics in Learning and Game Theory

Lecture 2

Lecturer: Ilias Diakonikolas

Scribes: Li Han

Today we will cover the following 2 topics:

- 1. Learning infinite hypothesis class via VC-dimension and Rademacher complexity;
- 2. Introduction to unsupervised learning and density estimation.

1 Learning Infinite Hypothesis Class

In the first lecture, we showed that a hypothesis class is PAC-learnable if it is finite. What about infinite hypothesis class? First we give a simple example showing the possibility of PAC-learning an infinite hypothesis class.

Consider the family of threshold functions defined on the real line. In particular, let the domain $\mathcal{X} = \mathbb{R}$ and the label set $\mathcal{Y} = \{-1, 1\}$. A threshold function $f_{\theta} : \mathbb{R} \to \mathcal{Y}$ is defined as,

$$f_{\theta}(x) = \begin{cases} 1 & \text{if } x \le \theta \\ -1 & \text{otherwise} \end{cases}$$
(1)

Given *m* samples in the form $\{(x_i, y_i)\}_{i=1}^m$ where $y_i = f_{\theta}(x_i)$, there exists a separator $\hat{\theta} \in \mathbb{R}$ that divides the samples (i.e., for all samples labeled +1 we have $x_i \leq \hat{\theta}$, for those labeled -1 we have $x_i > \hat{\theta}$). We output the following hypothesis *h* based on $\hat{\theta}$ and this defines our learning algorithm.

$$h(x) = \begin{cases} 1 & \text{if } x \le \hat{\theta} \\ -1 & \text{otherwise} \end{cases}$$
(2)

We need to show that $\Pr_{x\sim D}[f(x) \neq h(x)] \leq \epsilon$ with high probability. Let R be the interval between the rightmost +1 data point and the leftmost -1 data point. In other words, R is the set of valid choices for $\hat{\theta}$. Note that R is a *random* interval that depends on the samples. If R is narrow enough, then $\hat{\theta}$ would be very close to the true θ , implying a small error. In particular, one can see that if $\Pr_{x\sim D}[x \in R] \leq \epsilon$ then our algorithm works.

1 LEARNING INFINITE HYPOTHESIS CLASS

Choose θ_1 and θ_2 such that $\Pr_{x\sim D}[\theta_1 \leq x \leq \theta] = \epsilon$ and $\Pr_{x\sim D}[\theta \leq x \leq \theta_2] = \epsilon$. If we take *m* samples, the probability that no sample is inside $[\theta_1, \theta]$ is equal to $(1 - \epsilon)^m$ and likewise for $[\theta, \theta_2]$. Therefore, it we choose $m \geq O(\frac{1}{\epsilon} \log \frac{1}{\delta})$, then with high probability we would have at least one sample inside both $[\theta_1, \theta]$ and $[\theta, \theta_2]$. This would imply $\Pr_{x\sim D}[R] \leq 2\epsilon$ and we are done.

1.1 VC-Dimension

Let *H* be the hypothesis class over a domain \mathcal{X} . Assume $\mathcal{Y} = \{0, 1\}$. In the following, we might represent a hypothesis $h : \mathcal{X} \to \mathcal{Y}$ by its support $\{x \in \mathcal{X} : h(x) = 1\}$.

Definition 1 (Shattering). A subset $S \subseteq \mathcal{X}$ is shattered by H if for all $T \subseteq S$, there exists $h \in H$ such that $h \cap S = T$ (where $h \cap S := \{x \in X : h(x) = 1\} \cap S$). The VC-dimension of H is the size of the largest subset $S \subseteq \mathcal{X}$ that is shattered by H.

To show H has VC-dimension d, we need to prove two things:

1. \exists set S with |S| = d that is shattered by H;

2. No set S with size d + 1 is shattened by H.

Example 2. Let $\mathcal{X} = \{1, 2, 3, 4, 5\}$. Let $h_1 = \{1, 2, 3\}$, $h_2 = \{2, 4, 5\}$, $h_3 = \{3, 4\}$, $h_4 = \{1, 2, 5\}$, $h_5 = \{1, 3, 5\}$ and $h_6 = \{5\}$.

One can check that H shatters subset $S = \{2, 4\}$, so $VC(H) \ge 2$. In order to shatter a subset of size 3, you need at least $8 = 2^3$ hypotheses, so VC(H) < 3. Therefore, VC(H) = 2.

Also, we just proved $VC(H) \leq \log_2 |H|$.

Example 3. Let $\mathcal{X} = \mathbb{R}$ and H = all closed intervals [a, b]. We will show that VC(H) = 2. Given any subset $S \subseteq \mathcal{R}$ of size 2, say $\{c, d\}$. We can choose [c, d], [c, c], [d, d], [c - 2, c - 1] to shatter $\{c, d\}$, $\{c\}$, $\{d\}$ and \emptyset , respectively. This proved $VC(H) \geq 2$. However, if one has 3 points $S = \{c, d, e\}$ where c < d < e, the subset $T = \{c, e\}$ cannot be shattered by any interval. So VC(H) < 3 and VC(H) = 2. Note that the family of all intervals is an infinite hypothesis class, and yet it has finite VC-dimension.

1.2 VC-Dimension as a Lower Bound

In this section, we lower bound learnability by VC-dimension.

Theorem 4. Let H be any hypothesis class with VC(H) = d. Then any PAC-learner must use at least $\Omega(\frac{d}{\epsilon})$ samples.

Proof. As a warm-up, we would prove this for constant ϵ and δ . As VC(H) = d, let $S = \{x^1, x^2, \dots, x^d\} \subseteq \mathcal{X}$ be shattered by H. Let D be the uniform distribution over S. Suppose our learner A uses only $\frac{d}{2}$ samples, then A knows at most $\frac{d}{2}$ values of $f(x^i)$ where f is the target function. Let $H_S = \{h_1, h_2, \dots, h_{2^d}\}$ be the 2^d functions that shatter S. Let \mathcal{P} be the uniform distribution over H_S . Suppose that the target function f is drawn from \mathcal{P} , it would be hard for A to learn.

Fix any sample T of size d/2, suppose A output h_T . As there are at least d/2 unseen points from S, no matter how the (random) target function labels them A would still output the same hypothesis. So on the unseen half of S, any algorithm would make at least d/4 mistakes in expectation. Then $E[error(h)] \ge \frac{1}{4}$, thus by Markov's inequality $\Pr[error(h) < \frac{1}{8}] \le \frac{6}{7}$.

It turns out that VC-dimension exactly characterizes learnability, whether the hypothesis class is infinite or not.

Theorem 5. The following statements are equivalent to binary classification.

- 1. VC(H) = d;
- 2. *H* is PAC-learnable with $\frac{1}{\epsilon}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})$ samples;
- 3. *H* is agnostically PAC-learnable with $\frac{1}{\epsilon^2}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})$ samples;
- 4. H admits uniform convergence with $\frac{1}{\epsilon^2}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})$ samples.

1.3 VC-dimension as an Upper bound

Consider $S \subseteq \mathcal{X}$, let $\pi_H(S) = \{h \cap S : h \in H\}$, which is equal to the set of subsets of S induced by H.

Example 6. Let $\mathcal{X} = \mathbb{R}$, $H = all intervals and <math>S = \{1, 2, 3\}$. $\pi_H(S) = 2^S - \{\{1, 3\}\}$

We are usually interested in the size of $\pi_H(S)$ rather than the set $\pi_H(S)$ itself.

Definition 7. The growth function $\pi_H(m) := \max_{S \subseteq X: |S|=m} |\pi_H(S)|$.

It is easy to see that H shatters $S \Leftrightarrow |\pi_H(S)| = 2^{|S|}$, so VC(H) = largest m such that $\pi_H(m) = 2^m$. In the worst case, the growth function $\pi_H(m)$ can grow exponentially in m, where $\pi_H(S)$ contains all possible subsets of S. However, with small VC-dimension, the growth function would grow only polynomially after a certain point. In particular, we have the following lemma.

2 RADEMACHER COMPLEXITY

Lemma 8 (Sauer's Lemma). If VC(H) = d, then

$$\pi_H(m) = \begin{cases} 2^m & \text{if } m \le d\\ O(m^d) & \text{otherwise} \end{cases}$$
(3)

In most cases, whenever union bound is applied over a set of hypothesis, one can replace it by a union bound over $\pi_H(m)$ many hypotheses, resulting in smaller sample complexity.

2 Rademacher Complexity

Recall the definition of a representative sample.

Definition 9. A sample $S = \{z_1, z_2, \dots, z_m\}$ is ϵ -representative (w.r.t domain \mathcal{Z} , hypothesis class H and loss function l(h, z)) if

$$\sup_{h \in H} |L_D(h) - L_S(h)| \le \epsilon, \tag{4}$$

where $L_D(h) = E_{z \sim D}[l(h, z)]$ and $L_S(h) = E_{z \sim \mathcal{U}(S)}[l(h, z)]$ ($\mathcal{U}(S)$ is the uniform distribution over S).

For each hypothesis h, we can rewrite $l(h, z) = f_h(z)$ and $f_h : \mathbb{Z} \to \mathbb{R}$. Let $F = \{f_h : h \in H\}$. Then

$$Rep_D(F,S) = \sup_{f \in F} |L_D(f) - L_S(f)|.$$
(5)

The problem is that we don't know what the true distribution D is, so we can split the training samples into 2 equal-size sets S_1 and S_2 .

$$Rep_D(F,S) \approx \sup_{f \in F} |L_{S_1}(f) - L_{S_2}(f)| = \frac{2}{m} \sum_{i=1}^m \sigma_i f(z_i),$$
(6)

where $\sigma_i = +1$ if $i \in S_1$ and $\sigma_i = -1$ otherwise.

Inspired by this observation, the Rademacher complexity of F (w.r.t sample S) is defined as

$$R_S(F) = \frac{1}{m} E_{\sigma_i}[\sup_{f \in F} \sum_{i=1}^m \sigma_i f(z_i)], \qquad (7)$$

where each σ_i is an independent $\{-1, 1\}$ coin flip. The next lemma shows that the rate of uniform convergence is governed by Rademacher complexity.

Lemma 10.

$$E_{S \sim D^m}[Rep_D(F,S)] \le 2E_{S \sim D^m}[R_S(F)] \tag{8}$$

As uniform convergence guarantees learnability of ERM, this implies an upper bound on the error of ERM learner.

3 Unsupervised Learning

In this section, we introduced an important unsupervised learning problem called 'density estimation'.

Definition 11. Let F be a family of probability distribution. Given i.i.d samples from an unknown distribution $p \in F$, output $h \in F$ so that h is 'close' to p with high probability.

We have been vague about what 'closeness' means in the above definition and different notions of closeness will lead to different density-estimation problems.

3.1 Most basic setting

Here we consider what might be the most simple density estimation problem: learning discrete distribution under total variation distance.

Let F be the family of all distribution over [n]. The total variation distance is defined as $d_{\text{TV}}(p,q) = \max_{A \subseteq S} |p(A) - q(A)| = \frac{1}{2} ||p - 1||_1$.

Similar to the Emprical Risk Minimization learner, we can output the empirical histogram. In particular, let $h_S(i) = \frac{|\{j \in [m]: s_j = i\}|}{m}$. Next we will discuss the performance of this empirical-histogram learner.

Theorem 12. Learning a discrete distribution over [n] requires at least O(n) samples.

Theorem 13. Let h_S be the histogram for sample S and $m \ge O(\frac{n+\log \frac{1}{\delta}}{\epsilon^2})$. Then with high probability, $d_{TV}(h_S, p) \le \epsilon$.

Proof. To upper bound the total variation distance between p and h_S , one only needs to upper bound $|p(A) - h_S(A)|$ simultaneously for all $A \subseteq [n]$.

Fix an arbitrary $A \subseteq [n]$, one can use Hoeffding bound to prove $\Pr[|p(A) - h_S(A)| > \epsilon] \le \frac{\delta}{2^n}$ when $m \ge O(\frac{n + \log \frac{1}{\delta}}{\epsilon^2})$. The proof follows from applying union bound over all 2^n possible subsets.