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1 Examples of Mechanism Design Problems

Example 1: Single Item Auctions.
There is a single item for sale and there are n players (i.e. bidders) competing for the
item. Player i values the item at vi, which is private data (a.k.a., private type) of player
i. The outcome of the game is the choice of a winning player, and payment from each
player. The utility of a player for an outcome is his value for the outcome minus his
payment. The key thing here is that you as the principle get to design the rule of the
game to yield desired equilibrium outcomes (e.g., maximizing welfare or the seller’s
revenue). This is why mechanism design is also sometimes called reverse game theory.

One example of mechanisms is the first price auction. That is, every bidder is asked
to submit their bid for the item. The bidder with the highest bid wins the item and
pays his bid. Another example is the second-price auction (a.k.a. Vickrey auction), in
which every bidder is asked to submit their bid for the item, and the bidder with the
highest bid wins the item and pays the second highest bid.

Example 2: Combinatorial Auctions.
This is a generalization of the previous single item auctions and considers the problem
of selling a set T of m items. Player i’s private utility function is a mapping vi : 2T → R;
vi(S) is player i’s value for the bundle S ⊆ T .

One goal for mechanism design in this setting is to maximize the welfare. Particularly,
the goal is to partition ground set T into S1, ..., Sn to maximize ∑n

i=1 vi(S).

Example 3: Public Project
There are n players. Player i has private value vi for building certain public project
(e.g., a bridge). The outcome of the problem is the choice of whether or not to build
the project and payment from each player covering the cost of the project if built. The
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utility of a player for an outcome is his value for the project if built, minus his payment.
The goal is, e.g., to build the project if sum of values exceeds its cost (i.e., maximizing
welfare). Or the goal could also be to maximize revenue.

Example: Voting
Our final example considers voting. Here, there are n players and m candidates running
for office. Each player has a total (or partial) preference order on the m candidates.
The outcome of the problem is the choice of the winning candidate. The goal is usually
to select the candidate that makes the most people “happy”, though the happiness here
could be defined from various perspectives.

2 The General Mechanism Design Problem
The general mechanism design setting (prior free) is given by a tuple (N,X , T, u), where

• N is a finite set of players. Denote N = {1, ..., n} and n = |N |.

• X is a set of outcomes.

• T = T1 × ...Tn, where Ti is the set of types of player i. Each ~t = (t1, ..., tn) ∈ T is
called a type profile. The private type ti encodes what player i knows but the
rest of the world does not know.

• u = (u1, ...un), where ui : Ti ×X → R is the utility function of player i.

The problem is in Bayesian setting if the above definition is supplement with a
common prior belief D over T .

As an example, the above definition instantiated in the single-item auction setting is
as follows. The outcome is a choice x ∈ {e1, ..., en} of the winning player and payment
p1, ..., pn from each player. Here, ei is the i’th basis vector (i.e. only the i’th entry has
value 1) denoteing that player i wins the item. The private type of player i is her value
vi ∈ R+ and player i’s utility is ui(vi, x) = vixi − pi.

The above mechanism design setting can be viewed more abstractly as follows: a
principal wants to communicate with players and aggregate their private data (types)
into a choice of outcome. Such aggregation is captured by the social choice function.

Definition 1 (Social Choice Function). A social choice function f : T → X is a map
from type profiles to outcomes.
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There are different rules for choosing a social choice function. The following two
are typical:

• The principle may have a particular social choice function in mind (e.g. majority
voting, utilitarian allocation of a single item, etc).

• The principle has an objective function o : T × X → R, and want f(T ) to
(approximately) maximize o(T, f(T )). To optimize the objective function in the
worst case [in expectation] over T is called prior free [Bayesian] mechanism design.

For example, in single-item allocation problems, the objective could be the welfare
welfare(v, (x, p)) = ∑

i vixi or the revenue revenue(v, (x, p)) = ∑
i pi. Revenue is

usually over expectation since point-wise revenue-optimal mechanism usually does not
exist.

To perform the aggregation, the principal needs to run a protocol, which is called a
mechanism.

Definition 2. A mechanism is a pair (A, g), where

• A = A1 × ...An, where Ai is the set of possible actions (e.g., bids in auction
settings) of player i in the protocol. A is the set of action profiles.

• g : A→ X is an outcome function.

The resulting game of mechanism design is a game of incomplete information where
when players play a ∈ A, player i’s utility is ui(ti, g(a)) when his private type is ti.

As an example, in the first price auction, Ai = R contains all the possible bids that
a player can submit and g(b1, ..., bn) = (x, p) where xi∗ = 1, pi∗ = bi∗ for i∗ = arg maxi bi

and xi = 0, pi = 0 for all i 6= i∗.
We say a mechanism (A, g) implements the social choice function f : T → X

in dominant-strategy/Bayes-Nash equilibrium if: (1) there is a strategy profile s =
(s1, ..., sn) with si : Ti → Ai such that si : Ti → Ai is a dominant-strategy/Bayes-Nash
equilibrium in the resulting incomplete information game; (2) g(s1(t1), s2(t2), ..., sn(tn)) =
f(t1, t2, ..., tn) for all t ∈ T

For example, in a single-item auction with two players whose valuation is drawn
i.i.d. from U [0, 1], the first price auction implements in BNE the following social choice
function: give the item to the player with the highest value and charges him half his
value (see the proof as a simple exercise in Lecture 3).

On the other hand, the Vickrey auction implements in DSE the following social
choice function: give the item to the player with the highest value and charges him
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the second highest value. This is because in Vickrey auction, the dominant bidding
strategy for each player is to bid her true valuation.

The task of mechanism design is the follows (defined abstractly here, a more detailed
version will be provided later): Given a notion of a “good” social choice function from
T to X , find: (a) a mechanism which consists of an action space A = (A1, ..., An),
an outcome function g : A→ X ; (b) an equilibrium (s1, ..., sn) of the resulting game
of the mechanism, with the goal of implementing a “good” social choice function
f(t1, ..., tn) = g(s1(t1), ..., sn(tn)).

This task seems like a complicated, multivariate search problem. Luckily, the
revelation principle reduces the search space to just g : T → X .

3 The Revelation Principle and Incentive Compat-
ibility

Definition 3 (Direct Revelation). A mechanism (A, g) is a direct revelation mechanism
if Ai = Ti for all i.

That is, in a direct revelation mechanism, players simultaneously report types (not
necessarily truthfully) to the mechanism. The outcome function in such mechanisms
can simply be described via the function g : T → X .

Definition 4 (Incentive-Compatibility). A direct-revelation mechanism is dominant-
strategy/Bayesian incentive-compatible (a.k.a truthful) if the truth-telling, i.e., reporting
the true type, is a dominant-strategy/Bayes-Nash equilibrium in the resulting incomplete-
information game.

Note that a direct revelation incentive-compatible mechanism implements its out-
come function g : T → X , by definition. Therefore, the social choice function is the
mechanism!!

The following are a few illustrative examples.

• Vickrey Auction is a direct revelation dominant-strategy incentive-compatible
mechanism.

• First Price Auction is a direct revelation mechanism but is not Bayesian incen-
tive compatible (since player will bid half of their true valuation at equilibrium).
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• Posted price auction is the auction that simply posts a fixed price to players in
sequence until one accepts the price. This auction format is not direct revelation,
thus incentive compatibility is also not well-defined in this case.

[Revelation Principle] If there is a mechanism implementing social choice function f
in dominant-strategy/Bayes-Nash equilibrium, then there is a direct revelation, dominant-
strategy/Bayesian incentive-compatible mechanism implementing f .

This simplifies the task of mechanism design.
The (simplified) task of mechanism design is the follows: Given a notion of a
“good” social choice function from T to X , find such a social choice function f : T → X
such that truth-telling is an equilibrium in the following mechanism: solicit reports t̃i ∈
Ti from each player i (simultaneous, sealed bid) and then choose outcome f(t̃1, ..., t̃n).

Let us consider again the single-item auction with 2 players whose valuation is
drawn i.i.d from U [0, 1]. In the first-price auction, a principle solicits bids b1, b2, and
then gives the item to the highest bidder and charges him his bid. Recall that the
strategies where each player reports half their value forms a Bayesian Nash equilibrium
(BNE). In other words, when player 1 knows his value v1, and faces player 2 who is
bidding uniformly from [0, 1/2], he maximizes his expected utility (v1 − b1) · 2b1 by
bidding b1 = v1/2. And vice versa. Therefore, the first price auction implements in
BNE the social choice function which gives the item to the highest bidder, and charges
him half his bid.

This shows that first price auction is not an incentive-compatible mechanism. Nev-
ertheless, we can modify it to become an incentive-compatible mechanism. Intuitively,
we will integrates the player’s strategic behavior into the mechanism and lie “on behalf
of the player”, so that the player does not need to lie any more.

Definition 5 (modified first-price Auction for two bidders, i.i.d. U(0,1) valuations).

1. Solicit bids b1, b2.

2. Give the item to the highest bidder, charging him half his bid (equivalently,
simulate a first price auction where bidders bid b1/2, b2/2).

Claim 6. Truth-telling is a BNE in the modified first-price auction.

Proof. Assume player 2 bids truthfully. Player 1 faces a (simulated) first price auction
where his own bid is halved before participating, and player 2 bids uniformly from [0,
1/2]. To respond optimally in the simulation, he bids b1 = v1 and lets the mechanism
halve his bid on his behalf.
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Therefore, the modified first price auction implements the same social-choice function
in equilibrium, but is truthful.

Proof of the Revelation Principle in Bayesian Settings
Consider any mechanism (A, g), with BNE strategies si : Ti → Ai, that implements
social choice function f(t1, ..., tn) = g(s1(t1), ..., sn(tn)) in BNE. For all i and ti, action
si(ti) maximizes player i’s expected utility when other players are playing s−i(t−i) for
t−i ∼ D|ti.

Now we consider the following modified mechanism: (1) Solicit reported types
t̃1, ..., t̃n; (2) Choose outcome f(t̃1, ..., t̃n) = g(s1(t̃1), ..., sn(t̃n)) The second step of the
mechanism is equivalently to simulating (A, g) when players play si(ti). Assume all
players other than i report truthfully. Then when i’s type is ti, other players play
s−i(t−i) for t−i ∼ D|ti in the simulated mechanism. As stated above, his best response
in simulation is si(ti). The mechanism transforms his bid by applying si, so player i’s
best response is to bid his true type ti.

Note, the proof for Dominant strategy equilibrium case is similar.

4 Mechanisms with Money: The Quasilinear Util-
ity Model

To make much of modern mechanism design possible, we assume that

1. The set of outcomes has a particular structure: every outcome includes a payment
to or from each player

2. Player utilities vary linearly with their payment.

Examples include single-item allocation, public project. Notice that single-item
allocation without money and voting do not fall in this setting.

Definition 7 (The Quasi-linear Setting). Formally, X = Ω× Rn.

• Ω is the set of allocations

• For (ω, p1, ..., pn) ∈ X , pi is the payment from (or to if pi < 0) player i.

and player i’s utility function ui : Ti × X → R takes the form ui(ti, (ω, p1, ..., pn)) =
vi(ti, ω)−pi for some valuation function ui. In this case, we say players have quasilinear
utilities.
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For example, in single item allocation problems, Ω = {e1, ..., en} and ui(ti, (ω, p1, ..., pn)) =
tiwi − pi.

Using the revelation principle, we can further simplify the task of mechanism design
in quasilinear settings, as follows.

Definition 8 (Mechanism Design in Quasilinear Settings). Find a “good” allocation
rule f : T → Ω and payment rule p : T → Rn such that the following mechanism is
incentive-compatible:

1. Solicit reports t̃i ∈ Ti from each player i (simultaneous, sealed bid);

2. Choose allocation f(t̃);

3. Charge player i payment pi(t̃).

We will think of the mechanism as the pair (f, p). Sometimes, we abuse notation and
think of type ti directly as the valuation vi : Ω→ R. In this case incentive compatibility
can be simplified.

Definition 9. [Incentive-compatibility (dominant strategy, quasilinear settings)] A
mechanism (f, p) is dominant-strategy truthful if, for every player i, true type ti,
possible mis-report t̃i, and reported types t−i of the others, we have

vi(ti, f(t))− pi(t) ≥ vi(ti, f(t̃i, t−i))− pi(t̃i, t−i).

If (f, p) has randomness, add expectation sign to both sides of the above inequality.

The notion for Bayesian Nash equilibrium is defined similarly.

Definition 10. [Incentive-compatibility (Bayesian, quasilinear settings)] A mechanism
(f, p) is dominant-strategy truthful if, for every player i, true type ti, possible mis-report
t̃i, the following holds in expectation over t−i ∼ D|ti:

E
[
vi(ti, f(t))− pi(t)

]
≥ E

[
vi(ti, f(t̃i, t−i))− pi(t̃i, t−i)

]
.

The following are some examples.

1. Vickrey auction: the allocation rule maps b1, ..., bn to ei∗ for i∗ = arg maxi bi

and the payment rule maps b1, ..., bn to p1, ..., pn where pi∗ = b(2), and pi = 0 for
i 6= i∗. This auction is dominant-strategy truthful.
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2. First Price Auction: the allocation rule maps b1, ..., bn to ei∗ for i∗ = arg maxi bi

and the payment rule maps b1, ..., bn to p1, ..., pn where pi∗ = b(1), and pi = 0 for
i 6= i∗. For two players with valuations drawn i.i.d from U [0, 1], players bidding
half their value is a BNE. This auction is not Bayesian incentive compatible.
Modified First Price Auction: the allocation rule maps b1, ..., bn to ei∗ for
i∗ = arg maxi bi and the payment rule maps b1, ..., bn to p1, ..., pn where pi∗ = b(1)/2,
and pi = 0 for i 6= i∗. For two players with valuations drawn i.i.d from U [0, 1],
this auction is Bayesian incentive compatible.

5 Maximizing Welfare: The VCG Mechanism
In quasilinear setting, a simple mechanism is DSE and maximizes the social welfare P∑

i

vi(ω) (1)

Vickrey Clarke Groves (VCG) Mechanism:

• Solicit type vi from each player i

• Choose allocation
ω∗ ∈ argmaxω∈Ω

∑
i

vi(ω) (2)

• Charge each player i payment

pi(v) = hi(v−i)−
∑
j 6=i

vj(ω∗) (3)

Allocation rule maximizes welfare exactly over Ω. Player i is paid the reported value of
others for the chosen allocation, less a pivot term hi(v−i) independent of his own bid,
and in most cases the ”right” pivot term is maxω∈Ω

∑
j 6=i vj(ω).Payment pi(v) is player

i’s is externality: 0 ≤ pi(v) ≤ vi(ω∗)

Theorem: VCG is dominant-strategy truthful.
Proof:

• Fix reports v−i of players other than i.

• Assume player i’s true valuation is vi
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• Player i’s utility when reporting v̂i is given by:
ui(v̂i) = vi(ω∗) + ∑

j 6=i vj(ω∗)− hi(v−i)

where ω∗ ∈ argmaxω∈Ω(v̂i(ω) + ∑
j 6=i vj(ω))

• Since the pivot term is independent of player i’s bid, maximizing ui
ˆ(vi) is equivalent

to maximizing: vi(ω∗) + ∑
j 6=i vj(ω∗)

• Setting v̂i = vi then maximizes the above expression.

Interpretation: allow the mechanism to optimize player i’s utility on his behalf.
Example: Single-item Allocation:

• Welfare maximizing outcome: Allocate to player with highest value

• Externality of i: second-highest value if i wins, 0 otherwise.

VCG is the second-price (Vickrey) auction in the special case of single-item allocation.

6 Maximizing Revenue
Maximizing revenue is well understood in the case of single-parameter problems:

Single-parameter problem (informally):

• There is a single homogenous resource.

• Constraints on how much of the resource each player can get.

• Each player’s type is his ”value (or cost) per unit resource.”

Canonical example: single-item allocation:

• Resource: one unit of item.

• Outcomes Ω: vectors (x1, ..., xn) with xi ≥ 0 and ∑
i xi ≤ 1 where : xi is

probability player i gets item

• Player i’s type is vi ≥ 0 (value for item)
ui(x, p) = vixi − pi
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Makes most sense in Bayesian setting with independent types (prior F = F1× .....×
Fnon(v1, ......., vn))

Bayesian Revenue Maximization (Single Parameter):
Given prior F on type profiles T ⊆ Rn , find allocation rule x : T → Ω(recallΩ ⊆ Rn)

and payment rules p : T →⊆ Rnsuch that

• (x, p) is a BIC direct revelation mechanism Bidding bi = vi maximizes Evi∼F−i
[vixi(bi, v−i)− pi(bi, v−i)]

• Rev(x, p) = Ev∼F
∑

i pi(v) is as large as possible.

Myerson characterized the optimal solution for single-item auctions, and it generalizes
easily to single-parameter environments1.

Stages of a Bayesian Game
Stages of a Bayesian game of mechanism design:

• Ex-ante: Before players learn their types

• Interim: A player learns his type, but not the types of others.

• Ex-post All player types are revealed.

Interim stage is when players make decisions.

• The interim allocation rule for player i tells us what the probability of winning
(expected amount of resource) is as a function of player i’s bid, in expectation
over other player’s truthful reports. x̄i(bi) = Ev−i∼F−i

[xi(bi, v−i)]

• Similarly, the interim payment rule. p̄i(bi) = Ev−i∼F−i
[pi(bi, v−i)]

• BIC: Bidding bi = vi maximizes vix̄i(bi) - p̄i(bi)
If BIC, then Rev(x, p) = ∑

i Evi∼Fi
p̄(vi)

Assume two players drawn independently from U [0, 1].
Vickrey Auction
x̄i(vi) = vi

p̄i(vi) = v2
i /2

First Price Auction
x̄i(vi) = vi

p̄i(vi) = v2
i /2

From now on we will write xi(bi) = x̄ibi to avoid cumbersome notation
1Think of single-item auctions in upcoming discussion
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Myerson’s Monotonicity Lemma:
Consider a mechanism for a single-parameter problem in a Bayesian setting where

player values are independent. A direct-revelation mechanism with interim allocation
rule x and payment rule p is BIC if and only if for each player i:

• xi(bi) is a monotone non-decreasing function of bi

• pi(bi) is an integral of bi dxi. Specifically, when pi(0) = 0 then pi(bi) = bi. xi(bi) -∫ bi
b=0 xi(b)db

Interpretation of Myerson’s Monotonicity Lemma:
The higher a player bids, the higher the probability of winning. For each additional

sliver ε of winning probability, pays at a rate equal to the minimum bid needed to
acquire that sliver .Recall: second price auction2.

Corollaries of Myerson’s Monotonicity Lemma:
Corollaries:

• Interim allocation rule uniquely determines interim payment rule.

• Expected revenue depends only on the allocation rule

Theorem (Revenue Equivalence):
Any two auctions with the same interim allocation rule in BNE have the same

expected revenue in the same BNE.
Revenue as Virtual Welfare:

Define the virtual value of player i as a function of his value vi

2See readings for proof of Myerson’s monotoncity Lemma
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φi(vi) = vi - 1−Fi(vi)
fi(vi)

Myerson’s Virtual Welfare Lemma:
Consider a BIC mechanism M with interim allocation rule x and payment rule p,

and assume that pi(0) = 0 for all i. The expected revenue of M is equal to the expected
virtual welfare served.∑

i Evi∼Fi
[φ(vi)x(vi)]

In single-item auction, this is the expected virtual value of the winning bidder.
Proof

Myerson’s Revenue-Optimal Auction:

• Solicit player values.

• If at least one player has nonnegative virtual value, then give the item to the
player i with the highest virtual value φi(vi) ≥ 0. Otherwise, nobody gets the
item.

• Charge the minimum bid needed to win φ−1(max(0, (maxj 6=iφj(vj)))).
Check: satisfies Myerson’s condition on interim payment.

Observations
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• The allocation rule maximizes virtual welfare point-wise.

• Therefore, it maximizes expected virtual welfare over all allocation rules.

• By Myerson’s virtual welfare Lemma, revenue is at least that of any BIC mecha-
nism (since any BIC mechanism’s revenue is equal to expected virtual welfare).

A Wrinkle:
If the allocation rule of the mechanism we just defined is non-monotone, it would

still have revenue at least that of the optimal BIC mechanism if players happened to
report truthfully, but it wouldn’t be truthful itself. Fortunately, the virtual welfare
maximization is monotone when the distributions are regular: φi(v) = v − 1−Fi(v)

fi(v)
is nondecreasing in v. We can conclude that when distributions are regular, the
VV maximizing auction (aka Myerson’s optimal auction) is the revenue-optimal BIC
mechanism. Most natural distributions are regular (Gaussian, uniform, exp, etc).
Additionally, it can be extended to non-regular distributions via ironing.

Thoughts:
Myerson’s optimal auction is noteworthy for many reasons:

• Matches practical experience: when players i.i.d regular, optimal auction is
Vickrey with reserve price φ−1(0).

• Applies to single parameter problems more generally

• Revenue maximization reduces to welfare maximization for these problems

• The optimal BIC mechanism just so happens to be DSIC and deterministic!!
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