CSCI699: Topics in Learning & Game Theory
Lecture 5

Lecturer: Shaddin Dughmi Scribes: Umang Gupta € Anastasia Voloshinov

In this lecture, we will give a brief introduction to online learning and then go
through some online learning algorithms. Our discussion today will be in a non-game
theoretic setting but we will show implications for games in the next lecture.

1 Online Learning

In online learning we have a single agent versus an adversarial world. We consider
T time steps, where at each step t = 1...T, the agent chooses 1 of n actions. For
example, we might consider a scenario where the time steps are days and each day you
choose one of n routes that you will take to work.

The cost of an action at a time ¢ is determined by an adversary. We will denote the
cost at time ¢ of action a as ¢;(1) = [—1,1]. When ¢/(a) is negative, we can think of
this as utility or reward and when it is positive it is dis-utility or penalty.

The adversary has access to the agent’s algorithm, the history of the agents actions
up to time ¢ — 1, and the distribution p; on the actions. So, the adversary is quite
strong since it can use all of this information to tailor its ¢;(a). The only leverage that
the agent has is that the agent gets to choose what action they will take at time .

1.1 Learning Setup (Perspective of Universe)

In this section, we describe the learning setup mathematically. This is the procedure
that universe runs.
At each time step t = 1...T following occurs:

1. The agent picks a distribution p; over A = {a; ...a,}.
2. The adversary picks the cost vector ¢; : A — [—1,1].
3. An action a; ~ p; is chosen and agent incurs loss ¢;(az).

4. The agent learns ¢; for use in later time steps.

1 ONLINE LEARNING 2

In this procedure, an agent gets to pick its distribution over the actions. Then, the
adversary chooses the cost seeing this distribution. After playing an action, the agent
learns the cost function and then can reflect on the outcome to use the knowledge in
future time steps.

1.2 General Online Learning Algorithm
1.2.1 Perspective of Agent

In this section, we present the structure of a general online learning algorithm.

Algorithm 1 General Online Algorithm for agent
Input: History up to time ¢t — 1. This includes the following information:
c1...¢1: A= [—1,1]
pr-..p—1 € A(A)
a;...aq1 €A
Output: Distribution over actions that you are going to take, p, € A(A)

In reality, we only really need c¢; ...c;,_; to make a decision about our new distribu-
tion, it turns out that the other information is not really helpful.

Note that after each round, we learn the costs of all the actions including those that
we did not choose. This is a full-information online learning setup.

1.2.2 Perspective of the Adversary

In this section, we look at the online learning algorithm from the perspective of the
adversary. We assume that the adversary has no computational limitations.

Algorithm 2 General Online Algorithm for adversary
Input: Everything except the randomness used to draw a; ~ p;. More specifically,
this includes the following:
History up tot — 1
The distribution p;, but not the draw from the distribution
The algorithm used by the agent
Output: ¢, : A — [—1,1]

2 BENCHMARKS 3

2 Benchmarks

The Objective of Online Learning: The objective is to minimize the expected cost
per unit time incurred by the agent as compared to a suitable benchmark.

Naturally, this leads to the question of what benchmark is suitable. We shall explore
one failed benchmark in this section and then the benchmark that we will end up using.
First however, we will formalize our notion of cost to be able to define the objective.

2.1 Formalizing Cost
We will define the cost of the algorithm at time step ¢ as

costa(t) = ci(ay).

The total cost of the algorithm will be defined as the cumulative cost over all T’
rounds as

T

cost gy = Z ci(ay).

t=1

Given that we are randomizing, we care about the expected cost. So, we will define

the expected cost at time t as the summation over all actions of the product of the

probability that they choose action a, and the cost of choosing action a. We denote
this by -

Elcostqy(t) Z pe(a

Note that by expressing the expectation in this manner, we are assuming that the
cost and the draw from the distribution are independent.

For the expected total cost, we sum up the expected cost at time ¢ over all values
of t to get the following:

T n
Elcostq,| = Z Z

Our Goal: To make E[costy,] small, no matter how clever the adversary is, as
compared to a benchmark. Formally, we want

1
lz'mTHoo?(E [costay| — Ebenchmark]) = 0

2 BENCHMARKS 4

If this holds, we say that the algorithm has no regret or vanishing regret with
respect to the benchmark.

Now that we have defined cost, we will first look at a unrealistic example of a
benchmark and then the actual benchmark we will be using.

2.2 Best Action Sequence in Hindsight Benchmark (Unrealis-
tic)

For our unrealistic benchmark example, we will define the benchmark as the cost of
the best action sequence in hindsight. Thus, you will look at the expected cost of your
algorithm compared to an omniscient algorithm that can always choose the best action
tailored to the adversary.

Formally, this value will be 37_, min,c4 ¢;(a;). We can think of this value as how
well you could do if you hacked your adversary and saw their cost assumptions. We
can already see that this is not attainable because you do not have access to ¢; before
having to choose a;.

Claim 1. There is no online learning algorithm achieving vanishing regret with respect
to the best action sequence in hindsight.

Proof. The clever adversary can set ¢;(a) = 0 for the action a that minimizes p;(a) and
ci(a) = 1 otherwise. This will give your lowest probability action (which has probability
at most %) a cost of 0, and the actions that you have at least a ”T_l probability of
choosing a cost of 1.

In this case, the benchmark that we defined would be 0, since for each action it
would make a choice that gets 0 in cost.

However, the expected value of the algorithm would be

Elcostqy| = zt:%:pt(a)ct(a) > (1-— l)T

n

Since the inner sum has 0 for the lowest probability action, and 1 for everything
else. Note that probability of least possible action will be at most %
Thus, compared to the benchmark, we see that

Elcostag] — benchmark) 1

T n
So, with at least two actions (which is the simplest non-trivial case), we see that
the regret does not shrink with each time step.
This benchmark was very unrealistic, so we cannot even hope to get close to it.
Next, we are going to define a better benchmark that we will use.]

3 FOLLOW THE LEADER ALGORITHM 5

2.3 Best Fixed Action in Hindsight Benchmark

In this section, we will define the benchmark that we will be using. It was noted that
this benchmark has connections to equilibria, which we will discuss next lecture.

The benchmark that we will be using is the best fixed action in hindsight. Intuitively,
our algorithm should learn over time which fixed action is better. Formally, we define
this benchmark as mingea S5 ¢/(a).

Using our new benchmark, we will now define external regret.

Definition 2. The external regret of an online learning algorithm is defined as

1 T T
Regretl, = —(>_ Elcostagy(t)] —min Y c¢(a))
T acA P

t=1
Thus, we say that an algorithm has vanishing external regret (or no external regret)
if
RegretaTlg 1% 0 Vadversaries, Ve, (a)

Thus, no matter how clever the adversary, the average cost that you incur with time is
only vanishingly bigger than this benchmark.

3 Follow the Leader Algorithm

In this section, we make our first attempt toward an algorithm with vanishing external
regret. However, this algorithm will not be successful.
The algorithm called Follow the Leader (FTL) works as follows:

Algorithm 3 Follow the Leader
Input: cy(a) Yae At =1...t—1
Output: a; € argmin,_, Y5 ey (a).

Intuitively, this algorithm chooses an action that minimizes the historical cost up
to time £ — 1, so an action with the minimum total cost so far.

However, this algorithm does not have vanishing external regret. In fact, we can
state a stronger theorem that will include this algorithm.

Theorem 3. No deterministic algorithm has vanishing external regret.

4 MULTIPLICATIVE WEIGHTS ALGORITHM 6

Proof. Recall that the adversary has access to the same history as the algorithm. Thus,
the adversary knows your deterministic algorithm, so the adversary can simulate your
algorithm, determine a;, and use this information to set the cost. The adversary will
thus set ¢;(a;) = 1 and ¢;(a) = 0 for a # a;. The cost of every action you choose will be
1, and the cost of every other action will be 0. Thus, costglg =T.

Now, we consider how well the benchmark would do in this case. There must be at
least one action, a*, that you choose with the least frequency, at frequency at most %
Thus, the minimum cost of the action in hindsight would be

: A
min Y ¢(a) < Et:ct(a) < N

a€A 7

Thus, the regret of the algorithm is greater than or equal to 1 — %

3.1 Ideas for improving FTL

We want to tweak FTL so that we balance historically good actions (exploitation) with
being unpredictable (exploration) and giving poor performing actions another chance.
FTL is an algorithm that is an example of exploitation because it solely picks historically
good actions. On the other hand, an algorithm that would be just exploration would
be choosing actions uniformly at random every time, ignoring history.

The intuition for the algorithm that we will propose in the next section is to choose
an action randomly, where historically better actions are exponentially more likely
than historically poor performing actions to be chosen. This algorithm will maintain a
weight for each action and multiply this weight by 1 — ec;(a) for each time step ¢. The
higher the cost, the more the weight of the action decreases. If the cost is small, the
weight will not change much, and if the cost is negative, then the weight will go up.
We assume that € € (0,1/2), and it is referred to as the "learning rate”, which will be
optimized later. Intuitively, the larger the value ¢, the more sensitive you are to what
is happening, so the closest you are to FTL. On the other hand, if ¢ = 0, then you are
not learning at all and are just uniformly randomizing.

4 Multiplicative Weights Algorithm

Recall, the main ideas for improving FTL were:

e Maintain weight for each action a and multiply this weight by w, = (1 — ec;(a))
at each time stamp

4 MULTIPLICATIVE WEIGHTS ALGORITHM 7

e Choose action a with p; o< w,
e ¢ € (0,3) is the learning rate

Based on these ideas, we present Algorithm [4] the Multiplicative Weights Algorithm.

Algorithm 4 Multiplicative Weights Algorithm

let w;(a) be weight of action a at time i
let A={a;...a,} be the set of n actions
Initialize: wq(a) - 1,Va € A
fort=1tot =17 do

Wi = Yvaca wi(a)

pe(a) “’tv(j),‘v’a €A

(After learning c;)

wiy1(a) = wi(a)(1 — eci(a)) (weight update)
end for

Note that multiplication factor 1 — ec;(a) leads to exponential update in weights as
1 — ec(a) can be approximated with e=“(®) (for small €). In the multiplicative weights
algorithm note that if ¢; is more, w4 is less and hence good actions (i.e. actions with
low cost) will have more weight. Also note that if adversary decides to make one action
better than the other, it cannot do so without increasing the probability of that action.

Next we try to prove the regret bounds for Multiplicative weights algorithm. Our
motive is to develop an algorithm for online learning with sub-linear regret bounds (see
definition [2).

Let,

Wy =Y wia) (1)
VacA

be total weight at time t

1 ...cr are adversary’s choice of the cost function. Cost function can be anything
but ¢;(a) is independent of p,

wy(a)
a) = 2
pla) = ®)
Define, B
Cy = Elcosthyy] = > pila) * ci(a (3)

VacA

4 MULTIPLICATIVE WEIGHTS ALGORITHM 8

C = Elcostyw] = 2 Ci=>"Y" m(a)*c(a) (4)

t=1VacA
Next, we will present 3 lemmas (Lemmas [4H6) that will help us prove that Multi-
plicative weights is a no-external regret algorithm.

Lemma 4. W, = W,(1 — €C))

Intuitively, we can say that if the algorithm does well (p;(a) is large for a where
ci(a) is small), then the weights will stay constant, but if the algorithm performs poorly,
then the total weight of the actions is going to drop a lot. Also, W, is normalizing
denominator in p;(a).

Proof.
Wi = ZAwt—&-l(a) (By €q
= i wi(a)(1 — ecy(a)) (By algorithm
a€A
= > wia) — e) wia)ea)
acA acA
=W, — eW, aez;l w%(/,?) c(a)
=W, — W, ZApt(a)ct(a) (By eq
a€
:Wt—eWtE;(jt (By eq
=Wi(1 — EC_:S

H
Lemma 5. W, ; < ne(=<0)

Lemma [5[says that the total weight can not drop too drastically. Note that it says
weights are going to drop at a rate less than the exponential of average cost.

Proof.

Wi = Wi(1 —eCy) By lemma
< W, * €00 (1-2<e™)
< Wi eZtT=1(’ECt)
<nxeC (By eq 4} wi(a) =1)

4 MULTIPLICATIVE WEIGHTS ALGORITHM 9

]

Lemma 6. Let C* be the lowest regret with fived action i.e. C* = mingea > 1oy ¢i(a)
then, Wiy > p(—eCr =€)

The intuition behind Lemma [f] is that the total weight is going to drop at least
exponentially as the cost of best fixed action in hindsight as this will contribute
something to the weight.

Proof.
Wit = Wi(1 — eCy) (By lemma {4))

Let a* be the best action in hindsight then,

t t
C* =Y ci(ax) = mingea Y ci(a) (By definitions)
i=1 i=1
Now,
Wigr = > wiri(a) > wipr(a”) (Since weights are positive)
acA

w1 (a”) = w(a®) (1 — eci(a”)) (By weight update rule)
¢
=1x[J(1 - eci(a®))
i=1
¢ * 2.2/¢ % 2
> H A G Since, 1 —x > e "7
i=1

do(at) <t Since ¢;(a) € [-1,1]

4 MULTIPLICATIVE WEIGHTS ALGORITHM 10

Theorem 7. Multiplicative Weights algorithm is a no-external regret algorithm. In
particular, for suitable choice of €, we get

In(n)

Regrett . <2
697“6 MW > T

Note that, limp_o. Regrett ;,, — 0.
Proof.
6—60*—62T S WT+1 S ne—

<@ (By lemma [5] [6)
—eC* — €T < In(n) — eC
e(C —C*) <ln(n) + €T
Recall,

c-cCr

Regrett .. =
egTeMW T

SO,

In(n) _ |in(n)
T T +eat e = T

]

So, regret for multiplicative weights algorithm is at max 24/ % and occurs when

€= l":(rn), n = |A|. So if there are more actions, the algorithm needs to run for longer

time steps to ensure the regret is bounded.

	Online Learning
	Learning Setup (Perspective of Universe)
	General Online Learning Algorithm
	Perspective of Agent
	Perspective of the Adversary

	Benchmarks
	Formalizing Cost
	Best Action Sequence in Hindsight Benchmark (Unrealistic)
	Best Fixed Action in Hindsight Benchmark

	Follow the Leader Algorithm
	Ideas for improving FTL

	Multiplicative Weights Algorithm

