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1 No regret learning in zero-sum games
Definition 1. A 2-player game of complete information is said to be zero-sum if
U2(a1, a2) = −U1(a1, a2)∀ action profiles (a1, a2)

Such a game can be described by an n×m matrix A, where n, m are the number
of actions of P1, P2 resp. and we have,

Aij = U1(i, j) (⇒ U2(i, j) = −Aij) (1)

Example We can represent the well-known Rock-Paper-Scissor game with the
following matrix (Table 2 shows the general-sum game representation of this game.)


R P S

R 0 −1 +1
P +1 0 −1
S −1 +1 0


Next, let x ∈ ∆n, y ∈ ∆m be mixed strategies of P1, P2. Then, P1 plays his action i

with probability xi, and P2 plays his action j with probability yj, and thus P1 gets a
payoff Aij with probability xiyj. Hence, his expected payoff can be written as,

U1(x, y) =
n∑
i=1

m∑
j=1

xiyjAij = xTAy (=> U2(x, y) = −xTAy)

Recall that, by definition, (x,y) form a Nash Equilibrium iff

U1(x, y) ≥ U1(x′, y) ∀x′ & U2(x, y) ≥ U2(x, y′) ∀y′

⇒ xTAy ≥ x′TAy ∀x′ & xTAy ≤ xTAy′ ∀y′

Equivalently, we can reduce it to,

xTAy ≥ (Ay)i ∀i ∈ [n] & xTAy ≤ (xTA)j ∀j ∈ [m]

1
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Definition 2. The maximin value of A is

max
x

min
y
xTAy = max

x
min
j∈[m]

(xTA)j

Further, we call any x∗ ∈ argmaxx miny xTAy as P1’s maximin strategy.

Similarly, we also define the following:

Definition 3. The minimax value of A is

min
y

max
x

xTAy = min
y

max
i∈[n]

(Ay)i

Further, we call any y∗ ∈ argminx maxy xTAy as P2’s minimax strategy.

An interesting question that arises, is, ”Which is better, moving first or second?”.
To answer this, we first show the following result, which is also known as the weak 2nd

mover’s advantage.

Theorem 1. maximin(A) ≤ minimax(A)

Proof.

maximin(A) = max
x

min
y
xTAy

= min
y
x∗TAy (By definition of x∗ (Def. 2))

≤ x∗TAy∗ (By definition of min)
≤ max

x
xTAy∗ (By definition of max)

= min
y

max
x

xTAy (By definition of y∗ (Def. 3))

= minimax(A)

Next, we prove, that the two values are in fact equal.
Theorem 2 (Minimax Thm). maximin(A) = minimax(A)

Before proceeding with the proof of the theorem, note the following consequence of
the theorem.
Corollary 3. (x∗, y∗) is a Nash Equilibrium of the simultaneous game.
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Proof. Using Theorem 2, it follows that every inequality in the proof of Theorem 1 is,
in fact, an equality. Hence,

x∗TAy∗ = max
x

xTAy∗ & x∗TAy∗ = min
y
x∗TAy

Thus, x∗, y∗ are best responses to each other, making (x∗, y∗) a Nash Equilibrium by
definition.

Next, we present the proof of Theorem 2.

Proof. (Minimax Thm)
Consider the following setting.
- Assume that the two players play repeatedly T times where T is large.
- At each step t = 1, . . . , T , they play simultaneously: P1, P2 choose xt, yt respectively.
P1 sees all the previous iterations before choosing xt, but not see yt. Similarly, P2 sees
all the previous iterations before choosing yt, but not see xt.
- Utility of P1 at time t is xtAyt, which is also the loss of P2 at time t.
- Let U t

i = (Ayt)i be the utility of action i for P1 at time t. Similarly, let Ct
j = (xtA)j

be the cost of action j for P2 at time t.
- Each player faces an online learning problem: P1 must select xt based only on
U1
i , . . . , U

t−1
i ∀i. similarly, P2 must select yt based only on C1

j , . . . , C
t−1
j ∀j.

- Assume each uses a no-external regret algorithm (e.g. Multiplicative Weights).
- Let δ(T ) be bound on external regret.
- Let v = 1

T

T∑
t=1

xtAyt

Then, we have,

v ≥ max
i

1
T

T∑
t=1

(Ayt)i − δ(T ) (since no-ext regret)

= max
i

(
A

∑T
t=1 y

t

T

)
i

− δ(T )

≥ min
y

max
i

(Ay)i − δ(T )

= minimax(A)− δ(T )
Similarly, from P2’s perspective, we can get,

v ≤ maximin(A) + δ(T )
Combining the two inequalities,

minimax(A) ≤ maximin(A) + 2δ(T )
⇒ minimax(A) = maximin(A) (since δ(T )→ 0 as T →∞)
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As a result of this, the following immediately follows by definition:
Corollary 4.

(∑T
t=1

xt

T
,
∑T
t=1

yt

T

)
is δ-NE.

2 No regret learning in general-sum games
In this section, we discuss no regret learning in general-sum games. We talk about
equilibrium criterion — Correlated equilibrium & Coarse correlated equilibrium and
we talk about their existence in general sum games. We introduce a new regret
measure/benchmark called swap regret and an algorithm that has vanishing swap
regret.

Recall that the Games of Complete Information have :

• N players, n = 1, . . . , n

• Action set Ai for each player i; A = A1 × A2 . . .× An

• utility function — ui : A→ [−1, 1] for player i; ui(a1, a2 . . . , an) is player’s utility
when players play A = (a1, . . . , an)

Definition 4. Correlated equilibrium is a distribution χ over A such that ∀i,∀j, j′ ∈ Ai

Ea∼χ[ui(a)|ai = j] ≥ Ea∼χ[ui(j′, a−i)|ai = j]
In other words, if player i is recommended an action j, he should choose to move j.

This is similar to saying that ∀i, ∀s : Ai → Ai (swapping function)

Ea∼χ[ui(a)] ≥ Ea∼χ[ui(s(ai), a−i)]
Note that knowing his own recommended action player can infer something about

other player’s move yet he is better off playing the recommended action.
For example, consider the chicken-dare game in which players can choose to chicken-

out or dare. Pay-offs are as mentioned in table 2. If players are recommended action
profiles (C,D), (D,C) & (C,C) with equal probability, it is a Correlated equilibrium .
None of the players would want to deviate from recommended strategy in this case.
Consider player 1 if it is recommended to chicken out, it knows other player is going to
dare and chicken out with equal probability and so player 1’s pay off is better off not
deviating. If player 1 is recommended dare, it knows other player is going to chicken
out and hence won’t deviate.
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Chicken Dare
Chicken 0, 0 -2, 1

Dare 1, -2 -10, -10

Table 1: Pay-off in Chicken Dare Game

Definition 5. Coarse correlated equilibrium is a distribution χ such that ∀i, j

Ea∼χ[ui(a)] ≥ Ea∼χ[ui(aj, a−i)]

Above definition of Coarse correlated equilibrium states that the agent is not
going to make any profit by deviating to some other constant/fixed action. Note the
subtle difference in definition of Coarse correlated equilibrium from that of Correlated
equilibrium . Note that Correlated equilibrium uses a smart swap function. Therefore,
Coarse correlated equilibrium is a weaker equilibrium criteria as there is no correlation
between swap and the recommended action in general as compared to Correlated
equilibrium . Another way to look at it is to compute Correlated equilibrium , we
assume players have more knowledge and hence can respond better in which case it
becomes difficult to make them obey.

DominantStrategy ⊆ NashEq. ⊆ CorrelatedEq. ⊆ CoarseCorrelatedEq.

For example, consider the rock-paper-scissor game and the pay off matrix given
as in table 2. Choosing all the actions equally likely except the diagonal once is a
Coarse correlated equilibrium . To understand why, suppose the player 1 is playing
rock, player 2 will respond with either paper or scissor with equal probability, but if he
starts responding with paper higher possibility he will incur more loss when player 1
plays scissor (recall player 1 play rock as well scissor with equal probability). Hence,
player 2 is not better off playing other strategies.

This is not correlated equilibrium strategy. If player 2 is instructed to play paper.
He knows that other player is playing either rock or scissor and player2’s average pay
off is 0. He can change his move to rock and improve pay off to 1/2 as against to 0 if
he plays recommended action. In this case, player2 could exploit knowledge of action
recommended to him to improve pay off.
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Rock Paper Scissor
Rock 0,0 -1,1 1,-1
Paper 1,-1 -0,0 -1,1
Scissor -1,-1 1,-1 0,0

Table 2: Pay-off in rock, paper, scissor Game

Definition 6. δ-correlated equilibrium (or approximate Correlated equilibrium ) is a
distribution χ over A such that ∀i, ∀j, j′ ∈ Ai & δ > 0

Ea∼χ[ui(a)|ai = j] ≥ Ea∼χ[ui(j′, a−i)|ai = j]− δ
In other words, if player i is recommended action j, he is only better off deviating

from his action by a small quantity δ. This is similar to saying that ∀i, ∀s : Ai → Ai
(swapping function)

Ea∼χ[ui(a)] ≥ Ea∼χ[ui(s(ai), a−i)]− δ
Definition 7. δ-coarse correlated equilibrium (or approximate Coarse correlated equi-
librium ) is a distribution χ such that δ > 0 & ∀i, j

Ea∼χ[ui(a)] ≥ Ea∼χ[ui(aj, a−i)]− δ
Note that in both δ-correlated equilibrium & δ-coarse correlated equilibrium inequal-

ities can slack by an arbitrary δ from the Correlated equilibrium & Coarse correlated
equilibrium criterion.

2.1 Existence of δ-coarse correlated equilibrium
Theorem 5. Fix a game of complete information, suppose that player plays the game
repeatedly T times & each player uses a vanishing external regret algorithm. Then, the
time averaged mixed strategy profiles form an approximate Coarse correlated equilibrium

Formally,
Let P t

i ∈ D(Ai) be player i’s mixed strategy at time t.
Let χt = P t

1 × . . . P t
n &

Let χ̄ = 1
T

∑T
i=1 x

t be the time averaged joint action profile distribution,
Then χ̄ is a δ-coarse correlated equilibrium where δ(T )→ 0 as T →∞

Note that χ̄ can be realized in two steps by sampling time t from uniform {1, T},
then sampling from χt
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Proof. Fix player i & assume it uses a vanishing external regret algorithm to choose his
action. Vanishing external regret implies that switching to fixed action j in hindsight
cannot give more that δ(T ) per time step & on an average δ(T )→ 0 as T →∞. Recall,
Multiplicative weights is one such vanishing external regret algorithm. For a vanishing
external regret algorithm, we know that at time T,

1
T

∑
t

Eat∼χt [ui(at)] ≥
1
T

∑
t

Eat∼χt [ui(atj, at−i)]− δ(T ) for any j

Since expectations are linear so we reconsider the above equations as picking some t
at random & get action from it. Therefore the above eq. can be approximately written
using χ̄ as follows

Ea∼χ̄[ui(a)] ≥ Ea∼χ̄[ui(aj, a−i)]− δ(T )

Above relation clearly implies that δ-coarse correlated equilibrium exists in above
scenario and it can be achieved if agents use a vanishing external regret algorithm.

Corollary 6. δ-coarse correlated equilibrium exists for every δ > 0 and every finite
game. Moreover, a vanishing external regret learning agent dynamics arrive at such
δ-coarse correlated equilibrium

2.2 Swap Regret
Definition 8. Fix an online learning environment, where an adversary chooses cost
function at each time , C1 . . . CT : A → [−1, 1]. An online learning algorithm which
plays a mixed strategy Pt ∈ D(A) at time t has swap regret as follows

swap-regrettalg = 1
T

( T∑
t=1

E(Ct(j))− min
s:A→A

T∑
t=1

E(Ct(s(j)))
)

s is the swap function.
Thus, we say that an algorithm has vanishing swap regret (or no swap regret) if

swap-regretTalg
T→∞−−−→ 0 ∀adversaries,∀Ct(a)

Note that swap-regret criteria is a stronger criteria than the external regret criteria
in that swap function is smart, i.e. it can look at the player’s action and make the swap
depending on the action as against choosing a fixed action in external regret criteria.

The main idea is that :
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• Swap-regret benchmark moves around algorithm.

• It imposes some type of local optimality.

• It has local modification of action.

2.3 Existence of δ-correlated equilibrium
Theorem 7. Fix a game of complete information, suppose that player play the game
repeatedly T times & each player uses a vanishing swap regret algorithm. Then, the
time averaged mixed strategy profiles forms an approximate Correlated equilibrium .

Formally,
Let P t

i ∈ D(Ai) be player i’s mixed strategy at time t
Let χt = P t

1 × . . . P t
n &

Let χ̄ = 1
T

∑T
i=1 x

t be the time averaged joint action profile distribution

Then, χ̄ is a δ-correlated equilibrium where δ(T )→ 0 as T →∞
Note that x̄ can be realized in two steps by sampling uniform {1, T} and then

sampling from xt

Proof. Fix player i and use a vanishing swap regret algorithm to choose action. No
swap regret implies that swapping the action with a action j in hindsight cannot give
more that δ(T ) per time step and on an average δ(T )→ 0 as T →∞. For a vanishing
swap regret algorithm we know that at time T

1
T

∑
t

Eat∼χt [ui(at)] ≥
1
T

∑
t

Eat∼χt [ui(s(ati), at−i)]− δ(T )

where, s : A→ A is swap function
Since expectations are linear so we consider the above equation as picking some t

at random & get action from it. There the above eq. can be approximately written
using χ̄ as follows

Ea∼χ̄[ui(a)] ≥ Ea∼χ̄[ui(aj, a−i)]− δ(T )
Above eq. implies that δ-coarse correlated equilibrium exists in above scenario and

it can be achieved if agents use a no swap regret algorithm.

Corollary 8. δ-correlated equilibrium exists for every δ > 0 and every finite game.
Moreover, a no swap regret learning agent dynamics arrive at such δ-correlated equilib-
rium
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So far, we have shown that given an algorithm with vanishing swap regret, δ-
correlated equilibrium always exists. Next we try to establish existence of a no swap
regret algorithm

2.4 Existence of a no swap regret algorithm
Theorem 9. In any online learning setting with finitely many actions A (at max n),
there is a reduction from no swap regret algorithm to a no external regret algorithm.

Alg. to compute
pti, q

t
i

(No Swap Regret)

Pt ∈ D(A)

Ct(A)

Alg1
No external regret

qt1 ∈ D(A)

pt1C
t

Alg2
No external regret

qt2 ∈ D(A)

pt2C
t

Algn
No external Regret

qtn ∈ D(A)

ptnC
t

Figure 1: No Swap Regret Algorithm

Proof. The algorithm for the above is as follows:
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• Instantiate n copies of vanishing external regret algorithm.

• Each instance of algorithm gets some proportion of cast.

• This is intuitively interpreted in following way — First instance of no external
regret algorithm is incharge for swapping action 1 to some other fixed action, and
similarly for other instances. See fig. 1

Now, for each time step t = 1 . . . T

• Receive qt1 . . . qtn ∈ D(A) from Alg1 . . . Algn

• Aggregate qt1 . . . qtn to get P t

• Play according to P t

• Receive Ct(A) ∈ [−1, 1]

• Compute and give ptiCt to each of Alg1 . . . Algn

To achieve no swap regret we need for any s : A→ A for

1
T

∑
T

Ea∼Pt [Ct(i)] ≤ 1
T

∑
T

Ea∼Pt [Ct(s(i))] + δ(T )

1
T

∑
T

∑
i

P t
iC

t(i) ≤ 1
T

∑
T

∑
i

P t
iC

t(s(i)) + δ(T ) (2)

We know Alg1 . . . Algn have vanishing external regret for each Algj
Let,

k = argmin
j

1
T

∑
T

ct(j)

ct = ptjC
t

1
T

∑
T

Ei∼qt
j
[ct(i)] ≤ 1

T

∑
T

Ei∼qt
j
[ct(k)] + δ′(T )

1
T

∑
T

∑
i

qtjipjC
t(i) ≤ 1

T

∑
T

pjC
t(k) + δ′(T ) ∀ j = 1 . . . n (3)

We need to prove eq. 2. Since eq. 3 holds for any k, therefore it should also hold for
any s : A→ A as it will map to one of the k. We can write,
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1
T

∑
T

∑
i

qtjipjC
t(i) ≤ 1

T

∑
T

pjC
t(s(i)) + δ′(T ) ∀ j = 1 . . . n

Adding all eq. from 1 . . . n.

1
T

∑
T

∑
i

∑
j

qtjipjC
t(i) ≤ 1

T

∑
T

∑
j

pjC
t(s(i)) + δ′(T ) ∀ j = 1 . . . n (4)

By eq. 4 & eq. 2, we can conclude that algorithm should have ∀t∑
j

qjip
t
j = P t

i = ptj ∀t

Assume, P t
i , ptj are vectors and qji is a matrix of transition probabilities from j to i.

We want
ptQt = P t = P tQt (5)

We know that — Every markov chain Q has a stationary dist. P. Moreover such a
distribution can be computed efficiently in O(No. of States = n). Therefore, eq. 5 has a
solution.

Therefore, we can create a no swap regret algorithm from n instance of no external
regret algorithm. This proves the existence of no swap regret algorithm and hence
δ-correlated equilibrium
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