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1 Mechanism Design with Samples or Learning Near-
Optimal Auction

Recall the things we will need:

1. PAC Learning: There exists function mH : (ε, δ)→ N such that for all ε, δ > 0,
distribution D over X, target concept f → {0, 1}, then the ERM algorithm
after mH(ε, δ) samples guarantees to output a hypothesis h with high probability
1− δ to be ε-approximate to the target concept. Here, we are going to use the
similar idea. Without knowing the buyer’s payoff functions and distribution, but
according to the samples from the history data, the seller could learn the buyer’s
payoff function (or so called the target concept) in order to maximize the revenue.

2. Myerson’s Optional Auction

2 Revenue Maximization
Given a bunch of users with multiple products, the seller wants to maximize the revenue.
But the Seller doesn’t know the payoff function. He only knows the samples draw from
the distribution D of the payoff function. Given the values of bidder, maximize the
expectation of revenue.

There may be some closed forms of calculating

Example 1 (Single Item, single bidder). There is only one buyer, one item, one seller.
Suppose the seller is using the posted price auction.

Posted price auction of the reserve price v ∈ [0, 1], v ∼ D

r(p, v) =

p, v ≥ p

0, otherwise
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The expected revenue would be

RD(p) = Ev∼D r(p, v) = Ev∼D [p · 1v≥p] = p · P (v ≥ p) = p(1− F (p))

where function F is the cumulative function of distribution D, i.e., F (p) = P (v ≤
p|v ∼ D).

In practice we don’t know the distribution D explicitly. But we could observe the
price auctions {vt} along the time. Suppose that these samples are drawn from the
distribution D but have no prior information about the distribution itself. It is possible
that all the samples are drawn from the same point, i.e. m completely identical sample.
In this case, we would never be able to learn the distribution. Therefore we would never
be 100% sure that our algorithm provides a correct approximated concept. So, our task
is to guarantee to learn the payoff function (distribution) with high probability.

Assumption 2. We have access to IID samples from D.

Given a sample S of size m, we want to compute a reserve price pS, s.t. with high
probability (ex. 9

10), we have

RD(pS) ≥ max
p∈[0,1]

RD(p)− ε. (1)

in other words, we want the reserve price pS to achieve ε-approximated optimal value
with high probability.

The approximation is highly related to the number of samples we observed. Thus
the question becomes what the minimum m is so that the above inequality holds with
high probability? Such m can be interpreted as the sample complexity of revenue
maximization. This idea is similar to the idea in PAC learning, which is the number of
the samples we need to guarantee the approximation with high probability and small
error rate. The answer is m = Θ( 1

ε2
).

In Example 1, suppose we can approximate the cumulative function F (p) by F̂ (p)
with |F̂ (p)− F (p)| < ε

p
in high probability. Let p = arg max

p′∈[0,1]
p′(1− F (p′)) be the true

optimal solution for maximizing revenue and pS = arg max
p′∈[0,1]

p′(1− F̂ (p′)) be the reserve

price calculated by using the approximated cumulative function F̂ (p).
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R(p)−RD(pS) = (p(1− F (p)))− (pS(1− F̂ (pS))) (2)
= (p(1− F̂ (p))− pS(1− ˆF (pS))) + p(F̂ (p)− F (p)) (3)

≤ 0 + p
ε

p
(4)

= ε (5)

The first term in the Inequality 3, 4 is because pS = arg max
p′∈[0,1]

p′(1− F̂ (p′)) optimizes
the approximated cumulative function term, thus the value will be greater than or
equal to the value of using any other p ∈ [0, 1].

Therefore, it suffices to show that we can approximate the unknown cumulative
function F (p) with high probability by using m samples draw from the distribution.
Determining how many samples m do we need becomes the main problem in this
example.

3 Rademacher Complexity and Covers
The first method we will use to derive the sample complexity is Radmemacher Com-
plexity + Covers. We first give some definitions as follows.

Definition 3. Consider a set of samples S = {v1, . . . , vm}, a hypothesis class H, and
the loss function l(h, v) for h ∈ H and v ∈ S. Let

R(S,H) := Eσ
[
sup
h∈H

1
m

m∑
t=1

σt · l(h, vt)
]

(6)

where σ = (σ1, · · · , σm) ∈ {±1}m and P (σi = 1) = P (σi = −1) = 1
2 for any i =

1, . . . ,m.

Let S be the sample set of the previous auction values, [0, 1] be the hypothesis class
of the reserve price H, r(p, vt) be the loss function for p ∈ [0, 1] and vt ∈ S. Then we
have R(S,H) = Eσ

[
supp∈[0,1]

1
m

m∑
t=1

σt · r(p, vt)
]
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3.1 Recall the Lecture 2
Recall the definition ε-representative

Definition 4 (Definition 9 of the Lecture 2). A sample S = {z1, z2, ..., zm} is ε-
representative (w.r.t domain Z, hypothesis class H and loss function l(h, z)) if

sup
h∈H
|LD(h)− LS(h)| ≤ ε

where LD(h) = Ez∼D[l(h, z)] and LS(h) = Ez∼U(S)[l(h, z)] (U(S) is the uniform distri-
bution over S.)

Definition 5. RepD(F, S) = sup
f∈F
|LD(f) − LS(f)|, where F = {fh : h ∈ H}, fh(z) =

l(z, h).

RepD(F, S) provides a measure of the largest difference between expected true error
and expected empirical error.

Definition 6. Rademacher Complexity of F (w.r.t sample S) is defined as

RS(F ) = 1
m
Eσi [sup

f∈F

m∑
i=1

σif(zi)]

where each σi is an independent {−1, 1} coin flip.

Lemma 7 (Lemma 10 of the Lecture 2).

ES∼Dm [RepD(F, S)] ≤ 2ES∼Dm [RS(F )]

3.2 Estimation
Return to our problem, if pS is the empirically optimal price, i.e.

pS = arg max
p∈[0,1]

[
RS(p) ≡ 1

m

m∑
t=1

r(p, vt)
]
.

From the Lemma 7, we have

ES[RepD(H,S)] ≤ 2ES[R(S,H)] (7)
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The LHS in the Lemma 7 is the expected largest difference between true error and
empirical error. Here, we replace all the loss function by the revenue function. Thus
the LHS can be expressed as the expected largest difference between true revenue
sup
p∈[0,1]

RD(p) and the empirical revenue RD(pS), which is

ES[ sup
p∈[0,1]

|RD(p)−RD(pS)|] = sup
p∈[0,1]

RD(p)− ES[RD(pS)] ≤ 2ES[R(S,H)]

which implies
ES[RD(pS)] ≥ sup

p∈[0,1]
RD(p)− 2ES[R(S,H)] (8)

If we have ES[R(S,H)] < ε, then the revenue achieved by the reserve price pS based
on the samples S is 2ε-approximated to the highest revenue.

Thus our goal is to bound from above of ES[R(S,H)] such that ES[R(S,H)] < ε.
The idea of deriving such upper bound is to discretize the hypothesis class H = [0, 1].

Consider the revenue function r(p, v) =

p, v ≥ p

0, otherwise
in the example, let Hε =

{0, ε, 2ε, 3ε, . . . , 1} ∪ S.

Claim 8. ∀p ∈ [0, 1],∃pε ∈ Hε s.t. ∀vt ∈ S, we have

|r(p, vt)− r(pε, vt)| ≤ ε

Proof. We first reorder the sample set such that 0 = v0 ≤ v1 ≤ ... ≤ vm ≤ vm+1 = 1.
Suppose p ∈ [vt−1, vt] for some t ∈ [m + 1]. If the closest multiple of ε below p
is in this interval, set pε to be this value, otherwise set pε = vt−1. Then we have
|r(p, vt)− r(pε, vt)| ≤ ε for any vt ∈ S.

Remark 1. In general case, given any revenue function r, if the revenue function is
continuous and lies in a bounded interval, then we can use the inverse function r−1 to
select the discretization points.

Lemma 9. Let H be any hypotheses class and S be the sample set, if Hε is ε-cover of
S, then

R(S,H) ≤ R(S,Hε) + ε
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3.3 Hoeffding’s Inequality
Combine Lemma 9 with inequality (8), our goal becomes to bound ES[R(S,Hε)] with
|Hε| ≤ O(m+ 1

ε
). Recall the Hoeffding’s inequality

Lemma 10 (Hoeffding’s inequality). Suppose X̄ = 1
m

(X1 +X2 + ...+Xm), Xi ∈ [ai, bi],
we have

P (X̄ − E[X̄] ≥ t) ≤ exp(− 2m2t2

m∑
i=1

(bi − ai)2
) (9)

Theorem 11. Given m samples drawn from distribution D, R(S,Hε) < ε with proba-
bility 1− δ, where m ≥ log 1

ε

ε2
, δ = |Hε|exp(−mε2/2).

Proof. Given p ∈ [0, 1], let Xi = σir(p, vi), clearly we have Eσi [Xi] = Eσi [σir(p, vi)] = 0
and Xi ∈ [−1, 1]. By Hoeffding’s inequality,

P (X̄ ≥ ε) = P (X̄ − E[X̄] ≥ ε) ≤ exp(− 2m2ε2

m∑
i=1

(bi − ai)2
) = exp(−mε2/2) (10)

Apply the union bound to all the reserve price in Hε, we have

P (R(S,Hε) ≥ ε) = P ( sup
p∈Hε

X̄p ≥ ε) ≤ |Hε|P (X̄ ≥ ε) ≤ |Hε|exp(−mε2/2) (11)

Let δ = |Hε|exp(−mε2/2), i.e. ε =
√

log |Hε|
δ

m
, m = log |Hε|

δ

ε2

Suppose the above conditions of m, δ, ε, |Hε| are satisfied, then with probability
greater than 1− δ, we have

R(S,Hε) ≤ ε (12)

which is exactly what we want.

The remaining is to check whether m ≥ log |Hε|
δ

ε2
= log m+ 1

ε
δ

ε2
could be satisfied. And

this could be achieved when m ≥ log 1
ε

ε2

3.4 Conclusion of Example 1
Now back to our example, we know RD(p) = p(1− F (p)). We have the following claim
as we previously proved:
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Theorem 12. Suppose that we have F̂ s.t.

sup
p∈[0,1]

|F (p)− F̂ (p)| ≤ ε (13)

Then RD̂(p) ≥ RD(p)− ε

So it suffices to find such an F̂ . We construct an ”Empirical CDF”, i.e. F̂ (z) =
1
m

m∑
i=1

1xi≤z. After some similar calculation, we have

sup |F̂ (z)− F (z)| ≤
√

10
m

(14)

with probability 9
10 (or

√
1
mε

with probability 1− ε). And this construction guarantees
that after learning m ≥ O( 1

ε2
) (or m ≥ log 1

ε

ε2
) samples drawn from distribution D, with

high probability 1− δ we can achieve an ε-approximate to the maximum revenue.
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