
CSCI699: Topics in Learning and Game Theory
Lecture October 23

Lecturer: Ilias Scribes: Ruixin Qiang and Alana Shine

Today’s topic is auction with samples.

1 Introduction to auctions
Definition 1. In a single item auction, there are k bidders bid for one item, auction
design is the problem of designing a truthful mechnism to maximize certain objective.

For different objectives, there are different results.

• Social Welfare (benefit the society): VCG mechanism will be optimal. In single
item case, it will be the second price auction. It is prior-free, i.e., does not require
any assumption about the distribution of bidders’ value (not the cretiria of this
lecture).

• Revenue (benefit the auctioneer): Myerson’s algorithm (1981) is optimal for
average case. In this case, there is guarantee only for Bayesian setting, i.e., we
assume the bidders’ values vi are drawn from certain distribution, (v1, v2, . . . , vk) ∼
F .

In this lecture, we will discuss revenue maximization. Also we assume the bidders’
values are independenlty drawn from Fi, i.e. F = F1 ×F2 × . . .Fk.

The Myerson’s auction can be phrased as VCG mechanism that maximizes virtual
values. The virtual value of a bidder with value v is defined to be φ(v) = v − 1−F (v)

f(v)
when the distribution with c.d.f. F , p.d.f. f is regular (φ(v) is strictly-increasing).

The main goal will be understanding the empirical version of Myerson’s auction,
namely, instead of knowing the distribution F , we can only draw samples from it.

This problem is hard in general without assumptions. For example, on a point with
a large value on which the distribution assigns a very tiny probability, with certain
number of samples we cannot observe the large value and thus cannot provide any
guarantees.

Therefore, we need assumptions about the class of distributions.
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2 Auction with Samples, First natural approach
There are two criteria for auctions with samples:

• Sample complexity, i.e., the number of samples required.

• Computational complexity, i.e., the running time of the algorithm.

Information theory provides a lower bound of sample complexity S(n, ε,D). Here D is
the class which we assume F is in.

The algorithm we designed should have sample complexity in poly(S) and compu-
tational complexity in poly(S).

Open problem: efficient algorithm that has sample complexity Õ(S).
Here we have our first approach:

1. Take samples from each Fi;

2. Get the empirical distribution F̄i;

3. Run Myerson’s auction with F̄i.

This approach does not work but a variant of it will.

3 Learning distributions
The problem of learning distributions is defined as:

Definition 2. Given a family of distributions D, and i.i.d. samples from an distribution
p ∈ D. Output a distribution h, s.t. with high probability d(h, p) ≤ ε. Here d(h, p)
measures the distance between two distributions.

Since the definition is generic, there are three problems we need to address.

• The distance functions we will discuss: total variation distance, Kolmogorov
distance.

• Number of samples required m(ε,D, d).

• For the “with high probability”, the randomness is from the samples and the
algorithm.



3 LEARNING DISTRIBUTIONS 3

3.1 Learning discrete distribution subject to total variation
distance

We assume D to be all discrete distributions over domain [n].
For two discrete distributions with p.m.f. p, q, the total variation distance between

them is defined as
dtv = max

A∈[n]
|p(A)− q(A)| = 1

2 |p− q|1

With m samples S1, . . . , Sm, the optimal algorithm is just using the empirical
distribution, let Ni = |{j ∈ [m]|Sj = i}|:

p̂m(i) = Ni

m
.

When m is large enough, we will have dtv(p, p̂m) ≤ ε. To find a lower bound of m,
since dtv(p, p̂m) is a random variable, we can first find the m that makes E [dtv(p, p̂m)] ≤
ε/C, then use Markov inequality to bound the tail probability:

Pr[dtv(p, p̂m) > ε] ≤ 1
C
.

In the following proof, we will ignore the constant C since it is just a scale factor of
ε.

Theorem 3. When m ∈ Ω( n
ε2

), the expected total variation distance between p and p̂m
is upper bounded by ε.

Proof. Since Ni ∼ Binom(m, p(i)), we have E [Ni] = mp(i),Var[Ni] = mp(i)(1− p(i)).

E [dtv(p, p̂m)] ≤ 1
m

n∑
i=1

E [|Ni −mp(i)|]

≤ 1
m

n∑
i=1

√
E [(Ni −mp(i))2]

= 1√
m

n∑
i=1

√
p(i)(1− p(i))

≤ 1√
m

n∑
i=1

√
p(i)

≤
√
n

m



4 LEARNING DISTRIBUTION SUBJECT TO KOLMOGOROV DISTANCE 4

The second and last inequality is due to Cauchy-Schwarz inequality.
When m ≥ n

ε2
, we have E [dtv(p, p̂m)] ≤ ε.

The bound of n
ε2

is tight, here we provide a constructive proof.

Proof. We will construct a distribution family D by perturbing the uniform distribution
over [n]. For each pair (2i − 1, 2i), set their probability to be either (1−ε

n
, 1+ε
n

) or
(1+ε
n
, 1−ε
n

). Thus there will be 2n/2 different distributions in the family.
To learn a distribution h from samples of p ∈ D, s.t. dtv(p, h) ≤ ε/4, we need to find

the correct perturbing direction for at least n
4 pairs. Finding the correct perturbation

direction for each pair requires O( 1
ε2

) samples (by information theory). Thus in total,
at least O( n

ε2
) samples are required.

When n goes to infinity, there is no chance to use finite number of samples to learn
a distribution and bound the total variation distance.

However, for certain family of distributions, we can learn distributions subject to
the total variation distance less than ε, with sample complexity poly(1/ε, log n)

• Distribution class D is all log-concave distributions over [n]. Then we can learn
with Θ(1/ε5/2).

• The hazard rate of a distribution is f(x)/(1− F (X)) where f is the PDF of the
distribution and F is the CDF. If we have monotone none-decreasing hazard rate,
we can learn it with O(log(n)/ε3) samples.

If I make no assumptions about the distribution, to get error probability δ I need 1
δ
n
ε2

samples using our previous error analysis and markov’s inequality. With more careful
analysis, we can show that we only need

Θ
(
n+ log 1

δ

ε2

)

4 Learning distribution subject to Kolmogorov Dis-
tance

Instead of making stronger assumptions on the distribution to achieve sample complexity
independent of sample support, we turn towards changing the metric we are using to
learn from total variation distance to Kolmogorov Distance.

We have a random variable X supported over R. Let F be the CDF of X.

F (u) = Pr[X ≤ u]
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Learning using Kolmogorov Distance means

dK(X, Y ) = max
u∈R
|FX(u)− FY (u)|

Theorem 4. DKW Inequality For any X over R, we can learn with O( 1
ε2

) up to
dK(X, Y ) ≤ ε.

Proof. Consider the empirical. F̂ (u) = 1
m

∑n
i=1 1{xi ≤ u}

max
u∈R
|F̂ (u)− F (u)| ≤ 1√

m

with probability at least 3
10 . Using chernoff bounds, 1

ε2
log(10

ε
).

We can also prove using martingales or chaining.

5 Auction with Samples
Suppose we have a single bidder, single item auction. Also, assume that the distribution
of the bidder value is over [0, 1]. We will show that with O( 1

ε2
) samples from F I can

achieve revenue at least OPT − ε.
By DKW using O( 1

ε2
) samples form F , I can find F̂ such that supu∈R |F (u)−F̂ (u)| ≤

ε. We will use this F̂ to compute price p̂ that maximizes p̂ ∈ argmaxu∈[0,1]u(1− F̂ (u)).
Recall that if we know F , optimal p∗ is exactly argmaxu∈[0,1]u(1− F (u)) and this p∗
achieves optimal revenue OPT .

OPT = p∗(1− F (p∗))
Rev(p̂) = p̂(1− F (p̂)

≥ p̂(1− F̂ (p̂)− ε)
= p̂(1− F̂ (p̂))− εp̂
≥ p∗(1− F̂ (p∗))− εp̂
≥ p∗(1− F (p∗)− ε)− εp̂
= p∗(1− F (p∗))− ε(p̂+ p∗)
= OPT − 2ε

With the last step using the fact that prices are bounded within the interval [0, 1]. But
what if the prices are not bounded? Consider the following distribution over prices.
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The prices p is set to M2 with probability 1
M

and 0 otherwise. In order to avoid sample
complexity dependent on M , I need an assumption on the distribution.

We now generalize to the single item, k bidder model. Assume that F is a product
distribution so F = F1 × F2 · · · × Fk with v(1)...v(k) ∼ F .

Theorem 5. In the single item auction with k bidders and independent regular distribu-
tions, if m = Ω̃

(
k10

ε7

)
then there is a m-sample auction computable in polynomial-time

in k and 1/ε with expected revenue at least OPT − ε.

Theorem 6. Any such auction requires some polynomial in k/ε samples.

A regular distribution is one where the virtual value x− 1−F (x)
f(x) is non-decreasing. Let

fi be the pdf of the distribution over prices for the ith bidder and Fi the corresponding
CDF. Then the virtual value vi of bidder i is 1−Fi(v)

fi(v) .
Fact: If Fis are regular then Myerson computes the VCG rule on virtual values.

• If all virtual values are less than zero, no one gets it.

• Otherwise the item goes to the bidder with the highest virtual value.
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