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1 Eliciting Distributions
[A.K.A. Prediction, Forecasting] Learning a distribution of a finite random variable
from an agent who knows or who has an estimation of that distribution. examples:
crowdsourcing.

1.1 Elicitation model
1. Random variable X supported on [n] = {1, 2, ..., n}.

2. X will be sampled in the future (tomorrow).

3. we want to learn the distribution of X.

4. We don’t have access to samples from X.

5. Instead, we have an expert agent who knows distribution P ∈ ∆n. (e.g. believes
distribution is P )

6. Want to incentive this agent to truthfully report P .

Since we have nothing, so instead of arbitrary guess a distribution, we tend to believe
the distribution P (which could be wrong) is exactly the true one. The goal becomes
to incentive the agent to truthfully report P to us.

Example 1. X is the weather tomorrow. Expert is meteorologist and we are weather
channel.

Example 2. X is the number / cost of accidents of driver. Expert is the insurance
actuary. We are insurance company.
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1.2 Approach
Use a scoring rule: S : ∆n × [n]→ R

• If agent reports q ∈ ∆n today and i ∈ [n] is realized tomorrow. Then we pay
agent S(q, i).

• If agent believes distribution of X is P ∈ ∆n, then reporting q ∈ ∆n yields
expected reward

S(q, p) = Ei∼P [S(q, i)]
where q is the report and p is the truth.

What we want: setting q = p maximizes S(q, p)∀p.

Definition 3. A scoring rule S : ∆ × [n] → R is ”proper” if ∀p ∈ ∆n, we have
p ∈ argmaxq∈∆nS(q, p). Moreover, S is ”strictly proper” if ∀p ∈ ∆n, we have p =
argmaxq∈∆nS(q, p).

”Strictly proper” tells us the one optimal solution for the agent is to report the
truth. Instead, ”Proper” tells us reporting the truth is one of the optimal solutions for
the agent, but there could be a lot of optimal solutions.

Observation 4.

• A scoring rule is proper iff truthful reporting is an optimal strategy.

• A scoring rule is strictly proper iff truthful reporting is the unique optimal strategy.

• There are trivial proper scoring rules. S(q, i) = 0

Example 5 (Linear scoring rule). S(q, i) = qi ∈ [0, 1]

S(q, p) = Ei∼p[S(q, i)] =
n∑

i=1
piS(q, i) =

∑
i

piqi

Agent who believes P solves the following problem:

max
q∈∆n

∑
i

piqi

Suppose p = (0.6, 0.3, 0.2). The unique optimal solution is q = (1, 0, 0) ∈ ∆n. That
means linear scoring rule is not proper.
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Example 6 (Quadratic Scoring Rule).

S(q, i) = 2qi −
∑

j

q2
j ∈ [−1, 1]

S(q, p) = 2
∑

i

qipi −
∑

j

q2
j

For the agent, the maximization problem becomes:

max 2
∑

i

qipi −
∑

j

q2
j s.t.q ∈ ∆n

which is a concave function.
Use gradient decent method:

∇qS(q, p) = [2p1 − 2q1, 2p2 − 2q2, ..., 2pn − 2qn]

Since the Hessian matrix is negative definite, thus the function is strictly concave,
which means there is only one optimal solution which can be achieved by letting gradient
vector to be 0.

Thus at the optimal, pi = qi and the solution is unique. That means the quadratic
scoring rule is strictly proper.

Example 7 (Logarithmic Scoring Rule).

S(q, i) = log qi ∈ [−∞, 0]

S(q, p) =
∑

i

pi log qi

Then the agent wants to solve:
max
q∈∆n

∑
i

pi log qi

Since logarithm is concave so the overall function is concave too.

∇qS(q, p) = [p1

q1
,
p2

q2
, ...,

pn

qn

]

By the Lagrange multiplier method, we wish the gradient vector to be parallel to the
normal vector of the simplex ∆n, which is v = [1, 1, ..., 1].

The only possible gradient ∇qS(q, p) = [p1
q1
, p2

q2
, ..., pn

qn
] and is also parallel to v =

[1, 1, ..., 1] must satisfy qi = pi. Thus this logarithmic scoring rule is proper. How about
strictly proper? The answer is true.
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Remark 1. The only concern of strictly proper is those points with undefined gradient.
But this can be done by the concavity of the function and some boundary arguments.

Back to the Quadratic scoring rule

S(q, p) = 2
∑

i

qipi −
∑

j

q2
j

the expected reward of agent who reports q when truth is p. The max reward when
truth is p is S(p, p) = 2 ∑

i
p2

i −
∑
j
p2

j = ∑
i
p2

i .
What if the agent doesn’t know the exact p? What if he only knows a q which is

slightly different from p, how much reward would he loss?

S(p, p)− S(q, p) =
∑

i

p2
i − 2

∑
i

qipi +
∑

j

q2
j =

∑
i

(pi − qi)2 =
∑

i

||pi − qi||22

Remark 2. The quadratic scoring rule incentives the agent to approximate the truth p
with L2-distance.

Back to the Logarithmic scoring rule

S(q, p) =
∑

i

pi log qi, S(p, p) =
∑

i

pi log pi

S(p, p)− S(q, p) =
∑

i

pi log pi −
∑

i

pi log qi =
∑

i

pi log pi

qi

= DKL(p||q)

Remark 3. The Logarithmic scoring rule incentives the agent to approximate the truth
p with KL-divergence.

1.3 Theorems
Fact 8. Proper / strictly proper scoring rules are closed under affine transformation.

If S is (strictly) proper, then so is S ′(q, i) = αS(q, i) + βi, α > 0, β ∈ Rn.

Theorem 9 (Savage 71). Scoring rule S : ∆n × [n] → R is (strictly) proper iff ∃
(strictly) convex function G : ∆n → R such that S(q, i) = G(q) +∇G(q) · (ei − q).

Proof. (⇐) S(q, p) = G(q) +∇G(q) · (p− q). S(p, p) = G(p) +∇G(q) · (p− q) = G(p) >
G(q) +∇G(q) · (p− q) by the (strictly) convexity. Therefore, truthfully report p would
provide higher reward than all the other q. (⇒) Suppose S is strictly proper, S(q, p)
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is maximized by setting q = p (uniquely). Let G(p) = max
q
S(q, p) = S(p, p) to be the

pointwise max of linear function of p. Therefore G(p) is a convex function.
Similarly, S(p, ·) is an affine tangent to G at p. So S(q, ·) is the tangent to G at q.

Therefore we have:

S(q, p) = S(q, q) + (S(q, p)−S(q, q)) = G(q) +S(q, ·) · (p− q) = G(q) +∇G(q) · (p− q)
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