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0 Examples of Mechanism Design Problems



Single-item Allocation

@

@ n players
@ Player i’s private data (type): v; € R

@ Outcome: choice of a winning player, and payment from each
player

@ Utility of a player for an outcome is his value for the outcome if he
wins, less payment

Objectives: Revenue, welfare.
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Single-item Allocation

@

First Price Auction

@ Collect bids
@ Give to highest bidder
© Charge him his bid
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Single-item Allocation

@

Second-price (Vickrey) Auction
@ Collect bids
© Give to highest bidder
© Charge second highest bid
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Example: Combinatorial Allocation
« y N
‘/’ O .’ N /’

@ n players, m items.
@ Private valuation v; : set of items — R.
e v;(5) is player i’s value for bundle S.
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Example: Combinatorial Allocation

@ n players, m items.
@ Private valuation v; : set of items — R.
e v;(5) is player i’s value for bundle S.

Partition items into sets S, .5, ..., S, to maximize welfare:
U1 (Sl) -+ UQ(SQ) =+ ... Un(Sn)
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Example: Public Project

Cost=500

b

K7

@ n players

@ Player i’s private data (type): v; € Ry

@ Outcome: choice of whether or not to build, and payment from
each player covering the cost of the project if built

@ Utility of a player for an outcome is his value for the project if built,
less his payment

Goal: Build if sum of values exceeds cost (maximize welfare), or
maximize revenue
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Example: Voting

@ n players

@ m candidates

@ Player i’s private data (type): total preference order on candidates
@ Outcome: choice of winning candidate

Goal: ??
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e The General Mechanism Design Problem



Mechanism Design Setting (Prior free)

Given by a tuple (N, X, T, u), where
@ N is afinite set of players. Denote n = |[N|and N = {1,...,n}.
@ X is a set of outcomes.

e T'=T, x...T,, where T; is the set of types of player i. Each
t=(t1,...,t,) € T is called an type profile.

@ u=(ug,...uy), Where u; : T; x X — R is the utility function of
player i.
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Mechanism Design Setting (Prior free)

Given by a tuple (N, X, T, u), where
@ N is afinite set of players. Denote n = |[N|and N = {1,...,n}.
@ X is a set of outcomes.

@ T =T, x...T,, where T; is the set of types of player i. Each
t=(t1,...,t,) € T is called an type profile.

@ u=(ug,...uy), Where u; : T; x X — R is the utility function of
player i.

In a Bayesian setting, supplement with common prior D over T

Example: Single-item Allocation

@ Outcome: choice = € {ey, ..., e,} of winning player, and payment
p1,---,DPn from each

@ Type of player i: value v; € R,.

@ u;(vs, x) = viz; — P;.

The General Mechanism Design Problem 5/34



Social Choice Functions

A principal wants to communicate with players and aggregate their

private data (types) into a choice of outcome. Such aggregation
captured by

A social choice function f : T'— X is a map from type profiles to
outcomes. J
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Social Choice Functions

A principal wants to communicate with players and aggregate their

private data (types) into a choice of outcome. Such aggregation
captured by

A social choice function f : T'— X is a map from type profiles to
outcomes.

v

Choosing a Social Choice Function

@ A particular social choice function in mind (e.g. majority voting,
utilitarian allocation of a single item, etc).

@ An objective functiono: T x X — R, and want f(T') to
(approximately) maximize o(T, f(T))

o Either worst case over T' (Prior-free) or in expectation (Bayesian)

Example: Single-item Allocation
@ Welfare objective: wel fare(v, (z,p)) = >, viz;
@ Revenue objective: revenue(v, (z,p)) = >, i

The General-Mechanism Design-Problem
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Mechanisms

To perform aggregation, principal runs protocol called a mechanism.

A mechanism is a pair (A,g), where

@ A=A, x...A,,where A; is the set of possible actions (think
messages, or bids) of player 7 in the protocol. A is the set of
action profiles.

@ g: A — X is an outcome function
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Mechanisms

To perform aggregation, principal runs protocol called a mechanism.

A mechanism is a pair (A,g), where

@ A=A, x...A,,where A; is the set of possible actions (think

messages, or bids) of player 7 in the protocol. A is the set of
action profiles.

@ g: A — X is an outcome function

The resulting game of mechanism design is a game of incomplete
information where when players play a € A, player i’s utility is
u;(t;, g(a)) when his type is t;.
Example: First price auction
o AZ =R

@ g(bi,...,by) = (z,p) where x;« = 1, p;» = b= for i* = argmax; b;,
and x; = p; = 0 for i # i*.
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Implementation of Social Choice Functions

We say a mechanism (A4, g) implements social choice function
f T — X in dominant-strategy/Bayes-Nash equilibrium if there is a
strategy profile s = (s1,...,s,) with s; : T; — A; such that
@ s;: T; — A; is a dominant-strategy/Bayes-Nash equilibrium in the
resulting incomplete information game

@ g(s1(t1),s2(t2), - ., sn(tn)) = f(t1,t2,...,tn) forallt € T

Example: First price, two players, i.i.d U0, 1]

Implements in BNE the following social choice function: give the item
to the player with the highest value and charges him half his value.

v

Example: Vickrey Auction

Implements in DSE the following social choice function: give the item
to the player with the highest value and charges him the second
highest value.
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The Task of Mechanism Design

Task of Mechanism Design (Take 1)

Given a notion of a “good” social choice function from 7" to X, find
@ A mechanism
@ An action space A = (Ay,...,A,),
@ an outcome functiong: A — X,
@ an equilibrium (s, .

.., sp) of the resulting game of mechanism
design

such that the social choice function f(t1,...,t,) = g(s1(t1), ..., Sn(tn))
is “good.”

The General Mechanism Design Problem
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The Task of Mechanism Design

Task of Mechanism Design (Take 1)
Given a notion of a “good” social choice function from 7" to X, find
@ A mechanism

@ An action space A = (Ay,...,A,),
@ an outcome functiong: A — X,

@ an equilibrium (s, ..., s,) of the resulting game of mechanism
design

such that the social choice function f(t1,...,t,) = g(s1(t1), ..., Sn(tn))
is “good.”

v

Problem
This seems like a complicated, multivariate search problem.
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The Task of Mechanism Design

Task of Mechanism Design (Take 1)

Given a notion of a “good” social choice function from 7" to X, find
@ A mechanism
@ An action space A = (Ay,...,A,),
@ an outcome functiong: A — X,
@ an equilibrium (s, .

.., sp) of the resulting game of mechanism
design

such that the social choice function f(t1,...,t,) = g(s1(t1), ..., Sn(tn))
is “good.”

v

Problem

This seems like a complicated, multivariate search problem.

The revelation principle reduces the search space to justg : 7' — X.

The General Mechanism Design Problem

9/34



e The Revelation Principle and Incentive Compatibility



Incentive-Compatibility

Direct Revelation

A mechanism (A4, g) is a direct revelation mechanism if A; = T; for all .

i.e. in a direct revelation mechanism, players simultaneously report
types (not necessarily truthfully) to the mechanism. Such mechanisms
can simply be described via the function g : T — X.

Incentive-Compatibility

A direct-revelation mechanism is dominant-strategy/Bayesian
incentive-compatible (aka truthful) if the truth-telling is a
dominant-strategy/Bayes-Nash equilibrium in the resulting
incomplete-information game.

Note: A direct revelation incentive-compatible mechanism implements
its outcome function g : T'— X, by definition.

The social choice function IS the mechanism!! )

The Revelation Principle and Incentive Compatibility 10/34



Vickrey Auction
Direct revelation mechanism, dominant-strategy incentive-compatible.

First Price Auction
Direct revelation mechanism, not Bayesian incentive compatible.

Example: Posted price

The auction that simply posts a fixed price to players in sequence until
one accepts is not direct revelation.

The Revelation Principle and Incentive Compatibility 11/34



Revelation Principle

Revelation Principle

If there is a mechanism implementing social choice function f in
dominant-strategy/Bayes-Nash equilibrium, then there is a direct
revelation, dominant-strategy/Bayesian incentive-compatible
mechanism implementing f.
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Revelation Principle

Revelation Principle

If there is a mechanism implementing social choice function f in
dominant-strategy/Bayes-Nash equilibrium, then there is a direct
revelation, dominant-strategy/Bayesian incentive-compatible
mechanism implementing f.

This simplifies the task of mechanism design

Task of Mechanism Design (Take 2)

Given a notion of a “good” social choice function from 7 to X, find
such a function f : T'— X such that truth-telling is an equilibrium in
the following mechanism:

@ Solicit reports t; € T; from each player i (simultaneous, sealed bid)
@ Choose outcome f(t1, ..., 1)
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2 players, with values i.i.d uniform from [0, 1], facing the first-price
auction.

First-price Auction

o Solicit bids b1, b
@ Give item to highest bidder, charging him his bid

v

Recall

The strategies where each player reports half their value are in BNE.
In other words, when player 1 knows his value v, and faces player 2
who is bidding uniformly from [0, 1/2], he maximizes his expected utility
(v1 — b1).2b; by bidding b; = v;/2. And vice versa.

o
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Example
2 players, with values i.i.d uniform from [0, 1], facing the first-price
auction.
First-price Auction
@ Solicit bids b1, by
@ Give item to highest bidder, charging him his bid

| A\

Recall
The strategies where each player reports half their value are in BNE.

In other words, when player 1 knows his value v, and faces player 2
who is bidding uniformly from [0, 1/2], he maximizes his expected utility
(v1 — b1).2b; by bidding b; = v;/2. And vice versa.

Therefore . ..
the first price auction implements in BNE the social choice function
which gives the item to the highest bidder, and charges him half his bid

| A\
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Modified First-price Auction

o Solicit bids b1, by
@ Give item to highest bidder, charging him half his bid

e Equivalently, simulate a first price auction where bidders bid
b1/2,b2/2

Truth-telling is a BNE in the modified first-price auction. \

Therefore, the modified auction implements the same social-choice
function in equilibrium, but is truthful.
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Modified First-price Auction

0 Solicit bids b1, by
@ Give item to highest bidder, charging him half his bid

e Equivalently, simulate a first price auction where bidders bid
b1/2,b2/2

Truth-telling is a BNE in the modified first-price auction.

Therefore, the modified auction implements the same social-choice
function in equilibrium, but is truthful.

Assume player 2 bids truthfully. Player 1 faces a (simulated) first price
auction where his own bid is halved before participating, and player 2
bids uniformly from [0, 1/2]. To respond optimally in the simulation, he
bids b; = v; and lets the mechanism halve his bid on his behalf.

Thé Revelation Principle and Thcentive Compatibility 13/34



Proof (Bayesian Setting)

Consider mechanism (A4, g), with BNE strategies s; : T; — A;.
@ Implements f(t1,...,tn) = g(s1(t1),- .., sn(tn)) in BNE

@ For all 7 and t;, action s;(t;) maximizes player i’s expected utility
when other players are playing s_;(t—;) for t_; ~ D|t;.
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Modified Mechanism

@ Solicit reported types t1, ..., t,
@ Choose outcome f(t1,...,tn) = g(s1(t1), - - ., $n(tn))
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Proof (Bayesian Setting)

Consider mechanism (A4, g), with BNE strategies s; : T; — A;.
@ Implements f(t1,...,tn) = g(s1(t1),- .., sn(tn)) in BNE

@ For all 7 and t;, action s;(t;) maximizes player i’s expected utility
when other players are playing s_;(t—;) for t_; ~ D|t;.

Modified Mechanism

@ Solicit reported types t1, ..., t,
@ Choose outcome f(t1,...,t,) = g(s1(t1), .., 5n(tn))
e Equivalently, simulate (A, g) when players play s;(t;)

@ Assume all players other than i report truthfully

@ When i’s type is t;, other players playing s_;(t_;) for t_; ~ D|t; in
simulated mechanism

@ As stated above, his best response in simulation is s;(¢;).

@ Mechanism transforms his bid by applying s;, so best to bid ¢;.

The Revelation Principle and Incentive Compatibility 14/34



6 Mechanisms with Money: The Quasilinear Utility Model



Incorporating Payments

To make much of modern mechanism design possible, we assume that

@ The set of outcomes has a particular structure: every outcome
includes a payment to or from each player.

@ Player utilities vary linearly with their payment.

Examples: Single-item allocation, public project,
Non-examples: Single-item allocation without money, voting.

Mechanisms with Money: The Quasilinear Utility Model 15/34



Quasilinear Utilities

The Quasi-linear Setting

Formally, X = Q x R™.

@ Q) is the set of allocations

@ For (w,p1,...,pn) € X, p; is the payment from (or to) player i.
and player #'s utility function w; : T; x X — R takes the following form

uz(t’ba (waph DR 7pn)) = 'l)i(ti,(x)) — Di

for some valuation function v; : T; x Q — R.

We say players have quasilinear utilities.

Example: Single-item Allocation
e N={e,...,en}
o uz(tzv (W’Pl» o apn)) = tjw; — p;

Mechanisms with Money: The Quasilinear Utility Model 16/34



Further simplification

Recall that, using the revelation principle, we got
Task of Mechanism Design (Take 2)

Given a notion of a “good” social choice function from 7 to X, find

such a function f : T' — X such that truth-telling is an equilibrium in
the following mechanism:

@ Solicit reports t; € T; from each player i (simultaneous, sealed bid)
@ Choose outcome f(t1, ..., 1)
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Further simplification

In quasilinear settings this breaks down further

Task of Mechanism Design in Quasilinear settings

Find a “good” allocation rule f : T'— € and paymentrule p : T — R"
such that the following mechanism is incentive-compatible:

@ Solicit reports t; € T; from each player i (simultaneous, sealed bid)

@ Choose allocation f(t)
@ Charge player i payment p;(t)

We think of the mechanism as the pair (f, p).
Sometimes, we abuse notation and think of type ¢; directly as the
valuation v; : Q — R.

Mechanisms with Money: The Quasilinear Utility Model 17/34



Incentive-Compatibility

Incentive compatibility can be stated simply now

Incentive-compatibility (Dominant Strategy)

A mechanism (f,p) is dominant-strategy truthful if, for every player ¢,
true type t;, possible mis-report ¢;, and reported types ¢_; of the

others, we have

(tl7f( )) ( ) > 'Uz(tz,f(tzat )) _pi(’tviatfi)

If (f,p) randomized, add expectation signs.

Mechanisms with Money: The Quasilinear Utility Model 18/34



Incentive-Compatibility

Incentive compatibility can be stated simply now

Incentive-compatibility (Dominant Strategy)

A mechanism (f,p) is dominant—Nstrategy truthful if, for every player i,
true type t;, possible mis-report ¢;, and reported types ¢_; of the
others, we have

(tl7f( )) ( ) > 'Uz(tuf(tzat )) —pi(a,t,i)

If (f,p) randomized, add expectation signs.

Incentive-compatibility (Bayesian)

A mechanism (f,p) is Bayesian in(ientive compatible if, for every player
i, true type t;, possible mis-report ¢;, the following holds in expectation
overt_; ~ D|t;

Elv;(ti, f()) — pi(t)] = Evi(ti, f(Ei t—)) — pi(ti,t=i)]

Mechanisms with Money: The Quasilinear Utility Model 18/34




Vickrey Auction

@ Allocation rule maps by, ..., b, to ¢;« for i* = argmax; b;
@ Payment rule maps by, ...,b, t0 p1,...,p, Where p;« = be2)s and
p; = 0 for ¢ £ ¢*.

Dominant-strategy truthful.

v

First Price Auction

@ Allocation rule maps by, ..., b, to e;+ for i* = argmax; b;

@ Payment rule maps by, ...,b, 0 p1,...,p, Where p; = by, and
p; = 0 for ¢ # i*.

For two players i.i.d U[0, 1], players bidding half their value is a BNE.
Not Bayesian incentive compatible.

A\
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Modified First Price Auction
@ Allocation rule maps by, ..., b, to e;+ for i* = argmax; b;

@ Payment rule maps by, ..., b, to p1,...,p, Where p;« = b(l)/2, and
p; = 0 for ¢ # i*.

For two players i.i.d U[0, 1], Bayesian incentive compatible.

Mechanisms with Money: The Quasilinear Utility Model 19/34



e Maximizing Welfare: The VCG Mechanism



In quasilinear setting, a simple mechanism is DSE and maximizes the
social welfare ), v;(w)
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In quasilinear setting, a simple mechanism is DSE and maximizes the
social welfare ), v;(w)

Vickrey Clarke Groves (VCG) Mechanism

@ Solicit type v; from each player i
@ Choose allocation w* € argmax,,cq Y, vi(w)
© Charge each player i payment p;(v) = h;(v—i) — > ;; vi(w*)

@ Allocation rule maximizes welfare exactly over €2

@ Player i is paid the reported value of others for the chosen
allocation, less a pivot term h;(v_;) independent of his own bid.
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In quasilinear setting, a simple mechanism is DSE and maximizes the
social welfare ), v;(w)

Vickrey Clarke Groves (VCG) Mechanism

@ Solicit type v; from each player i
@ Choose allocation w* € argmax,,cq Y, vi(w)
© Charge each player i payment p;(v) = h;(v—i) — > ;; vi(w*)

@ Allocation rule maximizes welfare exactly over €2

@ Player i is paid the reported value of others for the chosen
allocation, less a pivot term h;(v_;) independent of his own bid.

@ In most cases, the “right” pivot term is max,cq > | 41 Uj (w)

e Payment p;(v) is player i's is externality
0 0 <p;i(v) < vi(w")
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VCG is Truthful

VCG is dominant-strategy truthful. l

Maximizing Welfare: The VCG Mechanism 21/34



@ Fix reports v_; of players other than i.
@ Assume player i’s true valuation is v;
@ Player ¢’s utility when reporting v; is given by

u;(V;) = vi(w +Zv3 hi(v—),

J#
where w* € argmax, cq (@'(w) + > 4V (“’))

@ Since the pivot term is independent of player i’s bid, maximizing
u;(v;) is equivalent to maximizing

@)+ vj(w")
JFi

@ Setting v; = v; then maximizes the above expression.

o Interpretation: allow the mechanism to optimize player 7’s utility on
his behalf

Maximizing Welfare: The VCG Mechanism
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Example: Single-item Allocation

@ Welfare maximizing outcome: Allocate to player with highest value

Maximizing Welfare: The VCG Mechanism 22/34



Example: Single-item Allocation

@ Welfare maximizing outcome: Allocate to player with highest value
@ Externality of i: second-highest value if i wins, 0 otherwise.
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Example: Single-item Allocation

@ Welfare maximizing outcome: Allocate to player with highest value
@ Externality of i: second-highest value if i wins, 0 otherwise.

VCG is the second-price (Vickrey) auction in the special case of
single-item allocation. J

Maximizing Welfare: The VCG Mechanism 22/34



e Maximizing Revenue

@ The Setup: Single-Parameter Bayesian Revenue Maximization
@ Characterization of BIC
@ Myerson’s Revenue-Optimal Auction



Maximizing Revenue

Well understood in the case of single-parameter problems

Single-parameter problem (informally)
@ There is a single homogenous resource.
@ Constraints on how much of the resource each player can get
@ Each player’s type is his “value (or cost) per unit resource.”
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Maximizing Revenue

Well understood in the case of single-parameter problems

Single-parameter problem (informally)
@ There is a single homogenous resource.
@ Constraints on how much of the resource each player can get
@ Each player’s type is his “value (or cost) per unit resource.”

v

Canonical example: single-item allocation

@ Resource: one unit of item

@ Outcomes Q: vectors (x1,...,z,) Withz; > 0and ), z; <1
e x; is probability player i gets item

@ Player i’s type is v; > 0 (value for item)

° Ui(xyp) = V% — Pi

\

Maximizing Revenue 23/34



Maximizing Revenue

Makes most sense in Bayesian setting with independent types (prior
F=F1X...xFpon(vy,...,v,))

Bayesian Revenue Maximization (Single Parameter)

Given prior F on type profiles T' C R", find allocation rule z : T —
(recall 2 C R™) and payment rules p : T — R™ such that
@ (x,p) is a BIC direct revelation mechanism
e Bidding b; = v; maximizes E,_,r_,[viz;(b;,v—;) — pi(b;, v_;)]
@ Rev(z,p) =E,r ), pi(v) is as large as possible.
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Maximizing Revenue

Makes most sense in Bayesian setting with independent types (prior
F=F1X...xFpon(vy,...,v,))

Bayesian Revenue Maximization (Single Parameter)
Given prior F on type profiles T' C R", find allocation rule z : T —
(recall 2 C R™) and payment rules p : T — R™ such that
@ (x,p) is a BIC direct revelation mechanism
e Bidding b; = v; maximizes E,_,r_,[viz;(b;,v—;) — pi(b;, v_;)]
@ Rev(z,p) =E,r ), pi(v) is as large as possible.

Myerson characterized the optimal solution for single-item auctions,
and it generalizes easily to single-parameter environments

@ Think of single-item auctions in upcoming discussion
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Stages of a Bayesian Game

Stages of a Bayesian game of mechanism design:
@ Ex-ante: Before players learn their types
@ Interim: A player learns his type, but not the types of others.
@ Ex-post All player types are revealed.
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Stages of a Bayesian Game

Stages of a Bayesian game of mechanism design:
@ Ex-ante: Before players learn their types
@ Interim: A player learns his type, but not the types of others.
@ Ex-post All player types are revealed.
Interim stage is when players make decisions.
@ The interim allocation rule for player i tells us what the probability
of winning (expected amount of resource) is as a function of player
i's bid, in expectation over other player’s truthful reports.

i

@ Similarly, the interim payment rule.

pibi) = B [pi(bi,v-i)]

v_i~F g
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Stages of a Bayesian game of mechanism design:
@ Ex-ante: Before players learn their types
@ Interim: A player learns his type, but not the types of others.
@ Ex-post All player types are revealed.
Interim stage is when players make decisions.
@ The interim allocation rule for player i tells us what the probability
of winning (expected amount of resource) is as a function of player
i's bid, in expectation over other player’s truthful reports.

i

@ Similarly, the interim payment rule.

pibi) = B [pi(bi,v-i)]

v_i~F g

@ BIC: Blddlng b; = v; maximizes ’Ulfl(bz) —pi(bi)
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Stages of a Bayesian Game

Stages of a Bayesian game of mechanism design:
@ Ex-ante: Before players learn their types
@ Interim: A player learns his type, but not the types of others.
@ Ex-post All player types are revealed.
Interim stage is when players make decisions.
@ The interim allocation rule for player i tells us what the probability
of winning (expected amount of resource) is as a function of player
i's bid, in expectation over other player’s truthful reports.
Ti(bi) =  E_ [wi(bi; v-i)]

@ Similarly, the interim payment rule.
pi(bi) = B [pi(bi,v-i)]

v_j~F

@ BIC: Blddlng b; = v; maximizes ’Ulfl(bz) —pi(bi)
@ If BIC, then Rev(z,p) = ), Ey,~r, P(vi)
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Assume two players drawn independently from U0, 1].

Vickrey Auction

o El(vl) = V;

® Bi(vi) = v2/2.
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Assume two players drawn independently from U0, 1].

Vickrey Auction

o El(’()l) = V;

® Bi(vi) = v2/2.

First Price Auction

) TZ(’Ul) = v;
® p;(v;) = v7/2
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Assume two players drawn independently from U0, 1].

Vickrey Auction

o fl(’()l) = v;

® p;(vi) = v}/2.

First Price Auction

) TZ(’Ul) = v;
° Bi(ui) = 22

From now on we will write z;(b;) = 7;(b;) to avoid cumbersome notation
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Myerson’s Monotonicity Lemma

Consider a mechanism for a single-parameter problem in a Bayesian
setting where player values are independent. A direct-revelation
mechanism with interim allocation rule = and payment rule p is BIC if
and only if for each player i:

@ z;(b;) is a monotone non-decreasing function of b;

@ p;(b;) is an integral of b; dx;. Specifically, when p;(0) = 0 then
b;

55 =l () — / 25(b)db

b=0

xi(b;)+
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Interpretation of Myerson’s Monotonicity Lemma

@ The higher a player bids, the higher the probability of winning.

@ For each additional sliver e of winning probability, pays at a rate
equal to the minimum bid needed to acquire that sliver

o Recall: second price auction
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Interpretation of Myerson’s Monotonicity Lemma

@ The higher a player bids, the higher the probability of winning.

@ For each additional sliver e of winning probability, pays at a rate
equal to the minimum bid needed to acquire that sliver

o Recall: second price auction
See readings for proof of Myerson’s monotoncity Lemma
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Corollaries of Myerson’s Monotonicity Lemma

Corollaries

@ Interim allocation rule uniquely determines interim payment rule.
@ Expected revenue depends only on the allocation rule

Theorem (Revenue Equivalence)
Any two auctions with the same interim allocation rule in BNE have the
same expected revenue in the same BNE.

v
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Revenue as Virtual Welfare

Define the virtual value of player i as a function of his value v;

(o) = v — 1-— Fl(’Ul)
Pilvi) = v fi(vi)

Lemma (Myerson’s Virtual Welfare Lemma)

Consider a BIC mechanism M with interim allocation rule x and
payment rule p, and assume that p;(0) = 0 for all i. The expected
revenue of M is equal to the expected virtual welfare served.

Z E_[¢(vi)z(vi)]

vi~F;

In single-item auction, this is the expected virtual value of the winning
bidder.
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Myerson’s Revenue-Optimal Auction

@ Solicit player values
Q If at least one player has nonnegative virtual value, then give the
item to the player i with the highest virtual value ¢;(v;) > 0.
Otherwise, nobody gets the item.
© Charge the minimum bid needed to win
¢; " (max(0, (max; ¢;(v;))))
o Check: satisfies Myerson’s condition on interim payment
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Myerson’s Revenue-Optimal Auction

@ Solicit player values
Q If at least one player has nonnegative virtual value, then give the
item to the player i with the highest virtual value ¢;(v;) > 0.
Otherwise, nobody gets the item.
© Charge the minimum bid needed to win
¢; " (max(0, (max;z; ¢;(v)))))
o Check: satisfies Myerson’s condition on interim payment

V.

@ The allocation rule maximizes virtual welfare point-wise

@ Therefore, it maximizes expected virtual welfare over all allocation
rules.

@ By Myerson’s virtual welfare Lemma, revenue is at least that of
any BIC mechanism (since any BIC mechanism’s revenue is equal
to expected virtual welfare).

v
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Myerson’s Revenue-Optimal Auction

@ Solicit player values
Q If at least one player has nonnegative virtual value, then give the
item to the player i with the highest virtual value ¢;(v;) > 0.
Otherwise, nobody gets the item.
© Charge the minimum bid needed to win
¢; " (max(0, (max;z; ¢;(v)))))
o Check: satisfies Myerson’s condition on interim payment

V.

@ The allocation rule maximizes virtual welfare point-wise

@ Therefore, it maximizes expected virtual welfare over all allocation
rules.

@ By Myerson’s virtual welfare Lemma, revenue is at least that of
any BIC mechanism (since any BIC mechanism’s revenue is equal
to expected virtual welfare).

v

Are we done?
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A Wrinkle

Not really... What if the allocation rule of the mechanism we just
defined is non-monotone? It would still have revenue at least that of
the optimal BIC mechanism if players happened to report truthfully, but

it wouldn’t be truthful itself
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A Wrinkle

Not really... What if the allocation rule of the mechanism we just
defined is non-monotone? It would still have revenue at least that of
the optimal BIC mechanism if players happened to report truthfully, but
it wouldn’t be truthful itself

Fortunately

Virtual welfare maximization is monotone when the distributions are
regular!!

@ ¢i(v) =v— %U()’“) is nondecreasing in v

v

When distributions are regular, the VV maximizing auction (aka
Myerson’s optimal auction) is the revenue-optimal BIC mechanism!

A\
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Not really... What if the allocation rule of the mechanism we just
defined is non-monotone? It would still have revenue at least that of
the optimal BIC mechanism if players happened to report truthfully, but
it wouldn’t be truthful itself

Fortunately

Virtual welfare maximization is monotone when the distributions are
regular!!
@ ¢i(v) =v— %U()’“) is nondecreasing in v

v

When distributions are regular, the VV maximizing auction (aka
Myerson’s optimal auction) is the revenue-optimal BIC mechanism!

A\

@ Most natural dists are regular (Gaussian, uniform, exp, etc).
@ Can be extended to non-regular distributions via ironing, which we
will not discuss now (if at all).
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Thoughts

Myerson’s optimal auction is noteworth for many reasons

@ Matches practical experience: when players i.i.d regular, optimal
auction is Vickrey with reserve price ¢~1(0).

@ Applies to single parameter problems more generally

@ Revenue maximization reduces to welfare maximization for these
problems

@ The optimal BIC mechanism just so happens to be DSIC and
deterministic!!
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