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Preface

This text concerns a central phenomenon in mathematical optimization known as duality. The
discovery of duality was arguably one of the most influential mathematical ideas to come out of the
twentieth century, and its impact can be felt in a multitude of fields such as computer science, eco-
nomics, operations research, signal processing, machine learning, physics, and engineering. Despite
its importance, we have found that an intuitive and deep understanding of duality can be elusive,
often requiring years of experience with the topic, if it is ever attained at all.

Most texts on optimization treat duality largely as a symbolic transformation. Comparatively
little emphasis is placed on the geometry of duality, or on its various pedagogical interpretations.
Through teaching the topic over many years, the author has found that it is those interpretations
that are most effective at instilling an intuitive sense of duality. This book distills this particular
version of the story. Moreover, instead of a general treatment of linear or convex optimization,
we instead focus entirely on duality, and present topics in optimization only as they are needed to
understand the phenomenon.

The material in this book is adapted from portions of a course developed and taught by the
author at USC between 2013 and 2024, titled “Convex and Combinatorial Optimization”. We
describe the duality of linear and convex optimization problems in terms of three interpretations:
one economic, one physical, and one as an algebraic proof system. We hope that, between these
three perspectives, most readers will find something familiar with which to anchor their intuition.
In addition to the traditional algebraic form of duality, known as Lagrangian duality, we also
describe its equivalent geometric form known as polar duality. This geometric perspective enables
a common understanding of the duality of optimization problems, sets, and functions.

The audience for this book are students looking to further their understanding of duality, beyond
that encountered in most standard courses or texts on optimization. In an instructional setting,
we envision this book being used to supplement one of the many excellent introductory texts on
optimization, or as a stand-alone text for a followup course focused on duality.
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Chapter 1

A Brief Review of Linear
Programming

In this first chapter, we briefly review the basics of linear programming. We present just enough
detail to enable our exploration of duality in subsequent chapters. We refer the reader to more
comprehensive texts on linear programming and optimization for a more thorough treatment.

We emphasize the geometric and economic perspectives of linear programming. This comes at
the expense of the algebraic perspective, often rooted in the simplex method, which is predomi-
nant in most other texts on optimization. While the algebraic perspective is valuable for experts
and practitioners, we find our approach to be more accessible, and also particularly suitable as a
foundation for an intuitive grasp of duality — the goal of this book.

1.1 Linear Programming and Standard Forms

A linear programming problem is concerned with optimizing a linear function over a region of
Euclidean space defined by a set of linear equalities and inequalities. Figure 1.1 illustrates the
most general form of a linear program (henceforth, LP). Here, x ∈ Rn is a set of n real-valued
decision variables, c ∈ Rn is a fixed set of coefficients describing the linear objective function
⟨c, x⟩ ≜

∑n
j=1 cjxj , and ai ∈ Rn and bi ∈ R are given real numbers describing the ith linear

constraint comparing ⟨ai, x⟩ ≜
∑n

j=1 aijxj to bi. Each constraint can be an inequality ≤ or ≥, or

an equality =, and we use C≤, C≥,C= to denote the corresponding sets of indices. Note that the
parameters c, {ai}, {bi}, choice of linear relationships (≤, ≥, or = for each i), and the choice of
whether to maximize or minimize, all form the inputs to the linear program. The decision variables
x are the outputs. We refer to a vector x satisfying the constraints as a feasible solution of the LP
(or solution for short). The family of all feasible solutions forms the feasible region of the LP. If
x is a feasible solution and satisfies ⟨c, x⟩ ≥ ⟨c, y⟩ (or ⟨c, x⟩ ≤ ⟨c, y⟩ in the case of minimization)
for every other feasible solution y, we say x is an optimal solution to the LP, and refer to the real

maximize (or minimize)
∑n

j=1 cjxj
subject to

∑n
j=1 aijxj ≤ bi, for i ∈ C≤.∑n
j=1 aijxj ≥ bi, for i ∈ C≥.∑n
j=1 aijxj = bi, for i ∈ C=.

Figure 1.1: General Form of Linear Programming
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8 CHAPTER 1. A BRIEF REVIEW OF LINEAR PROGRAMMING

maximize ⟨c, x⟩
subject to ⟨ai, x⟩ ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

(a) Maximization

minimize ⟨c, x⟩
subject to ⟨ai, x⟩ ≥ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

(b) Minimization

Figure 1.2: The Standard Forms of Linear Programming

maximize x1 + x2
subject to x1 + 2x2 ≤ 2

2x1 + x2 ≤ 2
x1, x2 ≥ 0

Figure 1.3: A 2-D example of LP

number ⟨c, x⟩ as the optimal value of the LP. If a constraint is satisfied with equality at a solution
x (i.e. ⟨ai, x⟩ = bi), then we say the constraint is binding or tight at x.

In general, the feasible region of an LP can be equivalently described using only ≤ or only
≥ constraints. To see this, observe that every equality constraint can be replaced by a pair of
inequalities, and an inequality can be reversed by multiplying both sides by −1. Moreover, we
can turn a maximization problem into a minimization problem, or vice versa, by negating the
objective: minimizing ⟨c, x⟩ is equivalent to maximizing −⟨c, x⟩. Note that these modifications
are merely syntactic, and do not change the geometry of the feasible set nor the semantics of the
objective function. In order to further simplify our study of linear programming, we will often also
restrict our attention to LPs where variables are constrained to be nonnegative. This restriction is
without loss of semantic expressivity, since each real valued variable xi can be replaced with two
nonnegative variables x+i and x−i plus the constraint xi = x+i − x−i .

1 Thus, we can write any LP
either in maximization standard form or minimization standard form, both of which are illustrated
in Figure 1.2.2

As shorthand, we often express the feasible region of an LP in maximization [minimization]
standard form using the vector inequalities Ax ⪯ b [Ax ⪰ b] and x ⪰ 0, where A is the matrix with
ith row ai. We term the former generic constraints and the latter nonnegativity constraints. Here,
the symbol ⪯ refers to entry-wise comparison between vectors, where u ⪯ v if and only if uj ≤ vj
for every coordinate j.

1That being said, this transformation does change the geometry of the feasible set.
2Note that there are many different definitions of the “standard form” in different communities and different

textbooks; all serve the same purpose.
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Figure 1.4: Physical Interpretation of LP

A Simple Example Consider the 2-variable linear program in Figure 1.3. The optimal value of
this LP is 4

3 , and the optimal solution is (23 ,
2
3). Note that the optimal solution is the point at which

the top two constraints are binding — specifically, it is the solution of the linear system given by
x1 + 2x2 = 2 and 2x1 + x2 = 2.

1.2 Two Interpretations

We now present two interpretations of linear programming, one economic and the other physi-
cal/geometric. These interpretations will serve as an indispensable lens on duality in later chapters.
We restrict attention, without loss of generality, to maximization standard form.

Economic Interpretation. Consider a facility which produces n different products — say, house-
hold chemicals — from m different raw materials. The coefficient cj denotes the profit from selling
each kilogram of product j, aij denotes the amount (in kilograms, say) of raw material i needed to
produce a single kilogram of product j, and bi denotes the amount of raw material i available. The
linear program in Figure 1.2 can then be interpreted as solving for an amount xi of each product;
the objective is to maximize profit, and the constraints are imposed by the limited amount of raw
materials available.

Physical Interpretation. As another interpretation of linear programming, consider a room in
n dimensional space delimited by a number of walls, one for each inequality constraint. The sign of
a constraint determines on which side of the wall the room lies. The vector of objective coefficients
c described a direction, and the goal to travel as far as possible in the direction c while staying in
the room. This is illustrated in Figure 1.4.
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1.3 Basic Facts and Terminology

Before delving deeper into the properties of linear programs, we establish some basic terminology.
A hyperplane is a region of Euclidean described by a single linear equality of the form ⟨a, x⟩ = b.
A closed halfspace (or halfspace for short) is the region defined by a linear inequality of the form
⟨a, x⟩ ≤ b or ⟨a, x⟩ ≥ b. An open halfspace is the region defined by a strict linear inequality of
the form ⟨a, x⟩ < b or ⟨a, x⟩ > b. A polyhedron is the intersection of a finite number of closed
halfspaces; note that the feasible region of linear program is a polyhedron. A polytope is a bounded
polyhedron — i.e., one which does not go on forever in any direction. A vertex (a.k.a. corner or
extreme point) of a polyhedron P is a point x ∈ P with the property that there is no vector y ̸= 0
with x + y ∈ P and x − y ∈ P — i.e., P does not include a nontrivial line segment through x. A
face of a polyhedron P is the intersection with P of a hyperplane H disjoint from the interior of
P . A face can be anywhere from zero-dimensional (a vertex) to n − 1 dimensional; for example,
the faces of a two dimensional polyhedron are a collection of points and lines.

We briefly mention some basic properties of polyhedrons and linear programs which we will
need in this section. We leave the proofs as an exercise to the reader. Some of these properties will
be revisited more thoroughly when we discuss convex sets.

Fact 1.3.1. Every polyhedron P is a convex set; i.e., the line segment between any two points in
P is also in P .

When P is the feasible region of an LP with n variables, say one with constraints Ax ⪯ b for
some matrix A ∈ Rm×n, right hand side vector b ∈ Rm, and objective coefficients c ∈ Rn, we
mention three notable facts.

Fact 1.3.2. The family of optimal solutions of the LP is a convex subset of P of dimension at
most n− 1; in fact, it is a face of P .

To see this, observe that the family of optimal solutions is the intersection of P with the
hyperplane ⟨c, x⟩ = OPT , where OPT is the optimal value of the linear program.

Fact 1.3.3. At each vertex x of P , at least n constraints of the linear program are binding; moreover,
there exist n binding constraints at x which, when written as equalities, form a non-singular system
of linear equations.

In other words, there is an n× n non-singular submatrix A′ of A, and corresponding subvector
b′ of b, satisfying A′x = b′.

Fact 1.3.4. An LP falls into one of these three categories:

• The LP is bounded: There exists an optimal solution.

• The LP is unbounded: There exist arbitrarily good solutions of ever-increasing objective
values.

• The LP is infeasible: there exist no feasible solutions to the LP, i.e. P = ∅.

We have already seen an example of a bounded LP in Figure 1.3. As an example of an unbounded
LP, consider the feasible region on the left side of Figure 1.5 paired with any objective pointing
in the northeast direction. The right side of Figure 1.5 is an empty polyhedron — i.e., the LP is
infeasible. Note the terminological distinction between a bounded feasible set and a bounded LP:
Even though the feasible region on the left side of Figure 1.5 is unbounded, the corresponding LP
with an objective pointing south-east would be bounded.
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Figure 1.5: Unbounded and Infeasible LPs: arrows point to the interior of each halfspace

1.4 The Fundamental Theorem of LP

An important property of linear programs is that they typically admit “simple” optimal solutions.
This is captured by the so-called “fundamental theorem” of linear programming, which in fact
comes in a number of different guises. The most general variant is below.

Theorem 1.4.1. If the feasible region P of an LP includes no lines (i.e., for every y, d ∈ Rn, there
exists α ∈ R such that y+αd ̸∈ P ), and moreover the LP admits an optimal solution, then it also
admits an optimal solution at a vertex of P .

More useful variants of this theorem are below.

Theorem 1.4.2. If an LP has a bounded feasible region P (i.e., its feasible region is a polytope),
then it admits an optimal solution at a vertex of P .

Theorem 1.4.3. If an LP in standard form admits an optimal solution, then it admits an optimal
solution at a vertex of P .

Next, we present a proof of Theorem 1.4.1. Theorems 1.4.2 and 1.4.3 follow immediately from
Theorem 1.4.1 and the fact that neither polytopes nor the nonnegative orthant include a line.

Proof of Theorem 1.4.1. Let P = {x ∈ Rn : Ax ⪯ b} for some matrix A and vector b — recall that
any polyhedron can be written in this form. Let c ∈ Rn be the coefficients of the linear objective
function. Let x̂ ∈ P be an optimal solution to the LP with the maximum number of binding
constraints; let A′ be the submatrix of A corresponding to the binding constraints at x̂.

Suppose for a contradiction that x̂ is not a vertex of P . By the definition of a vertex, this
implies the existence of y ̸= 0 such that x̂ + y ∈ P and x̂ − y ∈ P . It must be that ⟨c, y⟩ = 0,
since otherwise either x̂+ y or x̂− y has better objective value than x. Similarly, it must be that
A′y = 0, since otherwise one of x̂+ y or x̂− y must be infeasible.

Consider the line L = {x̂+ αy : α ∈ R}. By the previous discussion, every point on L has the
same objective value as x̂, and all the binding constraints at x̂ are also binding everywhere on L.
Nevertheless, by assumption L ̸⊆ P . Convexity implies that L′ = L ∩ P is either a line segment
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with two endpoints, or a ray with a single endpoint. Let x̃ be an endpoint of L′. An additional
constraint (beyond the constraints in A′) binds at x̃, since otherwise we could “go further” along
the line L. Therefore x̃ is an optimal solution to the LP with strictly more binding constraints
than x̂, a contradiction.

As a corollary, Theorem 1.4.2 implies the following immensely-useful structural property of
linear programs in standard form, useful for LPs with more variables than constraints (excluding
nonnegativity constraints).

Corollary 1.4.4. Consider an LP in standard form with n variables and m generic constraints. If
the LP admits an optimal solution, then it also admits an optimal solution with at most m non-zero
variables.

Proof. By Theorem 1.4.2, there is an optimal solution at a vertex x∗ of the feasible region. Since
x∗ is a vertex, at least n constraints bind at x∗. Of those, at most m can be generic constraints,
meaning that at least n−m nonnegativity constraints bind at x∗. This implies that at least n−m
of the variables are zero at x∗.

Application to Optimal Production. To appreciate the utility of Corollary 1.4.4, consider
the optimal production interpretation of linear programs in standard form. The Corollary implies
that there exists an optimal production plan which produces no more products than the number
of different raw materials.



Chapter 2

Lagrangian Duality of Linear
Programs, and Three Interpretations

In this chapter, we present linear programming duality in its traditional algebraic form: as a
syntactic transformation of LPs. This is also often referred to as Lagrangian duality. While such
a mechanical algebraic definition might appear dry and devoid of intuition at first glance, we
endeavor to make it more accessible and intuitive by leaning on three equivalent interpretations:
one economic, another physical/geometric, and a third based in logical proofs.

In Chapter 9, we will complement this algebraic form with its instructive, and arguably most
enlightening, geometric analogue: polar duality.

2.1 The LP Duality Transformation

Linear programs come in pairs, where each maximization problem is associated with a dual mini-
mization problem and vice versa. Moreover, the dual of the dual of an LP is the LP itself — i.e.,
duality, viewed as a relation on the space of linear programs, is an involution. When starting with
an LP which most naturally encodes the task at hand, it is customary to refer to that original LP
as the primal LP and to its dual as the dual LP, although in principle this nomenclature could be
flipped. The dual of an LP provides a different, and often enlightening and useful, way of looking
at the same optimization problem.

We begin by defining the syntactic transformation which derives the dual of an LP. Whereas this
transformation might appear arbitrary to the unfamiliar reader, its genesis will become more clear
over the course of this Chapter as well as Chapter 8. Starting with a primal LP in maximization
standard form, as in Figure 2.1a, its dual is the LP in minimization standard form shown in Figure
2.1b. It is useful to view these programs in the shorthand form shown in Figure 2.2. Here, the

maximize
∑n

j=1 cjxj
subject to

∑n
j=1 aijxj ≤ bi, for i = 1, . . . ,m.

xj ≥ 0, for j = 1, . . . , n.

(a) Maximization

minimize
∑m

i=1 biyi
subject to

∑m
i=1 aijyi ≥ ci, for j = 1, . . . , n.

yi ≥ 0, for i = 1, . . . ,m.

(b) Minimization

Figure 2.1: The Primal and Dual of an LP in Standard Form
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14CHAPTER 2. LAGRANGIAN DUALITY OF LINEAR PROGRAMS, AND THREE INTERPRETATIONS

maximize ⟨c, x⟩
subject to Ax ⪯ b

x ⪰ 0

(a) Maximization

minimize ⟨b, y⟩
subject to A⊺y ⪰ c

y ⪰ 0

(b) Minimization

Figure 2.2: The Primal and Dual of an LP in Standard Form (shorthand)

x1 x2 x3 x4
y1 a11 a12 a13 a14 b1
y2 a21 a22 a23 a24 b2
y3 a31 a32 a33 a34 b3

c1 c2 c3 c4

Figure 2.3: Visualizing Variable/Constraint Correspondence

(given) parameters of each LP are the matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn, whereas
x ∈ Rn is the vector of primal variables and y ∈ Rm is the vector of dual variables. Conversely, if
we start with an LP in minimization standard form, as in Figure 2.1b, then its dual is the LP in
maximization standard form shown in Figure 2.1a; in this case, we term y the primal variables and
x the dual variables instead.

Note that generic constraints of the standard-form primal are in one-to-one correspondence
with variables of its dual, and similarly for variables of the primal and constraints of the dual. We
say that yi is the dual variable corresponding to the primal constraint

∑n
j=1 aijxj ≤ bi, and that∑m

i=1 aijyi ≥ ci is the dual constraint corresponding to primal variable xj . Figure 2.3 can serve as
an aid to visualizing this correspondence: the rows give the primal constraints and corresponding
dual variables, and the columns give the dual constraints and corresponding primal variables. This
correspondence between variables and constraints is not a coincidence: each variable of the dual
measures the “importance” of the corresponding primal constraint at the optimal solution, and
vice versa. We elaborate on this in Section 3.3.

When faced with an LP in general form, we could derive a dual by first converting it to a
standard form, then applying the transformation of Figure 2.1. There are multiple equivalent ways
of doing this, all of which yield LPs which are essentially equivalent, but some of which are simpler
to describe than others. We fix a standardized and convenient way of deriving the dual, shown
in Figure 2.4: The dual of a maximization problem as in 2.4a is the minimization problem in
2.4b, and vice versa. Here, the (given) parameters of each LP are the matrix A ∈ Rm×n, vectors
b ∈ Rm and c ∈ Rn, disjoint index sets C1, C2 ⊆ [m], and disjoint index sets D1,D2 ⊆ [n]. As
shorthand, we use ai to denote the ith row of A and aj to denote the jth column of A. Note that,
as in the case of a primal/dual pair in standard form, there is still a one-to-one correspondence
between primal constraints and dual variables, as well as primal variables and dual constraints. A
useful rule of thumb for remembering the transformation of Figure 2.4 is the following: A “loose”
(i.e., unconstrained) variable is dual to a “tight” (i.e., equality) constraint, and a “tight” (i.e.,
nonnegative or nonpositive) variable is dual to a “loose” (i.e., inequality) constraint.

It is simple to verify that the duality transformation of Figure 2.1 is a special case of that in
Figure 2.4. The reader is also invited to verify that deriving the dual using the transformation of
Figure 2.4 is equivalent — up to simple syntactic transformations and a change of variables — to
first converting to a standard form then applying the transformation of Figure 2.1. We note that
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maximize ⟨c, x⟩
subject to ⟨ai, x⟩ ≤ bi, for i ∈ C1.

⟨ai, x⟩ ≥ bi, for i ∈ C2.
⟨ai, x⟩ = bi, for i ∈ [m] \ (C1 ∪ C2).
xj ≥ 0, for j ∈ D1.
xj ≤ 0, for j ∈ D2.

(a) Maximization

minimize ⟨b, y⟩
subject to ⟨aj , y⟩ ≥ cj , for j ∈ D1.

⟨aj , y⟩ ≤ cj , for j ∈ D2.
⟨aj , y⟩ = cj , for j ∈ [n] \ (D1 ∪ D2).
yi ≥ 0, for i ∈ C1.
yi ≤ 0, for i ∈ C2.

(b) Minimization

Figure 2.4: The Primal and Dual of a General LP

we distinguish variable nonnegativity and nonpositivity constraints from generic constraints when
deriving the dual; this is merely for convenience, as an equivalent — though less elegant — dual
could be derived by treating all constraints generically.

2.2 Three Interpretations of LP Duality

There is both a natural and formal relationship between an LP and its dual. Before presenting the
formal relationship, captured by the theorems of weak and strong LP duality, we build intuition
through three different interpretations: one economic, one logical, and one physical. We will reflect
back on these three interpretations when we present the duality theorems in Section 2.3. The reader
can choose whichever of these interpretations best develops their intuition.

Economic Interpretation Consider an LP in maximization standard form as in Figure 2.1a,
interpreted as an optimal production problem faced by a production facility as described in Sec 1.2.
The dual, shown in Figure 2.1b admits a natural interpretation as a problem facing a buyer of raw
materials. In particular, the buyer must choose a price yi to offer the facility per unit of the ith raw
material. The prices are constrained so that the facility has incentive to sell all its raw materials
rather than engage in any production. In particular, the jth generic constraint of the dual requires
that the materials involved in producing a single unit of product j would fetch at least as much
from being sold in raw form as would a unit of product j. Subject to incentivizing the facility
to sell, the buyer looks to minimize the total price paid for all raw materials, as captured by the
objective.

Logical Interpretation The dual of a maximization (minimization) LP can be interpreted as
searching for a proof of the best possible upper bound (lower bound) on the optimal value which
can be obtained by algebraically combining the constraints. This is best illustrated via an ex-
ample. Consider the maximization LP in Figure 1.3, with optimal value 4/3. Observe that
the constraint x1 + 2x2 ≤ 2, along with the fact that variables are nonnegative, implies that
x1 + x2 ≤ x1 + 2x2 ≤ 2. This proves an upper bound of 2 on the optimal value. We could obtain
a tight upper bound by forming an appropriate linear combination of the two generic constraints:
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1/3× (x1 + 2x2 ≤ 2)

+

1/3× (2x1 + x2 ≤ 2)

x1 + x2 ≤ 4/3

More generally, consider an LP in maximization standard form as in Figure 2.2a. Its dual, shown
in Figure 2.2b, searches for nonnegative coefficients y1, . . . , ym for each of the m generic constraints.
Multiplying the ith constraint by yi and adding them up yields the inequality (y⊺A)x ≤ y⊺b. When
A⊺y ⪰ c, as required by the dual constraints, we conclude an upper bound of ⟨b, y⟩ on the primal
optimal value:

⟨c, x⟩ ≤ ⟨A⊺y, x⟩ = y⊺Ax ≤ y⊺b = ⟨b, y⟩.

The objective of the dual is to minimize ⟨b, y⟩, in order to get the tightest upper bound possible.
A similar exercise shows that dual of a minimization LP searches for the best possible lower

bound of the optimal value of the primal.

Physical Interpretation Recall that any LP with variables x ∈ Rn can be written in the
following form, without altering the geometry of the feasible set nor the semantics of the objective
function.

maximize ⟨c, x⟩
subject to ⟨ai, x⟩ ≤ bi, for i = 1, . . . ,m.

As described in Section 1.2, and illustrated in Figure 1.4, this can be interpreted as physical
optimization problem set in an n-dimensional room. The room has m walls, with the ith wall
described by the equation ⟨ai, x⟩ = bi. The vector ai is normal to the wall, and determines the
“side” of the wall containing the room: a position vector ai with its tail at the wall points “outside”
the room. The objective is to travel as far as possible in the direction c without leaving the room.

We interpret this (primal) LP as describing the outcome of the following physical process.
There is a tiny ball which is initially at an arbitrary starting point inside the room. Without loss
of generality by a basic shifting argument, we may assume that this arbitrary starting point is the
origin 0 ∈ Rn. A force field then applies a force vector c to the ball, and maintains this force
indefinitely regardless of the position of the ball. Assuming frictionless walls, and a room which is
“bounded” in the direction c, the ball eventually comes to rest at the furthest point in the room
in the direction c; i.e., at the optimal solution of the primal LP. When the ball comes to rest, the
walls adjacent to the ball collectively counteract the force vector c, with each wall producing a force
perpendicular to its surface. This process is illustrated in Figure 2.5. Another interpretation of the
objective function ⟨c, x⟩ is the amount of work done on the ball, by the force field, in traveling from
the origin to the point x; equivalently, the potential energy difference between the origin and x.

Using the rules of Figure 2.4 we obtain the following dual, with the equality constraints combined
into a single vector equality for convenience.

minimize ⟨b, y⟩
subject to

∑
i yiai = c

yi ≥ 0, for i = 1, . . . ,m.

The dual can be interpreted as solving for the forces exerted on the ball at its resting place x∗.
The dual variable yi ≥ 0 determines the magnitude yi||ai|| of the force exerted on the ball by the
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Figure 2.5: Physical Interpretation of LP

ith wall in direction − ai
||ai|| , and the dual equality constraints guarantee that net force on the ball

c−
∑

i yiai is zero.
To appreciate the dual objective function, imagine shrinking the room to a point (the origin)

by slowly shifting each wall i a distance of bi
||ai|| in the direction − ai

||ai|| . This takes the ball from its

resting place x∗ back to the origin, doing work on the ball in the process. Specifically, wall i would
do a total work of yi||ai|| · bi

||ai|| = yibi on the ball. The dual objective, therefore, is the total work
done on the ball in the process of moving it from its resting place back to the origin. Underlying
the dual is the fact that the forces on the ball at its resting place can return the ball to the origin
with the minimum amount of work; by strong duality (Section 2.3.2), an amount of work equal to
the potential energy difference (due to the force field) between the resting position and the origin
of the ball.

2.3 The LP Duality Theorems

2.3.1 Weak Duality

Weak duality states that the dual of a maximization problem bounds the value of the primal from
above, and the dual of a minimization problem bounds its value from below.

Theorem 2.3.1 (Weak Duality). Consider a primal LP with variables x ∈ Rn and maximization
objective ⟨c, x⟩, and its dual with variables y ∈ Rm and minimization objective ⟨b, y⟩. For every
primal feasible x and dual feasible y, we have ⟨c, x⟩ ≤ ⟨b, y⟩.

Proof. From the discussion of Section 2.1, it is sufficient to prove this for a primal and dual in
standard form as in Figure 2.2. Let x ⪰ 0 and y ⪰ 0 be such that Ax ⪯ b and A⊺y ⪰ c. We have

⟨c, x⟩ ≤ ⟨A⊺y, x⟩ (By x ⪰ 0 and c ⪯ A⊺y)

= y⊺Ax

= ⟨y,Ax⟩
≤ ⟨y, b⟩ (By y ⪰ 0 and Ax ⪯ b)

The following corollary lists some immediate consequences of Theorem 2.3.1.

Corollary 2.3.2. Consider a primal LP with variables x ∈ Rn and maximization objective ⟨c, x⟩,
and its dual with variables y ∈ Rm and minimization objective ⟨b, y⟩. Let OPTp and OPTd denote
the optimal values of the primal and dual, respectively, in the event that the corresponding program
is feasible and bounded. The following hold:
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• If both the primal and dual are feasible and bounded, then OPTp ≤ OPTd.

• If y is dual feasible, and the primal program is feasible, then the primal is bounded and
OPTp ≤ ⟨b, y⟩.

• If x is primal feasible, and the dual program is feasible, then the dual is bounded and OPTd ≥
⟨c, x⟩.

• Suppose that x is primal feasible, y is dual feasible, and ⟨c, x⟩ = ⟨b, y⟩. It follows that x and y
are optimal solutions of the primal and dual, respectively, and moreover that OPTp = ⟨c, x⟩ =
⟨b, y⟩ = OPTd.

• If the primal is unbounded, then the dual is infeasible. Conversely, if the dual is unbounded
then the primal is infeasible.

Whereas the proof of Theorem 2.3.1 was somewhat algebraic and mechanical, much intuition can
be gleaned from reflecting on weak duality in the context of our three interpretations of Section 2.2.
Below, we restate weak duality in the language of each interpretation.

Economic Interpretation If prices on raw materials are set so that the facility (weakly) prefers
to sell the raw materials over producing any individual product, then selling all raw materials is at
least as profitable than any production schedule.

Logical Interpretation Algebraically combining the constraints, in the manner suggested by
the dual and described in Section 2.2, yields a sound proof system for establishing bounds on the
optimal value of the primal.

Physical Interpretation Consider a ball at position x in the room. Shrinking the room to a
point as described in Section 2.2, and in the process returning the ball from x to the origin, must do
at least as much work on the ball as the potential energy difference (due to the force field) between
the origin and x.

2.3.2 Strong Duality

Strong duality states that the bounds implied by weak duality are in fact tight. In other words,
the primal and dual are two different perspectives on what is essentially the same optimization
problem.

Theorem 2.3.3 (Strong Duality). If either a linear program or its dual is feasible and bounded,
then both programs are feasible, bounded, and have the same optimal value.

The formal proof of strong LP duality is somewhat technical, so we defer it to Appendix A.
Instead, we include an informal proof at the end of this section, which we hope is useful for building
the reader’s intuition. But first, as we did for weak duality, we restate strong duality in the language
of each of our three interpretations.

Economic Interpretation One can set prices on raw materials so that, in addition to weakly
preferring to sell raw materials over producing any individual product, the facility is indifferent
between selling all raw materials and engaging in optimal production.
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Logical Interpretation Algebraically combining the constraints, in the manner suggested by
the dual and described in Section 2.2, yields a complete proof system for establishing bounds on
the optimal value of the primal.

Physical Interpretation Consider a ball at its final resting position x against some walls of the
room. Shrinking the room to a point as described in Section 2.2 can return the ball to the origin
without wasting any energy. In other words, the amount of work done on the ball by the walls can
— through a proper assignment of forces to the walls — be made to equal the potential energy
difference (due to the force field) between the origin and x.

Our informal proof of strong duality hinges on the physical interpretation above.

Informal Proof of Theorem 2.3.3. Consider a pair of dual linear programs, and assume one of them
is feasible and bounded — without loss of generality, the primal. Also without loss of generality,
we assume that the primal is written as a maximization problem, and the dual is therefore a
minimization problem, and both are written in the forms used for our physical interpretation of
Section 2.2. By weak duality (Theorem 2.3.1), it suffices to exhibit primal and dual solutions with
the same objective value.

Consider the physical interpretation of the primal, and let x ∈ Rn be the final resting position
of the ball; i.e., x is an optimal solution to the primal, with optimal value ⟨c, x⟩. Since the ball is
stationary at x, the force field c will be neutralized by the forces exerted on the ball by the walls.
In particular, there exist force multipliers y ⪰ 0 such that

∑m
i=1 yiai = c. Therefore y is a feasible

solution to the dual.
We now make a somewhat informal leap based on our intuition regarding this physical system.

In particular, when the ball is stationary we expect that only the walls adjacent to the ball exert
any force at all on the ball. Formally, this means that yi > 0 only if ⟨ai, x⟩ = bi, or equivalently
that yi(bi − ⟨ai, x⟩) = 0. This allows us the complete the proof.

⟨b, y⟩ − ⟨c, x⟩ = ⟨b, y⟩ − ⟨A⊺y, x⟩
= ⟨b, y⟩ − x⊺A⊺y

= ⟨b, y⟩ − ⟨Ax, y⟩
= ⟨y, b−Ax⟩

=
∑
i

yi(bi − ⟨ai, x⟩)

= 0

We find that this informal proof is all one needs to appreciate the mathematics of LP duality.
That said, a formal proof is presented in Appendix A for the interested reader.
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Chapter 3

Some Consequences of LP Duality

In this chapter, we present some important consequences of the duality theorems of linear program-
ming, viewed through the lens of our three interpretations.

3.1 Complementary Slackness

Complementary slackness describes a relationship which holds between every pair of primal and
dual optimal solutions. This relationship is useful for a number of reasons, as it often reveals
structure in the underlying linear programs, and moreover enables recovering a primal solution
from a dual solution and vice versa.

Consider a primal LP and its dual in general form as in Figure 2.4. Let x and y be feasible
solutions to the primal and dual, respectively. The pair (x, y) is said to satisfy complementary
slackness if and only if the following hold:

• xj(⟨aj , y⟩ − cj) = 0 for all j.

• yi(bi − ⟨ai, x⟩) = 0 for all i.

In other words, complementary slackness requires that each primal (dual) variable is nonzero only
if its corresponding dual (primal) constraint is binding. Equivalently, each primal (dual) constraint
is slack only if its corresponding dual (primal) variable is zero. We can show that complementary
slackness holds at optimality for every pair of dual linear programs.

Theorem 3.1.1 (Complementary Slackness). Consider a primal LP and its dual in general form
as in Figure 2.4. Let x and y be feasible solutions to the primal and dual, respectively. x and y are
both optimal for their respective programs if and only if complementary slackness holds for (x, y).

Proof. We begin by proving this for linear programs in standard form, as in Figure 2.1. Let x and
y be primal and dual feasible solutions: x ⪰ 0, Ax ⪯ b, y ⪰ 0, A⊺y ⪰ c. Let si = bi − ⟨ai, x⟩ be
the ith primal slack variable, and let tj = ⟨aj , y⟩ − cj denote the jth dual slack variable. Note that
s, t ⪰ 0. We can write the gap between the value of the dual and the value of the primal as follows.

⟨y, b⟩ − ⟨c, x⟩ = y⊺(Ax+ s)− (A⊺y − t)⊺x

= y⊺Ax+ y⊺s− y⊺Ax+ t⊺x

= ⟨y, s⟩+ ⟨x, t⟩

21
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Strong and weak duality imply that x and y are both optimal if and only if the above gap is
zero. Since y, x, s, t ⪰ 0, the expression ⟨y, s⟩+ ⟨x, t⟩ is zero if and only if complementary slackness
holds for (x, y).

To generalize this proof to LPs in general form, we first convert to a pair of dual LPs in standard
form as in Figure 2.1. For each pair of solutions to the original pair of linear programs, we convert
to a pair of solutions to the standard form LPs, deduce complementary slackness there, then convert
back. The details are straightforward, and left as an exercise for the reader.

To build intuition, we now restate Theorem 3.1.1 in the language of two of our interpretations
from Section 2.2

Economic Interpretation Given a production schedule x and dual offer prices y for the raw
materials, both x and y are optimal if and only if

• Facility only manufactures products for which it is indifferent between production and sale.

• Only raw materials which are binding constraints on production command a non-zero price.

Physical Interpretation Let x be a position for the ball, and let y be forces exerted on the ball
by the walls. The ball is at rest if and only if only the walls adjacent to the ball at x push on the
ball with a non-zero amount of force.

3.2 Computational Equivalence of Primal and Dual

We will encounter linear programs where it is easier to solve a linear program’s dual than to solve
the primal directly (or vice versa). Typically in such scenarios, complementary slackness permits
recovering the solution of the primal from that of the dual (or vice versa) through solving a linear
system. The general situation is somewhat intricate, so we first present it under the assumption
that both LPs are in standard form, and that neither exhibits degeneracy.

A linear program is said to be degenerate if there exists an optimal vertex where the number
of tight constraints exceeds the number of the variables of the LP. This can occur only when the
constraints of the LP are redundant : some of the constraints can be removed without affecting the
feasible region of the LP. An example of a degenerate LP is shown in Figure 3.1.

Theorem 3.2.1. Consider a primal/dual pair of linear programs in standard form, and let n and
m denote the number of variables and generic constraints of the primal, respectively. Suppose
both LPs are non-degenerate. Given a vertex optimal solution to one of the LPs, a vertex optimal
solution to the other can be computed by solving a non-singular min(n,m) ×min(n,m) system of
linear equations.

Proof. We show how to recover the solution of a primal LP in maximization standard form from
a solution to its dual; the other direction is essentially identical. Let the primal and dual be as in
Figure 2.1, and let y ∈ Rm be a given vertex optimal solution to the dual. The primal admits at
least one vertex optimal solution, by Theorem2.3.3.

Note that the dual feasible region is described by n generic constraints and m nonnegativity
constraints, for a total of m+n constraints. Fact 1.3.3 and the assumption of non-degeneracy imply
that exactly m dual constraints bind at y, leaving n loose dual constraints (some generic, some
nonnegativity). Complementary slackness (Theorem 3.1.1) then helps us identify n corresponding
constraints of the primal (some nonnegativity, some generic) which must be tight at every primal
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Figure 3.1: A Degenerate LP

optimal solution. This yields an n×n system of linear equations which is satisfied by every primal
optimal solution. Non-degeneracy implies that no other constraints can be tight at a vertex optimal
solution to the primal. Invoking Fact 1.3.3, this in turn implies that our n×n system of equations
is non-singular, and its solution is the unique optimal solution to the primal.

When n ≤ m, our proof is complete. However, when n > m, we observe that our non-singular
n × n system of equations includes at most m generic primal constraints, with the remaining
constraints setting at least n −m primal variables to zero. Discarding n −m variables which are
set to zero, we obtain a non-singular m × m system of linear equations whose solution sets the
remaining m variables.

Our assumption that our linear programs are in standard form is typically without loss, since in
most cases we may convert the LPs to standard form without significant computational overhead.
Our assumption of non-degeneracy simplified our proof. However, this assumption tends to be
unnecessary in practice, since most algorithms for solving a linear program produce, as a byproduct,
a non-singular system of tight constraints describing the solution. In particular, alongside the dual
optimal solution y, we can identify the tight dual constraints at y which are non-redundant. The
other tight constraints at y are redundant and may be discarded or, equivalently, treated as if they
were loose by setting the corresponding primal variables to zero.

3.3 Sensitivity Analysis

It is often useful to analyze how small changes in the inputs to a linear program affect its outputs.
Consider a linear program in (maximization or minimization) standard form as in Figure 2.2. Its
optimal value OPT is a function of its input parameters A, b, and c. This function is continuous,
but is in general non-differentiable. Nevertheless, where it is differentiable its partial derivatives
yield useful information about the “importance” of each input in determining the optimal value.
In our economic interpretation, for example, one may ask how a small increase in one or more raw
materials affects profits. We summarize some basic results on sensitivity in the following theorem.

Theorem 3.3.1. Consider a primal-dual pair of linear programs in standard form in Figure 2.1,
with input parameters {aij}, {bi}, and {cj}. The following holds for the optimal value OPT as a
function of the input parameters.
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• If there is a unique primal optimal x∗, then OPT is differentiable with respect to c at (A, b, c)
with ∂OPT

∂cj
= x∗j .

• If there is a unique dual optimal y∗, then OPT is differentiable with respect to b at (A, b, c)
with ∂OPT

∂bi
= y∗i .

Proof. Consider the primal linear program, and suppose x∗ is the unique primal optimal. It follows
from Theorem1.4.3 that x∗ is a vertex and that every other vertex is strictly suboptimal. Consider
adding δ to cj , where δ ̸= 0 is sufficiently small to preserve optimality of x∗ among the finite set of
vertices (and therefore overall by Theorem1.4.3). The optimal value increases by δx∗j . Taking the

limit as δ → 0 (whether from above or from below), it follows that ∂OPT
∂cj

= x∗j .

A symmetric argument applied to the dual linear program, with unique optimal y∗, shows that
∂OPT
∂bi

= y∗i .



Chapter 4

Examples of LP Duality Relationships

This chapter presents three illustrative examples of duality relationships, which will help build
an intuitive grasp of the concept. In each case, the dual lends an alternative perspective to the
optimization problem at hand.

4.1 The Shortest Path Problem

In the shortest path problem, we are given a directed graph (a.k.a. a network) G = (V,E), where
V is a finite set of nodes and E ⊆ V ×V is a set of edges (a.k.a. links). Each edge e ∈ E is labeled
with its length ℓe ∈ R. We are given two nodes s, t ∈ V , and the goal is to find the shortest path
from s to t in the graph. An example is shown in Figure 4.1.

The problem of searching for the shortest path can be encoded as a linear program as follows.
We designate a nonnegative variable xe for each edge e, serving as an indicator as to whether e is
part of the shortest path. We envision that our variables will be set to 0 or 1, though do not impose
those constraints directly (in fact, such an integer constraint is impossible in linear programming).
The constraints we do impose, however, require that the path exits s one more time than it enters,
enters t one more time that it exits, and for every v ∈ V \ {s, t} the path enters v as many times
as it exits. The LP objective minimizes the length of the path. The resulting LP is shown in
Figure 4.2a, where Ein(v) and Eout(v) denote the edges into and out of v ∈ V , respectively. It can
be formally shown that vertices of this LP just so happen to set each variable to 0 or 1, rendering

s t

1

2

1

2

3

5

2

3
0

0
1

2

3
1

Figure 4.1: The Shortest Path Problem
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minimize
∑

e∈E ℓexe
subject to

∑
v∈Ein(s)

xe −
∑

e∈Eout(s)

xe = −1∑
v∈Ein(t)

xe −
∑

e∈Eout(t)

xe = 1∑
v∈Ein(v)

xe −
∑

e∈Eout(v)

xe = 0, for v ∈ V \ {s, t} .

xe ≥ 0, for e ∈ E.

(a) Primal

maximize yt − ys
subject to yv − yu ≤ ℓe, for (u, v) ∈ E.

(b) Dual

Figure 4.2: The Shortest Path LP and its Dual

integer constraints unnecessary; we say the LP is integral, or an (exact) LP formulation for the
shortest path problem.

Applying the duality transformation of Section 2.1, we derive the dual LP shown in Figure 4.2b.
The dual LP can be interpreted as solving a natural maximization problem, as follows. Suppose
that each edge e = (u, v) is a rope of length ℓe connecting nodes u and v. Holding node s in one
hand and t in the other, how far apart can you pull s and t without severing any of the ropes? This
question is modeled by the dual LP as follows: We interpret yv as the “height” of node v. The LP
constraints require, for each edge e = (u, v), that v not be so high relative to u so as to result in
severing e. Subject to these constraints, the objective maximizes the difference in heights between
t and s.

Some thought reveals that the shortest path between s and t serves as the limit on the difference
in heights between t and s. Hence the two problems are equivalent or, more precisely, dual to each
other.

4.2 Maximum Weight Matching

In the maximum-weight matching problem, there is an undirected graph G = (V,E), where V is a
set of nodes and E ⊆

(
V
2

)
is the set of (undirected) edges. Moreover, for each e ∈ E we are given a

weight we ∈ R. A matching is a set of edges M ⊆ E such that each node appears at most once in
M . The objective is to find a matching M of maximum total weight w(M) =

∑
e∈M we.

Consider the following linear program for the maximum weight matching problem. We designate
a nonnegative variable xe for each pair e ∈ E, serving as an indicator as to whether e ∈ M . As in
the shortest path problem, we envision that our variables will be set to 0 or 1, though do not impose
this integer constraint directly (which, again, is impossible in a linear program). The constraints
we do impose restrict each node to appearing at most once. The LP objective maximizes the total
weight of the matching. The resulting LP is shown in Figure 4.3a, where E(v) ⊆ E denotes the
edges incident on node v.

It is worth noting that, unlike in the shortest path problem, we can not guarantee that solving
this LP yields an integer solution in general. In other words, for some graphs we might obtain a
fractional matching. This linear program is therefore not an exact LP formulation of maximum
weight matching in general graphs, but rather what is known as a linear programming relaxation
of the problem. As we will see later in this text, a relaxation of a combinatorial problem is often of
great utility in the design of approximation algorithms and heuristics, and in identifying tractable
special cases. In the case of maximum weight matching, it can be shown that our LP is indeed an
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maximize
∑

e∈E wexe
subject to

∑
e∈E(v) xe ≤ 1, for v ∈ V.

xe ≥ 0, for e ∈ E.

(a) Primal

minimize
∑

v∈V pv
subject to pu + pv ≥ w(u,v), for (u, v) ∈ E.

pv ≥ 0, for v ∈ V.

(b) Dual

Figure 4.3: An LP for Max-Weight Matching and its Dual

exact formulation when the graph is bipartite: when vertices can be partitioned into two “sides”
such that each edge is incident to a node from each side. The reader may assume that the graph
is bipartite, and hence the LP integral, for the rest of this section.

Applying the duality transformation of Section 2.1, we derive the dual LP shown in Figure 4.3b.
In order to appreciate the relationship between the primal and dual, consider the following inter-
pretation of both programs. We interpret each node v ∈ V as a production resource, and each edge
e = (u, v) as a potential investment project which requires resources u and v and generates profit
we. The primal problem captures the task of an investor looking to select a profit-maximizing set
of projects, subject to the constraint that a resource can be used by at most a single project at a
time. The dual problem, on the other hand, captures the task of a buyer looking to purchase all
the resources by offering a price pv for each resource v. For the offer to be accepted, it must be
more profitable for the investor to sell any pair of resources (u, v) than to undertake the investment
e = (u, v). The dual LP solves the buyer’s problem of minimizing the total amount paid, subject
to the offer being acceptable to the investor.

Given this interpretation, weak duality implies that acceptable offers have the buyer paying at
least as much as the investor’s profit from any feasible set of projects. Strong duality implies that,
at optimality, the buyer’s cost equals the investor’s profit.

4.3 Zero Sum Games

One of the early motivating applications of linear programming is in the context of game theory.
This is the field which studies scenarios, known as games, where strategic and self-interested agents
interact. Such interactions may involve competition, cooperation, or elements of both. Linear
programming is very closely related to games of pure competition between two players, known
as two-player zero-sum games. Despite the restriction to two players and pure competition, the
influence that the study of these games has had on mathematics, economics, and science is difficult
to overstate.

We model a two-player zero-sum game using a matrix A, where rows index the actions of the row
player, and columns index the strategies of the column player. Each cell of the matrix describes the
utility to each player from the corresponding pair of strategies. Being a model of pure competition,
one player’s gain is the other’s loss in zero-sum games. A single real number aij then suffices for
each entry of the matrix corresponding to row i and column j, which by convention we will fix to
be the utility of the column player. The utility of the row player is therefore presumed to be −aij .

1

We restrict attention to games with finitely many actions, and use m to n to denote the number
of strategies for the row and column player respectively; in other words, A is an m× n matrix. A
popular example of zero-sum games is the game of Rock-Paper-Scissors, shown in Figure 4.4.

1Zero-sum games are equivalent to constant sum games, where the sum of players’ utilities is fixed regardless of
their strategies. For simplicity, we will stick to zero-sum games.
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R P S

R 0 1 −1

P −1 0 1

S 1 −1 0

Figure 4.4: Rock-Paper-Scissors as a Zero-Sum Game

When the row player plays i and the column player plays j, the column player’s utility is aij (and
the row player’s utility is therefore −aij). We also allow randomized play, where each player chooses
their strategy randomly. In particular, we allow the column player selects column j with probability
xj ≥ 0, where

∑n
j=1 xj = 1. Similarly, the row player selects row i with probability yi ≥ 0, where∑m

i=1 yi = 1. We refer to the vectors x and y as mixed strategies. The original (deterministic)
strategies, indexed by rows and column, are contrastingly referred to as pure strategies to avoid
ambiguity. We assume that the players do not coordinate their play, in the sense that they draw
their random strategies independently of each other. It follows therefore that with probability yixj ,
the row player plays i and the column player plays j, yielding utility aij to the column player. We
can therefore write the column player’s expected utility as follows:

m∑
i=1

n∑
j=1

yixjaij = yTAx.

Naturally, the row player’s expected utility is the negation of this quantity.
To fully specify the game, we need to fix an order of events. We examine two possible setups,

as understanding the relationships between them is key to appreciating the connection between
zero-sum games and linear programming duality. The first, and perhaps most familiar, is the
simultaneous move game in which players select their strategies simultaneously. The second is the
Stackelberg game, where one player moves first by selecting his strategy, and the second responds
by selecting her own. When the first mover chooses a mixed strategy, we assume the second-mover
only learns its distribution but not its realization. Whereas in the simultaneous move game neither
player has an advantage over the other beyond that baked into the game matrix, the asymmetry
of the Stackelberg setting can result in a first mover or second mover advantage in general games.

A primary concern of game theory is to predict the outcome of games, when players act strategi-
cally to maximize their utilities. The key concept here is that of an equilibrium: a choice of strategy
by each player so that neither player can gain by unilaterally deviating. In the simultaneous move
setting, where the row player selects y∗ and the column player selects x∗, this means that each
player’s strategy is a best response to the other’s strategy as follows:

• y∗ is a best response by the row player to x∗, in that it minimizes yTAx∗ over all y.

• x∗ is a best response by the column player to y∗, in that it maximizes (y∗)TAx over all x.

When y∗ and x∗ are pure strategies, meaning that y∗ = ei and x∗ = ej for a row i and column j,
we refer to (x∗, y∗) as a pure equilibrium. Otherwise, we refer to it as a mixed equilibrium. The
only simultaneous-move equilibrium of the Rock-Paper-Scissors game is that where each player
uniformly randomizes over his strategies, assigning equal probability of 1/3 to each of Rock, Paper,
and Scissors. Each player has an equal probability of a win, lose, and tie, and therefore has expected
utility zero in this equilibrium. There is no pure equilibrium of Rock-Paper-Scissors.

In the Stackelberg setting, the situation is somewhat more nuanced. The player who moves
second best responds as in the simultaneous move game. The player moving first, however, cannot
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maximize u

subject to Ax ⪰ u1⃗∑
j xj = 1

x ⪰ 0

(a) Column Player Moves First (Maximin)

minimize v

subject to AT y ⪯ v1⃗∑
i yi = 1

y ⪰ 0

(b) Column Player Moves Second (Minimax)

Figure 4.5: Stackelberg Equilibria of Zero-Sum Game as Linear Programs

best respond in the same manner: he must plan ahead, knowing that his opponent will base their
strategy on his own. When the column player moves first, the equilibrium conditions are as follows:

• x∗ maximizes the column player’s expected utility, given the row player will best respond to
x∗. In particular, x∗ maximizes miny y

TAx over all x.

• y∗ is a best response by the row player to x∗, in that it minimizes yTAx∗ over all y. (as in
the simultaneous move game)

We note the player who moves second need not randomize. Consider the (second mover) row player’s
best response problem: yTAx∗ is minimized at a pure strategy y∗ = ei, where i is any index of a
smallest entry of the vector Ax∗. Typically there are many such minimal entries i, and any y∗ which
randomizes between them is a best response. In the simultaneous-move setting, the requirement
that x∗ be a best response to y∗ further constrains y∗, typically entailing randomization. When
the column player moves first, however, his best response constraint makes no explicit mention of
y∗, leaving the row player free to choose any minimizer of yTAx∗, including a pure strategy.

In summary, when the column player moves first his utility is

max
x

min
y

yTAx = max
x

min
i
(Ax)i.

We refer to this as the column player’s maximin utility, and to its negation as the row player’s
minimax utility. We refer to x∗ attaining this maximum as the column player’s maximin strategy.
When the column player moves second, the situation is reversed and his utility is

min
y

max
x

yTAx = min
y

max
j

(yTA)j .

We refer to this as the column player’s minimax utility, and to its negation as the row player’s
maximin utility. We refer to y∗ attaining this minimum as the row player’s maximin strategy. In
an equilibrium of the Stackelberg Rock-Paper-Scissors game, the first mover uniformly randomizes
his strategy, and the second mover’s mixed strategy is completely arbitrary — all pure and mixed
strategies are best responses. The expected utility of both players is zero, as in the the simultaneous
move setting. This is no coincidence.

Theorem 4.3.1 (Minimax Theorem). Let A be utility matrix of a zero-sum game. There is no
first or second mover advantage in the Stackelberg game since a player’s minimax and maximin
utilities are equal:

max
x

min
i
(Ax)i = min

y
max

j
(yTA)j .

Moreover, the maximin strategies x∗ and y∗ of the two players form an equilibrium of the simulta-
neous move game. Each player obtains exactly their maximin (or equivalently, minimax) utility at
this equilibrium.
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Proof. The column player’s first-mover (maximin) and second-mover (minimax) utilities are the
optimal values of the pair of linear programs shown in Figure 4.5. Using the rules of duality in
Figure 2.4, it is easy to show that these two LPs are in fact duals. Weak duality implies that the
maximin utility is no more than the minimax utility, ruling out a first-mover advantage. Strong
duality implies they are equal, ruling out a second-mover advantage.

Let x∗ ∈ argmaxxmini(Ax)i and y∗ ∈ argminy maxj(y
TA)j the maximin strategies of the

column and row player respectively. Let u∗ be the maximin utility, or equivalently the minimax
utility, of the column player. Suppose the column player plays x∗ and the row player plays y∗. By
playing x∗, the column player guarantees himself at least u∗ regardless of the row player’s strategy.
By playing y∗, the row player guarantees the column player’s utility is no more than u∗ regardless of
the column player’s strategy. Therefore, the column player obtains utility exactly u∗, and moreover
cannot improve his utility by deviating. Similarly, the row player obtains utility exactly −u∗, and
cannot improve her utility by deviating. It follows that (x∗, y∗) is an equilibrium, and each player
obtains their maximin (or equivalently, minimax) utility.

Since the maximin, minimax, and simultaneous-move utility are all equal, we singularly refer
to them as the value of the game.

We close with some observations. First, we needed randomization to eliminate the second-mover
advantage in zero-sum games. Indeed, if player’s can’t randomize in Rock-Paper-Scissors, and one
moves first, then the second-mover always wins! Second, complementary slackness implies that
x∗j = 0 unless the j’th entry of y∗TA is of maximum value, and y∗i = 0 unless the ith entry of Ax is
of minimum value. This implies that, at equilibrium, the column player randomizes over only the
pure best responses to the row player’s mixed strategy, and vice versa. This stands to reason, as
any random strategy involving a non-best-response can be improved, and is therefore not itself a
best response.
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