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Over the past two decades, I have been working on problems at the intersection of Algorithm
Design, Optimization, Algorithmic Game and Economics Theories, Scientific Computation, and
Parallel Processing. I am a theoretican who cares a lot about the practical impact of mathematical
and algorithmic work and who appreciates interdisciplinary research.

My main research interests include Smoothed Analysis of Algorithms and Heuristics, Spectral
Graph Theory, Computational Game Theory, Combinatorial Scientific Computing, Combinato-
rial Optimization, Mathematical Programming, Parallel Scientific Computing, Graph Partitioning
and Data Mining, Computational Geometry with Applications in Computer Graphics and Mesh
Generation, and Graph Embedding.

My secondary interests include Cryptography and Computer Security, Internet Algorithms
and Software, On-Line Scheduling, Cache-Oblivious Algorithms, VLSI and Circuit Simulation,
Large-scale Information Processing and Organization, Compiler Optimization, String Matching,
Regression and Robust Statistics, Percolation and Phase Transition, and Bioinformatics.

Although these topics above appear to be diverse, the underlying principle of my research has
been the same, that is, to understand the mathematical structure of these problems in order to
design efficient algorithms and software.

In addition to algorithm design and analysis, I have been very active in industry participa-
tion and collaboration with engineers and scientists who develop real-world products. In the past
decades, I have contributed to software products in Thinking Machine, NASA, Intel, IBM, and Aka-
mai, including transistor-level logic simulation software, numerical simulation, internet searching,
network routing and large-scale data analysis. I have received 8 patents for my work.

Algorithm Analysis, Complexity, and Mathematical Programming

Daniel Spielman and I developed the theory of Smoothed Analysis to explain why some algorithms
and heuristics work well in practice in spite of having poor worst-case complexity. We proved that
the smoothed time complexity of the simplex method for linear programming is polynomial despite
its exponential worst-case complexity.

Our work was quoted as one of the three significant accomplishments funded by the computer
science division of the NSF in the National Science Fundation Summary of F'Y 2003 Budget Request
to Congress and covered in Technology Review, by Megan Vandre.

The theory I developed with Spielman solved a long standing open question in Optimiza-
tions and Algorithm Analysis. In particular, it answered the following grand challenge posted
in “Challenges for Theory of Computing: Report for an NSF-Sponsored Workshop on Research
in Theoretical Computer Science”, 1999, authored by Condon, Edelsbrunner, Emerson, Fortnow,
Haber, Karp, Leivant, Lipton, Lynch, Parberry, Papadimitriou, Rabin, Rosenberg, Royer, Savage,
Selman, Smith, Tardos, and Vitter.

“While theoretical work on models of computation and methods for analyzing algo-
rithms has had enormous payoff, we are not done. In many situations, simple algo-
rithms do well. Take for example the Simplex algorithm for linear programming, or the
success of simulated annealing of certain supposedly intractable problems. We don’t un-
derstand why! It is apparent that worst-case analysis does not provide useful insights



on the performance of algorithms and heuristics and our models of computation need
to be further developed and refined. Theoreticians are investing increasingly in careful
experimental work leading to identification of important new questions in algorithms
area. Developing means for predicting the performance of algorithms and heuristics on
real data and on real computers is a grand challenge in algorithms”.

Our work has since led many researchers to consider Smoothed Analysis in different algorithmic
contexts such as in mathematical programming, large-scale data-clustering, local search, combina-
torial optimization, computational geometry, and theory of random graphs and 0-1 matrices.

In numerical analysis, with Arvind Sankar and Dan Spielman, we proved that Gaussian elimi-
nation with partial pivoting requires only a logarithmic number of bits in the smoothed model. Our
result matches the experimental observation about the needed precision of Gaussian elimination in
solving linear systems. It may partially answer the long-term fundamental question in numerical
analysis, as posted by Nick Trefethen in his 1993 Essay “The Definition of Numerical Analysis”:

“I have mentioned that Ax = b has the unusual feature that it can be solved in a finite
sequence of operations. In fact Ax = b is more unusual than that, for the standard
algorithm for solving it, Gaussian elimination, turns out to have extraordinarily com-
plicated stability properties. Von Neumann wrote 180 pages of mathematics on this
topic; Turing wrote one of his major papers; Wilkinson developed theory that grew into
two books and a career. Yet the fact remains that for certain n by n matrices, Gaussian
elimination with partial pivoting amplifies rounding errors by a factor of order 2n, mak-
ing it a useless algorithm in the worst case. It seems that Gaussian elimination works
in practice because the set of matrices with such behavior is vanishingly small, but to
this day, nobody has a convincing explanation of why this should be so.”

Algorithmic Game and Economics Theories

With Xi Chen and Xiaotie Deng, I solved two major open questions in Algorithmic Game Theory.
We proved that the two-player Nash equilibrium does not have a fully polynomial-time approxima-
tion scheme, unless PPAD is in P, where PPAD (Polynomial Parity Argument, Directed version)
is a complexity class introduced by Papadimitriou in 1991 to capture the difficulty of fixed-point
computation. We also proved that the smoothed complexity of the classic Lemke-Howson algo-
rithm, and in fact, of any algorithm for computing a Nash equilibrium in a two-person game is not
polynomial, unless PPAD is in RP. Li-Sha Huang and I then extended the result to the problem of
finding a market equilibrium in a Leontief exchange economies.

Very recently, Chen and I gave a tight bound of (2 (n))di1 on the randomized query complexity
for computing a fixed point of a discrete Brouwer function over [1 : n]?, the d dimensional grid
graph. This result contrasts interestingly with Aldous’s elegant finding that randomization can
speed up local search over [1 : n]? and reduce the number of queries from ©(n?~1) to O(d'/?n%/?).
Our result may lead to further understandings of fixed-point and equilibrium computations.

Nearly-Linear Time Graph Algorithms

With Spielman, I developed the first nearly linear-time algorithm for spectral partitioning, graph
sparsification, and local clustering. Our local clustering algorithm has several desirable features



for processing very large-scale graphs, such as web graphs. The most important is its ability to
compute a sparse cut and hence produces a well-connected cluster in time nearly linear in the size
of this cluster, rather than in the size of the whole graph.

With Michael Elkin, Yuval Emek, and Spielman, we solved an open question of Alon, Karp,
Peleg, West of 1992 on graph embedding. We proved that every weighted connected graph has a
subgraph spanning tree of average stretch O(log2 nloglogn). We also developed a nearly linear-time
algorithm for construting the low-stretch spanning tree.

Combinatorial Scientific Computing

Spielman and I developed the first nearly linear-time algorithm for preconditioning and solving
symmetric diagonally-dominant linear systems. Our work solved an open question posted by Pravin
Vaidya in 1990. Our result also implies that the Fiedler vector of a graph, the eigenvector associated
with the second smallest eigenvalue of the Laplacian of the graph, can be approximated in nearly
linear time.

Mesh Generation

The three-dimensional mesh generation problem is one of the most fundamental and difficult prob-
lems in numerical simulation. With Cheng, Dey, Edelsrunner, and Facello, I introduced a technique
called sliver exudation which is the first topological approach for removing slivers from three-
dimensional Delaunay meshes. Based on this technique, Xiang-Yang Li and I developed the first
provably good Delaunay meshing algorithms for general three dimensional domains, solving a long
term open question in mesh generation. Our algorithms extended the earlier work of Delaunay re-
finement pioneered by Paul Chew, Jim Ruppert, and Jonathan Shewchuk and resolved their major
technical challenge, the removal of slivers. Software based on this development was used at the
University of Illinois for the simulation of advanced rockets. I also developed the sphere-packing
based Delaunay and Voronoi meshing and coarsening algorithm in two and three dimensions with
Gary Miller, Dafna Talmor, and Noel Walkington. Spielman and Alper Ungor and I designed one
of the first provably good parallel Delaunay meshing algorithms.

Spectral Graph Theory and Graph Partitioning

An encouraging interdisciplinary interaction with Horst Simon, the current director of the NERSC
Division of Lawrence Berkeley National Laboratory, helped to jump-start my work with Dan Spiel-
man on spectral graph theory. We obtained a mathematical proof of why spectral partitioning
methods work in practice, solving a major challenge in combinatorial optimization and numerical
linear algebra. Our work also established a new connection between the geometry of graph and its
eigenvalues. In particular, we proved that from the second eigenvector of a planar graph, we can
compute, in linear time, a partition whose the quality is as good as that can be achieved by the
classic Lipton-Tarjan’s planar separator algorithm. Our result also shows that the Fiedler value of
a bounded-degree planar graph of n vertices in O(1/n).

Geometric Graph Partitioning and N-Body Simulation

With Gary Miller, William Thurston, and Steve Vavasis, I pioneered the geometric mesh partition-
ing techniques for finite-element computation in three dimensions. The partitioning algorithm that



we developed is the first provably good algorithm for partitioning finite-element meshes in three
dimensions. With John Gilbert, I built a Matlab mesh partitioning toolbox based on this theo-
retical algorithm. Since then various extensions of this software has been used and incorporated
in practical software at NASA Ames Research Center and CMU. Building upon this method, I
also developed the first provably the first optimal load balancing scheme for non-uniform N-body
simulation in three dimensions.

Computational Geometry and Robust Statistics

Alan Frieze, Miller, and I developed the first randomized O(logn) time, n-processor algorithm for
computing the k-nearest neighborhood graphs in any fixed dimensions. Shortly after, Marshall
Bern, David Eppstein and I found the first optimal parallel algorithm for generating quadtrees and
nearest neighborhood graphs.

Nina Amenta, Bern, Eppstein, and I proved the Rousseeuw-Hubert conjecture on regression
depth, providing an important theorem for Robust Statistics and Inference.



