CSCI303
04/29/2010 – Last Lecture

Notes by: Brian Lee

Three Part Lecture: Last material for the class, midterm review, and final hints
Matching & Flow – Graph Theory

matching (using facebook as an example) – if you have an undirected graph, a matching is a collection of pairs (pair of vertices) which are friends, but every individual belongs to only one pair

matching is a problem that people can solve in polynomial time

matching gets reduced to linear programming (solves the following problem):


-suppose you have a linear objective function: max c1x1 + c2x2 + … + cnxn


-however, you’re subjected to this linear constraint: (matrices) [Amxn][X] < [B]
-linear programming is supposed to maximize the objective function subjected to a linear constraint

-LP picked up steam in the 70s and 80s
flow – (related to internet apps) the necessity of getting data from one point to another; flow to that destination because every edge has a capacity and delay
control flow (or alternatively, flow of control) refers to the order in which the individual statements, instructions, or function calls of an imperative or functional program are executed or evaluated. Within an imperative programming language, a control flow statement is a statement whose execution results in a choice being made as to which of two or more paths should be followed
Complexity Landscape

P =/= NP (even if you may not be able to solve it efficiently, you can at least verify it efficiently)
Part of the difficulty with NP is that sometimes we do not know if a solution exists

The issue is, even if we can estimate time complexity for NP-complete, there’s not much else we know about the solution
We use other techniques to figure out how to solve these problems (like linear programming)
Side note: there are so many untapped fields of computer programming in the context of quantum computing

Encryption Schemes and P/NP

If NP == P, there’s no need for an encryption scheme

Encryption scheme has an Encrpytor and a Decryptor. Without D, you can only find E(x) which is polynomial time

Encryption itself is a tester for NP-completeness

The public key encryption system is built on the premise that NP != P
Encryption is built on “bad news” that we’re unable to solve some NP problem efficiently

One of the earliest public key encryption schemes: (t^a)^b mod = t

Then publish the public key, but keep the private key (the whole point of PKES)

Zero knowledge proofs (hidden private key) to have a fair-trade identification authentication
If NP != P, the world is very complex and there is virtually an infinite number of levels in between

FINAL EXAM HINTS – EXAM IN THIS ROOM 8am-10am
-Slightly easier than MT2

Two algorithm problems:

-One based on graph theory and its related topics [BFS, DFS, MST, topological sort, shortest path, etc.]

-One is a non-graph one (sorting, dynamic programming, greedy algorithm, ad hoc)

-Both of these problems can have an easy polynomial time solution, but to earn full credit, linear time must be achieved

Few multiple choice questions:
-Some about graph properties, recurrence, complexity of a particular algorithm

-Some questions about NP

-No tricks in any of the problems

T/F and give an explanation problems:

-Questions on graph properties, NP, a bit about probability [potentially related to quick sort]

-Graph algorithms, greedy algorithm, dynamic programming

Mathematical Problem:

-this problem will be about NP
-fundamentally remember the main part of NP is polynomial reduction (reducing problem from one state to another)

-write the polynomial function on an input, and produce an output such that the property on the input is true iff the property on the output is true

-problem given is much simpler than the ones given in class
Running an Algorithm:

-Will be about an algorithm covered this semester: greedy, sorting, divide and conquer, dynamic programming, MST, BFS, DFS, etc

-Will be given an input and asked to run the algorithm (book notes will help)

