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ABSTRACT

Spatial partitions of an information space are frequently used for data visualization. Weighted Voronoi diagrams
are among the most popular ways of dividing a space into partitions. However, the problem of computing such
a partition efficiently can be challenging. For example, a natural objective is to select the weights so as to force
each Voronoi region to take on a pre-defined area, which might represent the relevance or market share of an
informational object. In this paper, we present an easy and fast algorithm to compute these weights of the
Voronoi diagrams. Unlike previous approaches whose convergence properties are not well-understood, we give a
formulation to the problem based on convex optimization with excellent performance guarantees in theory and
practice. We also show how our technique can be used to control the shape of these partitions. More specifically
we show how to convert undesirable skinny and long regions into fat regions while maintaining the areas of the
partitions. As an application, we use these to visualize the amount of website traffic for the top 101 websites.
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1. INTRODUCTION

Dividing a given geographic region into sub-regions in an optimal way is a natural problem that belongs to many
different domains, such as air traffic control,1 congressional districting,2 vehicle routing,3 facility location,4 and
urban planning.5,6 A canonical method for partitioning a region is the Voronoi diagram, in which the region
is partitioned into smaller sub-regions based on proximity to a set of “landmark” points, as shown in Figure
1. Simply put, given a geographic region R containing a set of landmark points {p1, . . . , pn} the Voronoi cell
associated with pi, denoted Vi, is defined as the set of points x ∈ R where ‖x− pi‖ ≤ ‖x− pj‖ for all indices j:

Vi = {x ∈ R : ‖x− pi‖ ≤ ‖x− pj‖ ∀j} ,

where ‖ · ‖ most commonly denotes the Euclidean norm. Such partitions have been generalized in a number of
ways by introducing a weight vector w = (w1, . . . , wn) associated with the landmark points that controls the
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Figure 1: A Voronoi diagram of n = 8 points in the unit square.



Figure 2: Additive and multiplicatively weighted Voronoi diagrams in the unit square.

shapes and sizes of the regions. Two common such generalizations are the additively-weighted Voronoi diagram,
in which we define Voronoi cells as

Vi = {x ∈ R : ‖x− pi‖ − wi ≤ ‖x− pj‖ − wj ∀j} ,

and the multiplicatively-weighted Voronoi diagram, in which we have

Vi =

{
x ∈ R :

‖x− pi‖
wi

≤ ‖x− pj‖
wj

∀j
}
,

which are shown in Figure 2. Observe that in both of these generalizations, the size of cell Vi increases as wi
increases. It is also not hard to show that the boundaries between adjacent Voronoi cells Vi and Vj are hyperbolic
arcs in the additive model and circular arcs in the multiplicative model.

In this paper, we consider the problem of partitioning an abstract information space, as opposed to a physical
region as mentioned in the beginning of this section; similar attempts to ours include.7–13 Specifically, our
objective is to find an effective representation of an information space, such as a set of documents, as a planar
diagram that conveys relevant information. In this setting, each document is represented as a region in the plane,
in the same way as is shown in Figure 3. There are two major objectives that should be considered in designing
such a diagram effectively: first, documents containing similar content should be placed in close geographic
proximity to one another. Second, documents with larger significance or relevance should be represented by
regions that are larger than those corresponding to documents with less significance.

Being based on the landmark points {p1, . . . , pn}, the Voronoi framework lends itself well to the first objective
described; that is, given a set of n documents and additional information regarding their relationships to one
another, one can place the landmark points in a way that is commensurate with the relationships between the
documents using graph visualization software such as GraphViz or Gephi (see Figure 4). A less-studied problem
is how to leverage the Voronoi framework in service of the second objective. To this end, a problem elegantly
posed by Reitsma et al.15 is as follows: suppose that the landmark points {p1, . . . , pn} are given in a region
with area 1, together with a set of desired areas {A1, . . . , An} that also sum to 1 (and which implicitly are
related to the significance or relevance of the n documents); can one find a weight vector w∗ in the additive or
multiplicative model such that Area(Vi) = Ai for all i? The authors give an affirmative answer and describe
an iterative, raster-based scheme for determining such a weight vector under the multiplicative model. The
main drawbacks to this scheme relate to algorithmic efficiency, both in a practical and theoretical sense: as the
algorithm is based on a form of fixed-point iteration, there is little in the way of performance guarantees, and
consequently, the proposed methodology does not scale well as the problem size becomes large.

In this paper, we give a fast algorithm for finding the desired weight vector w∗ in either the additive or
multiplicative model. Rather than using fixed-point iteration, our approach is based on principles from variational
calculus, specifically duality theory in linear programming over infinite-dimensional vector spaces, and thus



Figure 3: A planar map of an information space consisting of a set of documents, as constructed in.14

Figure 4: A graph visualization generated by Gephi.



inherits excellent theoretical and practical performance guarantees. We further show how to apply a “homotopy
method” to enable better control over Voronoi regions Vi. Finally, we demonstrate the effectiveness of our
algorithm in various computational experiments applied to a list of major internet sites.

2. PROCEDURE

In this section, we consider the problem of finding the weight vector w∗ as in the preceding section, assuming that
the landmark points {p1, . . . , pn} are already fixed in a convex planar domain R of area 1 (which will typically
be a rectangle or square in an informational display) and that the desired areas of sub-regions {A1, . . . , An}
are given. To introduce our algorithm, we find it useful to temporarily disregard the Voronoi framework and
simply consider useful properties that the sub-regions R1, . . . , Rn associated with the landmark points should
have. Suppose that region Ri is associated with point pi. Because we presumably located point pi in a useful way
relative to the other landmark points, it is natural to desire that the region Ri should be “close” to pi as well,
so as to inherit its strategic placement. This “closeness” can be measured by what we call the Mean Distance
Function (MDF) defined by

MDF(pi, Ri) :=

¨
Ri

‖x− pi‖ dx ,

which is simply proportional to the mean distance between a point x ∈ Ri selected uniformly at random and the
landmark point pi. We can therefore consider the problem of designing an optimal partition {R1, . . . , Rn} that
minimizes the above function, subject to the constraints on the areas, expressed as the following optimization
problem (which, we re-iterate, does not involve the Voronoi framework just yet):

minimizeR1,...,Rn

n∑
i=1

MDF(pi, Ri) s.t. (1)

Area(Ri) = Ai ∀i
Ri ∩Rj = ∅ ∀i, j

n⋃
i=1

Ri = R .

It turns out that the optimal solution to (1) can be recovered by solving an n-dimensional convex optimization
problem, that is, an optimization problem whose objective function and feasible set are both convex, as made
concrete by the following theorem:

Theorem 2.1. The sub-regions {R∗1, . . . , R∗n} that solve problem (1) can be recovered by solving the following
optimization problem:

maximizeλ

¨
R

min{‖x− pi‖ − λi} dx s.t. (2)

n∑
i=1

λi = 0 .

Specifically, if λ∗ denotes the optimal solution to problem (2), then sub-region R∗i consists of those points x ∈ R
for which ‖x− pi‖ − λ∗i is minimal:

R∗i =
{
x ∈ R : ‖x− pi‖ − λ∗i ≤ ‖x− pj‖ − λ∗j ∀j

}
.

Proof. Problem (1) can be written as an infinite-dimensional integer program in which the optimization
variables are indicator functions Ii(·) rather than regions Ri. Specifically, if we let Ii(x) denote a {0, 1} function



that indicates whether or not point x ∈ R belongs to sub-region Ri, we can re-write (1) as

minimizeI1(·),...,In(·)

¨
R

‖x− pi‖Ii(x) dx s.t. (3)

¨
R

Ii(x) dx = Ai ∀i

n∑
i=1

Ii(x) = 1 ∀x ∈ R

Ii(x) ∈ {0, 1} ∀i, x .

If we then relax the integrality constraint, we obtain an infinite-dimensional linear program:

minimizeI1(·),...,In(·)

¨
R

‖x− pi‖Ii(x) dx s.t. (4)

¨
R

Ii(x) dx = Ai ∀i

n∑
i=1

Ii(x) = 1 ∀x ∈ R

Ii(x) ≥ 0 ∀i, x .

By applying standard results of vector space optimization (see Theorem 1 of16), we can show that problem
(2) is the dual of Problem (4). The characterization of the optimal regions R∗i in terms of λ∗ is precisely the
complementary slackness conditions of problems (2) and (4).

The following corollary is immediate:

Theorem 2.2. The optimal solution to (1) is an additively weighted Voronoi diagram in which Area(Vi) = Ai
for all i. We can thus see that an additively weighted Voronoi diagram with appropriate areas {A1, . . . , An}
can be obtained easily once we have solved problem (2). Thus, it will suffice to turn our attention to the issue
of how to solve (2) efficiently.

It is not hard to verify using standard methods that the objective function of problem (2) is concave and
differentiable as a function of λ. In particular, it can be shown (see Section 4.1 of16) that

∂

∂λi

(¨
R

min{‖x− pi‖ − λi} dx
)

= −Area(Ri) ,

where Ri denotes the set of points x ∈ R where ‖x− pi‖ − λi is minimal:

Ri = {x ∈ R : ‖x− pi‖ − λi ≤ ‖x− pj‖ − λj ∀j} .

We can thereby see that (2) is a convex optimization problem (since we are maximizing a concave function on
a convex set) for which gradient vectors are easy to compute. We can therefore determine the optimal vector
λ∗ (and therefore the optimal sub-regions {R1, . . . , Rn}) using, for example, an analytic center cutting plane
method, as described in Algorithm 1.

3. VARIATIONS

In Section 2, we introduced Algorithm 1 which obtained an additively-weighted Voronoi diagram with pre-
specified areas. We can perform a very minor modification to this procedure to construct a multiplicatively-
weighted Voronoi diagram with pre-specified areas. This is accomplished by considering the following optimiza-



Input: A convex, planar region R, a collection of points {p1, . . . , pn}, a collection of desired areas {A1, . . . , An}
such that

∑
iAi = 1, and a threshold ε.

Output: A partition of R into n regions R1, . . . , Rn that solves problem (1) within tolerance ε.
Note: this is simply a standard analytic center cutting plane method applied to problem (2).

Define the initial polyhedron by Λ =
{
λ ∈ Rn :

∑n
i=1 λi = 1 and ‖λ‖∞ ≤M

}
for a large threshold M ;

/* A suitable value of M is to set M = nd, where d is the diameter of R. */

while vol(Λ) > ε do
Let λ0 be the analytic center of Λ;
for i ∈ {1, . . . , n} do

Let Ri denote the sub-region in R for which ‖x− pi‖ − λi is minimal;
end
for i ∈ {1, . . . , n} do

Set gi := −Area(Ri);
end

Set Λ := Λ ∩ {λ : gTλ ≥ gTλ0};
end
return {R1, . . . , Rn};

Algorithm 1: Algorithm BestPartition partitions a given region into sub-regions with pre-specified areas.

tion problem, by comparison with (1):

minimizeR1,...,Rn

n∑
i=1

¨
Ri

log(‖x− pi‖) dx s.t. (5)

Area(Ri) = Ai ∀i
Ri ∩Rj = ∅ ∀i, j

n⋃
i=1

Ri = R .

Using the same procedure as in the proof of Theorem 2.1, we can show that the optimal solution to (7) is
determined by the following n-dimensional optimization problem:

maximizeλ

¨
R

min{log(‖x− pi‖)− λi} dx s.t. (6)

n∑
i=1

λi = 0 .

It turns out that the optimal sub-region R∗i consists of those points x ∈ R such that log(‖x−pi‖)−λi is minimal
among all indices:

R∗i = {x ∈ R : log(‖x− pi‖)− λi ≤ log(‖x− pj‖)− λj ∀j} .

Of course, by exponentiating both sides, we therefore see that

R∗i =

{
x ∈ R :

‖x− pi‖
e−λi

≤ ‖x− pj‖
e−λj

∀j
}
,

which is precisely a multiplicatively-weighted Voronoi diagram. It can again be shown that the objective function
of (6) is concave and differentiable, and that

∂

∂λi

(¨
R

min{log(‖x− pi‖)− λi} dx
)

= −Area(Ri) ,

so that the problem is just as tractable as in the additive case.



3.1 Enforcing fatness of sub-regions

Paritioning a region using additively weighted Voronoi diagrams can have sub-regions which are long and skinny.
For example, Figure 5a shows an additively weighted Voronoi diagram with 10 equal area sub-regions. They
have a nice property that every landmark point is always guaranteed to be within its assigned sub-region and
that all sub-regions are connected, but as mentioned above, the sub-regions can become long and skinny. For
regions with a very small fraction of the total area, this becomes even worse. This is clearly undesirable when
visualizing data using partitions.

We observed that for multiplicative Voronoi diagrams, the boundaries are circular arcs and hence regions
with small areas are always tend to be circular and fat. Therefore, we propose a “homotopy” method in which
we combine the objective functions of additive and multiplicative Voronoi diagrams and minimize a weighted
combination of the two objective functions.

minimizeR1,...,Rn

n∑
i=1

¨
Ri

(1− µ)‖x− pi‖ + µ log(‖x− pi‖) dx s.t. (7)

Area(Ri) = Ai ∀i
Ri ∩Rj = ∅ ∀i, j

n⋃
i=1

Ri = R .

The above problem is similar to an instance of (1) with a modified objective function; we find that, consequently,
the optimal sub-regions of this formulation satisfy:

R∗i = {x ∈ R : (1− µ)‖x− pi‖+ µ log(‖x− pi‖)− λi ≤ (1− µ)‖x− pj‖+ µ log(‖x− pj‖)− λj ∀j} .

These sub-regions can be obtained using similar procedures to those discussed previously. Figure 5 shows the
effect of this modified objective function. For µ = 1 the partitions correspond to a multiplicative Voronoi
diagram, in which sub-regions need not always be connected. But since, for µ = 0 the regions are always
connected (because they correspond to an additive Voronoi diagram), it is not hard to show that we can find a
“threshold” µ∗ ∈ [0, 1] for which the sub-regions are always connected.

4. INTERNET TRAFFIC VISUALIZATION

In this section, we show the use of Voronoi space partitions to visualize real data. One of the most popular
choices for information visualization if the amount of traffic on various internet websites. The information space
is represented by a planar rectangle and the landmark points within this rectangle represent the locations of
internet websites. Once we partition this space, the size of a sub-region is proportional to the total number of
page views on the corresponding website. Using Alexa Internet, Inc. (accessed June 7th 2013), we obtained the
amount of website traffic for the top 101 websites between the period September 2007 - June 2013. We first chose
a subset of this data consisting of 13 popular websites (mainly social media, search engines and e-commerce) and
we embed them on a 2-dimensional planar rectangle. A collection of such “maps” that display the relative “sizes”
of these 13 major websites, taken between 2007 and 2013 are shown in Figures 6c to 6e. In these figures, websites
with similar content are represented as regions that are in close proximity with one another, such as Facebook
and Myspace. The location of the websites are held constants throughout the time period. The partitions are
purely additively weighted Voronoi diagrams which produces hyperbolic boundaries. As we can see from the
figures, Yahoo! and Myspace were dominant websites in September 2007, but as time progresses we can clearly
visualize the decline of Yahoo! and Myspace which are engulfed by Google and Facebook respectively. As of
June 2013, Google, Facebook and Youtube together account for more than 85% of the website traffic, relative to
these 13 popular websites.



(a) µ = 0 (b) µ = 0.8

(c) µ = 0.9 (d) µ = 1

Figure 5: Equal area partitions for 10 randomly chosen points in the plane. Figure 5a is an additive Voronoi
diagram which has long and skinny region. By increasing the weight on the penalty term, we can convert these
regions into fat regions. At µ = 1, this is simply a multiplicative Voronoi diagram (Figure 5d)

We now represent the complete data set of 101 websites obtained from Alexa. Based on their genre, these
websites were placed close to each other and their locations were obtained by using an open source tool, Graphviz
(Graph Visualization Software). This is shown in Figure 7a. Based on the traffic information for these websites
for June 2013, the map was partitioned using an additively weighted Voronoi diagram. As we can see from Figure
7b, a lot of these regions are long and skinny which is clearly undesirable. We hence, create partitions based on a
combination of additive and multiplicative Voronoi diagram using the homotopy method presented above 3.1. A
collection of such maps between the time period September 2007 and June 2013 are shown in Figure 8. Because
of limited space, only a few major websites have been labeled. A more detailed visualization of the evolution of
partitions for top 101 websites are shown in the multimedia file uploaded along with this manuscript.
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