
NSF GRANT #0800151
NSF PROGRAM NAME: Operations Research, GOALI

A geometric framework for resource allocation problems

John Gunnar Carlsson and Yinyu Ye
Stanford University

Sharon Arroyo, Roman Fresnedo, and Raju Mattikalli
Boeing Company

Abstract: In a wide variety of industrial problems, a ge-
ographic region must be segmented into smaller regions
to allocate resources. This is often done using combina-
torial devices that discard the underlying geometry of the
problem. In this paper we describe a geometric frame-
work, map segmentation, for solving such problems and
give several practical examples demonstrating the effi-
cacy of such approaches.

1. Introduction: In the map segmentation problem, we
have a planar geographic region C that we must parti-
tion into a collection of k smaller sub-regions Ci, while
optimizing some criteria and satisfying a regularity con-
dition. “Regular” might mean convex, simply connected,
connected, or merely measurable. The criteria to opti-
mize might be the area of a sub-region, the number of
elements of a given point set X in a sub-region, or the
integral

∫
Ci

f (x,y) dA of a specified density f (·). Figure
1 gives an abstract instance of such a problem.

In a variety of practical settings, map segmentation
problems can be used to allocate tasks to vehicles or other
agents in surveying or providing service to a region. In
this paper we demonstrate several problems for which
map segmentation can serve as a useful tool.

2. Background: A number of geometric results form
the theoretical framework for our problems, motivated for
the most part by the ham sandwich theorem [12]:

Theorem 1. The volumes of any n solids of dimension n
can always be bisected by a (n−1)-dimensional hyper-
plane.

Corollary 2. Any two planar regions can be simultane-
ously bisected by a single line.

Analogous results hold for probability densities in-
stead of solids. Stojmenović [13] gives a linear-time al-
gorithm that finds the bisecting line of corollary 2 when
the two regions are disjoint convex polygons. More re-
cently, Bespamyatnikh et al. [3] and Ito et al. [8] have
proven the following discrete result:

(a)

(b)

Figure 1: An example of a map segmentation problem;
in (a) we have a probability density defined on a region,
and in (b) we partition the region into k = 8 convex sub-
regions, each having the same area and containing the
same amount of the density.
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(c) (d)

Figure 2: (a) and (b) show an equitable partition of a red
and blue point set; each convex cell contains 3 blue points
and 2 red points. (c) and (d) show an equitable partition
of a point set and a polygon, so that each convex cell has
the same area and contains exactly one point.

Theorem 3. Given gn red points and gm blue points in
the plane in general position, there exists a subdivision of
the plane into g disjoint convex polygons, each of which
contains n red points and m blue points.

In addition, [3] gives a polynomial-time algorithm for
finding such a partition. Carlsson et al. [4] prove the
following result, motivated by a vehicle routing heuristic:

Theorem 4. Given a convex polygon C with m vertices
and area 1 containing a point set X with |X | = n,
there exists a partition of C into n disjoint convex cells,
each containing 1 point and having area 1/n. Fur-
thermore, one can find such a partition in running time
O (Nn logN), where N = m+n.

This algorithm is readily extended to an arbitrary
probability density on C, so that we obtain a collection
of convex sub-regions each having the same probability
mass.

Figure 2 gives some examples of these problems. The
algorithms described above provide us with polynomial
time approximation schemes for the general problems de-
scribed in the following section.

3. Applications:
3.1. Street Scanning: The Chinese Postman Problem

(CPP) is a well-studied optimization problem first de-
scribed in [9]. The objective of CPP is to find a tour
of a weighted graph G = (V,E) of minimal total length
that traverses each edge or arc at least once. As the
name suggests, CPP is a natural situation encountered

by delivery services. Recently, large-scale CPP and vari-
ants have become of significant practical importance for
internet-based map companies in scanning roads to gen-
erate street-level views of a location in an urban environ-
ment [7].

In such applications, the goal is to traverse every
street in a city with a survey vehicle, which typically has
a camera attached. However, merely solving CPP gives
only a route for a single vehicle, so we do not have any
idea of how to distribute the workload between a fleet of
vehicles. Hence, treating the problem as an instance of
CPP is a poor solution technique. Although approxima-
tion algorithms for the “k-postman problem” exist (see
[1]), they are strictly combinatorial and do not take ad-
vantage of the fact that our road map is a planar graph,
and consequently vehicle tours may not be geographi-
cally separate. In a practical setting it is desirable to
clearly separate one vehicle’s route from another in an
obvious geographic way.

Suppose that we have k vehicles, located at different
given starting points (xi,yi) on a map of a (convex) city.
We can generate vehicle tours using map segmentation by
partitioning the map into k convex sub-regions, each con-
taining one point (xi,yi), and each containing the same
amount of total road length.

We then solve an instance of CPP at each sub-region
while using combinatorial tools to minimize the amount
of left turns and U-turns that each vehicle takes. In [6]
we solve a problem instance provided by an industrial
affiliate with 900,000 nodes while introducing only 4%
overhead cost and maintaining a load-balancing ratio of
1.34, so that the longest vehicle tour is at most 1.34 times
the shortest vehicle tour. Figure 3 shows the input and
outputs of this algorithm.

3.2. The Min-Max Multiple Depot Vehicle Routing
Problem: The Vehicle Routing Problem (VRP) has been
a key problem in discrete optimization for almost 50
years. The problem is to route a set of service vehicles
to visit all clients in a geographical region while mini-
mizing cost. In the multi-depot vehicle routing problem
(MDVRP) variant, multiple vehicles start from multiple
depots and return to their original depots at the end of
their assigned tours. We have studied the min-max MD-
VRP where the objective is to minimize the longest travel
time of all the vehicles. This objective is rarely studied in
the literature, although it is a common objective in CPU
and job scheduling, where the time to completion of all
jobs is called the “makespan”. This objective has substan-
tial practical use, for example to minimize the amount of
overtime for the drivers of the vehicles. This objective
also balances the loads of all vehicles more than the tra-
ditional objective, which minimizes the total tour length
of all vehicles.

A solution to the min-max MDVRP can be found in

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0800151



(a)

(b)

Figure 3: In (a) we segment the region into convex sub-
regions, each containing the same amount of road length
and containing one vehicle’s starting point (indicated by
the red stars). These sub-regions are part of the input
to a local search algorithm that generates CPP tours (b)
that balance the loads between vehicles and minimize the
number of left turns and U-turns.

(a) (b)

Figure 4: Segmenting a map to generate vehicle tours.
Each sub-region contains exactly one depot, indicated
by the green points, and is guaranteed by theorem 6 to
asymptotically induce equal tour lengths.

two steps. In the first step we assign the clients to indi-
vidual vehicles located at their respective depots and in
the second we solve a traveling salesman problem (TSP)
for each vehicle in order to route it from its depot to the
clients assigned to it and back to the depot with mini-
mal travel time. Our heuristic for min-max MDVRP first
solves a map segmentation problem where we divide the
service region into n pieces, one for each vehicle, such
that each piece contains the depot for that vehicle, is con-
vex, and contains an equal area. The heuristic then solves
a TSP for each vehicle to determine a route starting at
the vehicle’s depot, visiting all the clients located in that
piece of the service region before returning to the depot.
This heuristic is shown to be asymptotically optimal in
[5] when the clients are uniformly distributed by virtue
of the BHH theorem [2]:

Theorem 5. Suppose that (X1, . . . ,Xk) are random points
i.i.d. uniformly in a compact region R. Then the length
TSP(X1, . . . ,Xn) of the optimal travelling salesman tour
traversing points X1, . . . ,Xk satisfies

k−1/2TSP(X1, . . . ,Xk)→ α
√

Area(R)

We therefore find that sub-regions with equal area
have the same load, asymptotically speaking, up to
o
(√

k
)

. A similar result, also asymptotically optimal,
exists when demand is non-uniformly distributed:

Theorem 6. Suppose that (X1, . . . ,Xk) are random points
i.i.d. according to a probability density function f (·)
supported on a compact region R. Then the length
TSP(X1, . . . ,Xn) of the optimal travelling salesman tour
traversing points X1, . . . ,Xk satisfies

k−1/2TSP(X1, . . . ,Xk)→ α
∫

R

√
f (x,y)dA (1)

A problem instance is illustrated in figure 4.
The requirement that each sub-region be convex

might have some further benefits. We expect that odd-
shaped regions take longer to service than more compact
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Figure 5: Based on voting data for the state of Pennsyl-
vania from the 2008 election, the districts shown above
contain the same number of Republicans and Democrats
(and hence the same total population).

regions with the same area. Convex regions also ensure
that a vehicle’s traveling-salesman tour remains in its ser-
vice region and may be a robust way to handle some small
uncertainty in the customers’ exact locations.

3.3. Voter redistricting: In the USA, a state’s con-
gressional and legislative districts are redrawn every ten
years following a census. A Supreme Court ruling re-
quires that the districts in each state be contiguous and
contain an equal number of voters. Partitioning a state
equitably with respect to these constraints is straightfor-
ward, provided the geometry of the state to be partitioned
is not extremely abnormal. The single constraint of con-
taining equal numbers of voters leaves much flexibility;
for example, suppose we desired convex districts (for the
appearance of simplicity) and that the residences of n fa-
vorite politicians be in separate districts (a congressman
is required to reside in the district he represents). Figure
5 shows a map of the state of Pennsylvania divided into
smaller districts while maintaining equal numbers of Re-
publicans and Democrats in each. The algorithm of [4]
describes an approximation scheme for solving such a
problem.

A more effective “gerrymandering” scheme to en-
hance the control of the majority party would seek to
spread its advantage equally among the districts in the
hope of winning all of them. In recent years there has
been a push for fair redistricting by independent panels.
These might have one criteria to ensure equal area and
another to select for simple district shapes (e.g., the ra-
tio of the perimeter to the square root of the area). The
distributed algorithm of [10] describes a means for parti-
tioning a region equitably with respect to a density using
power diagrams, with the intention of producing simpler
shapes than [4].

3.4. Natural resource allocation: Suppose we have a
geographical region known to contain some natural re-
source, such as water, petroleum, or soil. We assume that
this resource is distributed in the region according to a
known probability density function. A naturally decen-
tralized problem we may encounter is to divide the ge-
ographical region into smaller regions while preserving
an equitable distribution of the resource, subject to addi-
tional constraints.

(a)

(b)

Figure 6: In (a), a map of the population density of the
USA, and in (b), a map of the soil quality. The same par-
tition, shown in red, equally divides both population and
soil. (Pictures taken from Wisconsin Business School
http://www.bus.wisc.edu/realestate/
images/resources/us_density.gif and US
Geological Survey http://biology.usgs.gov/
luhna/images/fig3_2.gif)
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For example, Figure 6 displays an equitable partition
of the United States with respect to population density
and soil quality; each sub-region has the same total pop-
ulation and the same average soil quality. Farmers could
theoretically use such a partition to best determine the
most useful regions to farm. In this case, we impose the
constraint that the partition divide the planeR2 into a col-
lection of convex cells; while this does not guarantee that
sub-regions themselves will be convex, it clearly gener-
ates regions whose boundaries are somewhat regular.

4. Further Work:
4.1. Theoretical work: In the examples given above,

the criteria that we use to define the sub-regions is always
additive; for example, for any two disjoint regions C1
and C2, we have Area(C1∪C2) = Area(C1)+ Area(C2)
and |(C1∪C2)∩X | = |C1∩X |+ |C2∩X |, where X
denotes a specified point set. Other criteria of practi-
cal interest which are not additive include the diameter
or perimeter of a sub-region. We hope to obtain some
bounds that can be placed on problems in similar settings,
two of which are described below.

4.2. Further applications:
4.2.1. Organ transplant regions: The USA is cur-

rently divided into 11 regions that govern the assignment
of donor organs to recipients, based on travel time and
proximity to organ transplant facilities. [11] gives an in-
teger program to maximize a bicriteria objective function
combining the number of intra-regional transplants and
intra-regional transplant rate. W believe that the parti-
tioning algorithm of [4] can be used to model this prob-
lem using a continuous formulation, equitably partition-
ing some measure (population density or average demand
for donor organs, for example) while generating regions
containing specified organ transplant facilities, or the re-
gions for organ transplantation in which one looks first
for possible matches.

4.2.2. Online vehicle routing: The online vehicle
routing problem (OLVRP) is a variant of the stochastic
vehicle routing problem in which new demand points ar-
rive while vehicles are completing their tours. The result
(1) is no longer guaranteed to hold, and we are not aware
of a comparable law of large numbers for this situation.
If a similar result does exist, we can obtain a new parti-
tioning criterion specifically for OLVRP.

One might also analyze the long-term performance of
specific routing policies; for example, if all vehicles use
a nearest-neighbor rule to compute their routes, the sys-
tem becomes an M/G/k queue (provided arrivals follow
a Poisson process). If we partition the service region, the
resulting system is a collection of independent M/G/1
queues in which the service times are dependent on the
shape of the sub-regions. Our goal would be to find a par-
titioning criterion that gives us useful information about

this distribution of service times.
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