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Abstract

We consider an uncapacitated stochastic vehicle routing problem in which vehicle depot locations are fixed and
client locations in a service region are unknown, but are assumed to be independent and identically distributed
samples from a given probability density function. We present an algorithm for partitioning the service region
into sub-regions so as to balance the workloads of all vehicles when the service region is simply connected and
point-to-point distances follow some “natural” metric, such as any Lp norm. This algorithm can also be applied to
load-balancing of other combinatorial structures, such as minimum spanning trees and minimum matchings.

1 Introduction

Optimal assignment of a workload between several agents is a common objective that is encountered in resource
allocation problems. Frequently, workloads are assigned in such a way as to minimize the total amount of work
done by all agents. In other situations, one may want an equitable assignment that balances the workload evenly
across all agents. Equitable assignment policies are commonly encountered in queueing theory [3, 18, 21], vehicle
routing [11, 17, 26], facility location [2, 4, 7, 15], and robotics [19, 24, 25], among others.

Our motivation for this research comes from an industrial affiliate in the form of a stochastic vehicle routing
problem. Our objective is to partition a geometric region so as to assign workloads to vehicles in an equitable
fashion. Partitioning and routing occupy two different strategic tiers in the optimization hierarchy; partitioning is
done at a (high) tactical management level, while routing optimization is operational and made on a day-to-day
basis. Hence, a natural strategy, especially in the presence of uncertainty, is to segment the service region into a
collection of sub-regions and then to solve each routing sub-problem induced at the sub-regions independently of
the others. This approach was used, for example, by [17], who treated the problem as a two-stage optimization
problem (partitioning and routing) and implemented a tabu search and multistart heuristic to consider the problem
of partitioning a planar graph optimally. This problem is also often considered in the context of facility location
[2, 4, 15] and robotics [25].

In this paper, we give an algorithm that takes as input a planar, simply connected region R, together with a
probability density f (·) defined on R. Contained in R is a collection of n depot points P = {p1, . . . , pn}, representing
the starting locations of a fleet of vehicles. We assume (purely for expositional purposes, since points pi may be
arbitrarily close to each other) that each point pi corresponds to exactly one vehicle. The vehicles must visit clients
whose exact locations are unknown, but are assumed to be independent and identically distributed (i.i.d.) samples
from the density f (·). Our goal is to partition R into n disjoint sub-regions, with one vehicle assigned to each sub-
region, so that the workloads in all sub-regions are asymptotically equal when a large number of samples is drawn.
For each sub-region Ri, we will solve a travelling salesman problem, in which the point set consists of a depot point
plus all points in Ri. See Figure 1.

As we will show, our problem turns out to be a special case of the equitable partitioning problem, in which we
are given a pair of densities λ (·) and µ (·) on a region R and we want to partition R into n sub-regions Ri with˜

Ri
λ (·) dA = 1

n
˜

R λ (·) dA and
˜

Ri
µ (·) dA = 1

n
˜

R µ (·) dA for all i. In our problem, one density is an atomic
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Figure 1: Inputs and outputs to our problem. We begin with a depot set and a density f (·) defined on a region
R (1a), which we then partition (1b). This partition should be constructed so that, when points are sampled
independently from f (·) (1c), the TSP tours of all the points in each sub-region are asymptotically equal (1d).

measure that represents the set of depots and the other represents the TSP workload over a sub-region when points
are sampled from f (·). Theorem 12 of [8] states that an equitable partition always exists when λ (·) and µ (·) are
absolutely continuous, R is convex, and all Ri are required to be convex. Theorem 1 of [6] implicitly extends this
result for the case that R is simply connected and all Ri must be relatively convex to R. The case where λ (·) and
µ (·) are both atomic measures consisting of gn and hn points for some positive integers g and h is a well-studied
problem in computational geometry known as a red-blue partition [6, 8, 20], and several fast algorithms are already
known for this problem.

The case where λ (·) is an atomic distribution, µ (·) is a uniform distribution, and R is convex (as opposed to
merely simply connected as in this paper) was solved in [10], which also suggests an extension to the non-uniform
(convex) case. As was noted previously in [10], one approximate approach to our vehicle routing problem is to
discretize the input data and use a red-blue partitioning algorithm. However, Section 2 of that same paper shows
that this approach requires at least O

(
ε−8/3

)
time to find an ε-approximate solution. The algorithm presented

in this paper uses the method of bisection to find partitions and its running time is shown to be O
(

nN log N
ε

)
,

where N is the total number of depot points and vertices of the input polygon. Furthermore, our approach does
not require any discretization. When certain conditions are met (described at the end of Section 3), the running
time is in fact shown to be O (nN log N).

The outline of this paper is as follows: in Section 2, we describe a necessary condition for optimality of a
partition of R that follows immediately from well-known results from geometric probability. In Section 3 we give
an algorithm that finds an optimal partition of R when R is a simply connected polygon. In Section 4 we present
some simulation results that show the solution quality of our algorithm when applied in a practical setting.

2 Summary of key facts and findings from related work

In this section we summarize the important theoretical results that form the basis of our partitioning algorithm.
We consider the travelling salesman problem (TSP) in a planar region R, where the distance between two points
is Euclidean, or any other “natural” metric such as the Manhattan or sup norm. The well-known BHH Theorem [5]
says that the length of an optimal TSP tour of a set of points follows a law of large numbers:
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Theorem 1. Suppose that {Xi} is a sequence of random points i.i.d. according to a probability density function f (·) defined
on a compact planar region R. Then with probability one, the length TSP ({X1, . . . , Xk}) of the optimal travelling salesman
tour traversing points {X1, . . . , Xk} satisfies

lim
k→∞

TSP ({X1, . . . , Xk})√
k

= β

¨
R

√
fc (x) dA (1)

where β is a constant and fc (·) represents the absolutely continuous part of f (·).

It is additionally known that 0.6250 ≤ β ≤ 0.9204 [1]. This result was subsequently improved in [27], which
showed that a similar law of large numbers holds for any subadditive Euclidean functional, such as a minimum-
weight matching, minimum spanning tree, Steiner tree, or Delaunay triangulation, with different constants β.
Applying a standard coupling argument to (1) gives the following result:

Theorem 2. Let R be a compact planar region and let f (·) be an absolutely continuous probability density defined on R. Let
{Xi} be a collection of i.i.d samples drawn from f (·). Let {R1, . . . , Rn} be a partition of R. If a partition of R into n disjoint
pieces R1, . . . , Rn satisfies ¨

Ri

√
f (x) dA =

1
n

¨
R

√
f (x) dA (2)

for i ∈ {1, . . . , n}, then asymptotically, the lengths of the TSP tours TSP ({X1, . . . , Xk} ∩ Ri) will differ by a term of order
o(
√

k), where k is the number of points sampled. Hence, the maximum tour length over any sub-region Ri differs from the
optimal solution by a term of order o(

√
k).

The uniform case of (2) is particularly well-known and has been used extensively to estimate TSP tour lengths
and to validate heuristics for solving TSP [16, 22]:

Corollary 3. As above, when f (·) is the uniform distribution on R, if a partition of R into n disjoint pieces {R1, . . . , Rn}
satisfies

Area (Ri) = Area (R) /n

then asymptotically, the lengths of the TSP tours TSP ({X1, . . . , Xk} ∩ Ri) will differ by a term of order o(
√

k).

Remark 4. Section 3.7 of [28] also proves that β satisfies

E TSP ({X1, . . . , Xk})− β
√

k Area (R) = O (1)

for all k, when {Xi} is a sequence of uniform independent samples on R. This says that the expected tour lengths
in Corollary 3 will differ by a constant.

Remark 5. We can extend Theorem 2 slightly to more general metrics than those described. Specifically, if we are
given a “roughness function” r (·), so that the straight-line distance from point u to point v is the line integral´

uv r (x) ds, then using a coupling argument similar to page 36 of [28], we find that the necessary optimality
condition is ¨

Ri

r (x)
√

f (x) dA =
1
n

¨
R

r (x)
√

f (x) dA .

This is useful for modelling situations with variable terrain.

3 The equitable partitioning problem on a simply connected service region

In the preceding section we described a necessary optimality condition for optimally partitioning a region. Here
we describe the precise formulation of our partitioning problem, including the additional constraints that are
imposed by the depot locations and the shape that we require our partition sub-regions to take. We then present
our fast algorithm for solving the problem.
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3.1 Analysis

The optimality condition defined in Theorem 2 is easy to achieve, in the absence of other criteria; for exam-
ple, a partition might consist exclusively of vertical lines, with each vertical strip cutting off

˜
strip

√
f (x) dA =

1
n
˜

R

√
f (x) dA. For this reason, we will impose additional constraints on our algorithm that should, in princi-

ple, give a better solution. Recall that in our original problem statement, we assumed that our service region R
contained a set of depot points P = {p1, . . . , pn}. A natural constraint to impose is that each sub-region Ri should
contain the depot point that we have assigned to it.

This still leaves us with considerable freedom; we have not yet imposed any constraints on the shape of the
sub-regions. For example, one would expect that sub-regions thus assigned should at least be connected. A further
property that might be desired is that for any two points u, v ∈ Ri, the shortest path between u and v be contained
in Ri. When the input region R is convex, this constraint is equivalent to requiring that each sub-region Ri also be
convex. When R is not convex, the property that we desire is called relative convexity [6]: each sub-region Ri should
be convex “relative” to the input region R, so that the shortest path between u, v ∈ Ri (which may not be a straight
line) must itself be contained in Ri. Hence, the algorithm we desire is expressed as follows:

Input: A simply connected polygon S, a point set P = {p1, . . . , pn} ⊂ S, and a probability density µ (·)
defined on S.

Output: A partition of S into n sub-regions, each satisfying the following properties:

1. Each sub-region Ri contains exactly one element pi of P.

2. For any two points u, v ∈ Ri, the shortest path from u to v in R is contained in Ri.

3. All sub-regions satisfy
˜

Ri
µ (x) dA = 1

n
˜

R µ (x) dA.

If f (·) describes the density of the client locations, we set µ (·) ≡
√

f (·) in the above, as in Theorem 2. In
the following section we give an algorithm that solves our above problem where µ (·) is an absolutely continuous
probability density that satisfies certain natural conditions (described in Section 4).

3.2 Our algorithm

The algorithm that we describe is recursive, constructing equitable partitions at each of ≤ n iterations:

Definition 6. Let R be a compact planar region and let µ (·) be an absolutely continuous probability density
defined on R. Let P = {p1, · · · , pn} ⊂ R denote a set of n points. A partition {R1, . . . , Rk} of R into k sub-regions
is said to be an equitable k-partition if we have

˜
Ri

µ (x) dA

|P ∩ Ri|
=
˜

R µ (x) dA
n

for all sub-regions Ri. If each sub-region Ri is (relatively) convex, then R1, . . . , Rk is said to be an equitable (relatively)
convex k-partition.

To begin, we let S ⊂ R2 be a simply connected polygon with m vertices and P ⊂ S the set of depot points, with
|P| = n. Let r < m be the number of reflex vertices of S, that is, the vertices that form an interior angle exceeding
180◦. As mentioned earlier, each sub-region that our algorithm returns must be relatively convex.

Definition 7. An S-geodesic between two points u and v in a simple polygon S, written G (u, v |S ), is the shortest
path between u and v contained in S.

Definition 8. A sub-region S̃ of a simple polygon S is relatively convex to S if, for every pair of points u, v ∈ S̃, the
S-geodesic G (u, v |S ) lies in S̃.
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Figure 2: The shaded region is relatively convex to the polygon containing it.

(a) (b)

Figure 3: Inputs S and P (3a) and output (3b) to our problem, where µ (·) is the uniform distribution on S. Note that
the region marked Si consists of two polygons joined at a vertex, but still satisfies our relative convexity constraint.

3.2.1 Preliminaries

Note that a relatively convex sub-region may contain degeneracies, as shown in Figure 2. In this section we will
prove the following result:

Theorem 9. Given a simple polygon S with m vertices with a probability density µ (·) defined on S and a collection of points
P = {p1, . . . , pn} ⊂ S where the vertices of S and the points in P are all in general position, there exists a partition of S
into n relatively convex sub-regions S1, . . . , Sn with disjoint interiors, where each sub-region Si contains exactly one point
from P and satisfies

´
Si

µ (x) dA = 1/n. Furthermore, we can find such a partition in running time O (nN log N), where
N = m + n.

Remark. We require the interiors be disjoint (as opposed to the regions Si themselves) so as to allow ourselves to
interpret boundaries between sub-regions liberally; a point pi lying on the boundary of two sub-regions Si, Sj can
be assigned to either region (but only one of the two). In addition, it may be necessary for two sub-regions to share
a reflex vertex or edge. In practice, the sub-region boundaries can be “perturbed” at each step of the algorithm, so
as to ensure that pi ∈ int (Si) provided pi ∈ int (S).

For the remainder of this section, we will assume for ease of exposition that µ (·) is the uniform distribution, so
that
˜

Si
µ (x) dA = Area (Si). In the end of Section 4 we describe the necessary conditions on µ (·) for the running

time described in Theorem 9 to be achievable. We also assume without loss of generality that Area (S) = 1. An
example of the input and output of our algorithm is shown in Figure 3. We let ∂ denote the boundary operator, e.g.
∂S denotes the boundary of S. The closure and interior are written cl (·) and int (·).

Definition 10. Given two points u and v on ∂S, the left shell L (u, v |S ) consists of all elements of S lying on or to
the left of G (u, v |S ). If u or v does not lie on ∂S, then we define L (u, v) = L

(
u
′
, v
′
)

, where u
′

and v
′

are obtained
by extending the endpoints of G (u, v |S ) via straight lines to ∂S (see Figure 4).
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Figure 4: The geodesic G (u, v |S ), its extension points u
′

and v
′
, and the induced left shell L (u, v |S ) =

L
(

u
′
, v
′ |S
)

.

Figure 5: The geodesic shortest-path tree rooted at u.

Remark. It is clear from their definitions that L (u, v |S ) and cl (S \ L (u, v |S )) = L (v, u |S ) are relatively convex
(to S).

Our algorithm will proceed by successively constructing equitable relatively convex 2- and 3-partitions, divid-
ing S into relatively convex sub-regions at each iteration. The same approach is used for the case where µ (·) is an
atomic measure in [6, 8]. The next two lemmas, 11 and 12, are well-known, making use of Chazelle’s trapezoidal
decomposition algorithm [12] and the funnel algorithm of [13, 23]; see [6, 9], for example.

Lemma 11. We can pre-process S and P so that, for any pair of points u and v on ∂S, we can determine the subset of P lying
in L (u, v |S ) in O (N) time. This pre-processing takes O (N log r) time.

Lemma 12. Given a point u on ∂S and a positive integer k ≤ n, we can determine a point v so that |L (u, v |S ) ∩ P| = k in
O (N log r) time.

Proofs. Omitted.

Lemma 13. Given a point u on ∂S and a positive integer α < 1, we can determine a point v so that Area (L (u, v |S )) = α
in O (m) time.

Proof. Using the funnel algorithm of [13], we can obtain an ordered geodesic shortest-path tree rooted at u to
every vertex of S in O (m) time. Each pair of adjacent siblings in this tree defines a triangle, as shown in Figure 5.
Since the vertices of S are sorted initially, we can determine the triangle containing v in O (m) time (by adding the
areas of adjacent triangles until the running sum exceeds α), and then solving a linear equation at that triangle in
constant time.
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Figure 6: A family of left shells cutting off area k
n , k+1

n , . . . , n−k
n , with k = 2 and n = 9.

Definition 14. Given a point u on ∂S and a positive integer α < 1, define LShellα (u) := v as in Lemma 13.

Theorem 15. Let x0 and x1 be two points on ∂S. If Area (L (x0, x1 |S )) = k/n for some integer k ≤ n/2 and |L (x0, x1 |S ) ∩ P| >
k, then we can find a relatively convex equitable 2-partition of S and P in running timeO (N (log n + log r)) = O (N log N),
where N = m + n.

Proof. Construct another point x2 on ∂S so that Area (L (x2, x0 |S )) = k/n. Then either |L (x2, x0 |S ) ∩ P| < k or
|L (x2, x0 |S ) ∩ P| > k (if we have equality then we are finished), and in either case we can derive an equitable
2-partition:

Case 1 Suppose that |L (x2, x0 |S ) ∩ P| > k. Then |L (x0, x2 |S ) ∩ P| < n− k and Area (L (x0, x2 |S )) = (n− k) /n.
Hence,L (x0, x1 |S ) contains too many points (relative to its area) andL (x0, x2 |S ) contains too few points. Consider
a family of left shells L (x0, x |S ), where x traverses ∂S clockwise from x1 to x2; see Figure 6. The function
φ (x) := Area (L (x0, x |S )) − k

n |L (x0, x |S ) ∩ P| is piecewise continuous, increasing on each of its components,
and decreasing at each discontinuity. Since φ (x1) < 0 and φ (x2) > 0, the intermediate value theorem guar-
antees the existence of a point x̄ where φ (x̄) = 0 and our equitable 2-partition is obtained. We can find this
by performing a binary search for i ∈ {k, . . . , n− k}, where for each i we compute the point LShelli/n (x0) and
the number of points contained therein. The preceding argument guarantees that we must find an equitable 2-
partition somewhere in this procedure, which can be performed in running time O (N log r) (preprocessing) +
O (N log n) = O (N log N) running time.

Case 2 Suppose that |L (x2, x0 |S ) ∩ P| < k. Then, as |L (x0, x1 |S ) ∩ P| > k, we have a left shell containing too
many points (relative to its area) and another left shell containing too few points. Hence, there must exist some pair
of points x̄, x̃ in ∂S such that x̄ ∈ ∂L (x0, x2 |S ) and x̃ ∈ ∂L (x1, x0 |S ) (see Figure 7), where Area (L (x̄,x̃ |S )) = k/n
and |L (x̄,x̃ |S ) ∩ P| = k. This is because the function LShellk/n (x) is continuous in x (for x ∈ ∂S), and the
assumption that our points lie in general position ensures that as x traverses ∂S from x0 to x2, the elements of
P will enter and exit L (x, LShellk/n (x)) one by one. See the appendix for the proof of the running time of this
subroutine.

Corollary 16. Let x0 and x1 be two points on ∂S. If Area (L (x0, x1 |S )) < k/n for some integer k ≤ n/2 and
|L (x0, x1 |S ) ∩ P| = k, then we can find a relatively convex equitable 2-partition of S and P in running time O (N log N).

Proof. If Area (L (x0, x1 |S )) < k/n, thenL (x0, x1 |S ) ⊂ L (x0, LShellk/n (x0) |S ) so that |L(x0, LShellk/n(x0) |S ) ∩ P| ≥
k and we apply Theorem 15.
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Figure 7: An equitable geodesic shell exists between x̄ and x̃ with k = 4 and n = 9.

3.2.2 The algorithm

Using Theorem 15, we will describe an algorithm in this section that finds either an equitable 2- or 3-partition of a
simple polygon and a point set. We can apply this algorithm in a “divide-and-conquer” fashion and thus make an
equitable partition of the entire region S after repeated applications. The remainder of this section consists of the
proof of the following theorem:

Theorem 17. Given a simple polygon S with m vertices with a probability density µ (·) defined on S and a collection of
points P = {p1, . . . , pn} ⊂ S where the vertices of S and the points in P are all in general position, there exists either an
equitable 2-partition or an equitable 3-partition of S and P, and we can find such a partition in running time O (N log N),
where N = m + n.

This will suffice to prove Theorem 9, for the following reasons: first, observe that our partitioning process must
never introduce any new reflex vertices (otherwise we would lose relative convexity). Hence, none of the sub-
regions defined by our algorithm will ever have more than 2r reflex vertices (degenerate polygons may count a
reflex vertex twice in traversing the boundary). Furthermore, the procedure we outline below will never introduce
more than 3 new non-reflex vertices in any sub-region in any iteration (since it constructs either equitable 2- or 3-
partitions); therefore, at any iteration of our algorithm we are working with a polygon having at most m + 3n +
2r = O (N) vertices, containing at most n points. Therefore, every iteration of our algorithm can be performed
in running time O (N log N), and there are at most n iterations that we must perform, giving a final running time
O (nN log N).

Notice that if n is even, then Theorem 15 immediately guarantees the existence of a ham-sandwich cut, that is, an
equitable 2-partition of S and P containing n/2 points in either side and we are done. Therefore, we can assume
without loss of generality that n is odd, and set k = (n− 1) /2. To begin, we form the geodesic hull of all points P
in running time O (N log N) (using the optimal algorithm of [29]):

Definition 18. Given a simple polygon S and a collection of points P ⊂ S, the geodesic convex hull GH (P |S ) of P
in S is the minimum perimeter circuit that lies in S and encloses P.

We construct GH (P |S ), obtaining a sorted list of boundary points p0, . . . , pn′ in clockwise order and inte-
rior points pn′+1, . . . , pn−1 as shown in Figure 8. We choose boundary point p0 ∈ P and determine a geodesic
G (x0, x1 |S ) through p0 that has k points lying strictly to its right and left, using Lemma 12 . If either Area (L (x0, x1 |S )) <
k/n or Area (L (x1, x0 |S )) < k/n, then we have a certificate for the existence of an equitable 2-partition and we
apply Corollary 16. Hence, we assume without loss of generality that

k
n

< Area (L (x0, x1 |S )) , Area (L (x1, x0 |S )) <
k + 1

n
(3)
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Figure 8: The geodesic convex hull of a point set in a simple polygon, with n
′
= 6.

(a) (b)

Figure 9: The partitions {U1, L1, R1} and {U2, L2, R2}.

so that both shells are too big to contain k points, but too small to contain k + 1 points. Since we have failed to find
an equitable 2-partition, our algorithm will seek an equitable 3-partition.

Assume that x0 is on the same “side” of GH (P |S ) as p0, i.e. that G (x0, p0 |S ) ∩ GH (P |S ) = p0. Extend the
geodesic G (p0, p1 |S ) until it intersects ∂S at points u1 and v1, where u1 is on the same side of GH (P |S ) as p0 and
v1 is on the same side of GH (P |S ) as p1. We similarly extend the geodesic G

(
p0, pn′ |S

)
until it intersects ∂S at

points u2 and v2. Consider the 3-partitions {U1, L1, R1} and {U2, L2, R2} centered at p0, defined by

U1 := L (u1, v1 |S )
L1 := L (x1, x0 |S ) ∩ L (v1, u1 |S )
R1 := L (x0, x1 |S ) ∩ L (v1, u1 |S )
U2 := L (u2, v2 |S )
L2 := L (x1, x0 |S ) ∩ L (v2, u2 |S )
R2 := L (x0, x1 |S ) ∩ L (v2, u2 |S ) ,

as shown in Figure 9.
Since U1 and U2 can be regarded as containing only one point p0, we can assume without loss of generality

that Area (U1) , Area (U2) > 1/n, since otherwise Corollary 16 applies. Hence for i ∈ {1, 2} it must be the case that
either Area (Ri) < k/n or Area (Li) < k/n (or both). There are a total of three cases we will consider separately:

1. Area (L1) < k/n and Area (R1) < k/n (or equivalently Area (L2) < k/n and Area (R2) < k/n).
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(a) (b) (c)

Figure 10: Making an equitable 3-partition {U∗, L∗, R∗}. The arrow in 10c implies that we are assigning p0 to U∗.

2. Area (L1) > k/n and Area (L2) < k/n (or equivalently Area (R1) > k/n and Area (R2) < k/n), and Case 1
does not apply.

3. Area (L2) > k/n (or equivalently Area (R1) > k/n).

We will include a proof for Case 1 here and provide the other two cases in the appendix, since the ideas therein
are essentially the same.

Case 1 Suppose without loss of generality that Area (L1) < k/n and Area (R1) < k/n. As Area (L (x0, x1 |S )) >
k/n, there exists a point x̄ on ∂S between u1 and x0 (traversed clockwise) such that

Area (L (x1, x0 |S ) ∩ L (p0, x̄ |S )) =
k
n

(see Figure 10a). Similarly, there exists a point x̃ between x0 and v1 (traversed clockwise) such that

Area (L (x0, x1 |S ) ∩ L (x̃, p0 |S )) =
k
n

(see Figure 10b). Setting

U∗ := L (p0, v1 |S ) ∩ L (u1, p0 |S )
L∗ := L (x1, x0 |S ) ∩ L (p0, x̄ |S )
R∗ := L (x0, x1 |S ) ∩ L (x̃, p0 |S )

and assigning p0 to U∗ we obtain an equitable relatively convex 3-partition and we are finished. See Figure 10. We
complete this section with the pseudo-code for our algorithm.
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Input: A simply connected polygon S, a point set P = {p1, . . . , pn} ⊂ S, and a probability density µ (·)
defined on S.

Output: A partition of S into n sub-regions Si, each satisfying the following properties:

1. Each sub-region Si contains exactly one element pi of P.

2. For any two points u, v ∈ Si, the shortest path from u to v in S is contained in Si.

3. All sub-regions satisfy
˜

Si
µ (x) dA = 1

n
˜

S µ (x) dA.

if n = 1 then
return S;

else
if n is even then

Using Theorem 15, let S1, S2 be a ham-sandwich cut of S, P, and µ (·);
Let P1 and P2 denote the subsets of P in S1 and S2 and let µ1 (·) and µ2 (·) denote the restrictions of
µ (·) to S1 and S2, normalized so that they integrate to 1;
return RegionPartition (S1, P1, µ1) ∪ RegionPartition (S2, P2, µ2);

else
Let p0 be a point on GH (P |S ) and determine a geodesic G (x0, x1 |S ) through p0 that has
k = (n− 1)/2 points lying strictly to its right and left;
if GH (P |S ) gives a certificate for an equitable 2-partition S1, S2 then

Let P1 and P2 denote the subsets of P in S1 and S2 and let µ1 (·) and µ2 (·) denote the restrictions
of µ (·) to S1 and S2, normalized so that they integrate to 1;
return RegionPartition (S1, P1, µ1) ∪ RegionPartition (S2, P2, µ2);

else
Attempt to find an equitable 3-partition S1, S2, S3;
We will either find S1, S2, S3, or our search will be interrupted by finding a certificate of the
existence of an equitable 2-partition;
if we find an equitable 3-partition then

Let P1, P2, and P3 denote the subsets of P in S1, S2, and S3 and let µ1 (·), µ2 (·), and µ3 (·)
denote the restrictions of µ (·) to S1, S2, and S3, normalized so that they integrate to 1;
return RegionPartition (S1, P1, µ1) ∪ RegionPartition (S2, P2, µ2) ∪ RegionPartition (S3, P3, µ3);

else
Let P1 and P2 denote the subsets of P in S1 and S2 and let µ1 (·) and µ2 (·) denote the
restrictions of µ (·) to S1 and S2, normalized so that they integrate to 1;
return RegionPartition (S1, P1, µ1) ∪ RegionPartition (S2, P2, µ2);

end
end

end
end

Algorithm 1: Algorithm RegionPartition (S, P, µ) equitably partitions a simply connected polygon S, a point
set P = {p1, . . . , pn} ⊂ S, and a probability density µ (·) defined on S.

Computability conditions on µ (·) Our algorithm can be performed with any density µ (·) of a sub-region in
place of its area. The two conditions that we impose on computing this density are:

1. For any simple polygon S̃ ⊂ S with m̃ vertices, we can compute
˜

S̃ µ (·) dA in running time O (m̃).

2. For any hourglass region consisting of two triangles 4apb and 4cpd, with α :=
˜
4apb µ (x) dA < β :=˜

4cpd µ (x) dA and for any γ ∈ [α, β], we can compute a pair of points u∗ on segment ab and v∗on segment
cd such that segment u∗v∗ contains p and

˜
4apu∗ µ (x) dA +

˜
4v∗pd µ (x) dA = γ in constant time. See

11



Figure 11: The region described in computability condition 2.

Figure 11.

It is straightforward to verify that these are the only two conditions that Section 3.2.2 requires. Note that in our
algorithm, it may be the case that c = d = p, so that one of the triangles described in condition 2 may be a
single point. In practice, when condition 3.2.2 is not met, the desired points u∗ and v∗ may be approximated using
the method of bisection, in which case the running time of our algorithm becomes O

(
nN log N

ε

)
. The appendix

contains a formal proof that µ (·) ≡ Area (·) satisfies condition 2.

Other applications and extensions to arbitrary metrics Recall that our motivation for this algorithm is to dis-
tribute the workloads of a fleet of vehicles that visit a set of clients. As we have described earlier, if client locations
are assumed to be i.i.d. samples from a probability density f (·), then by setting µ (·) :=

√
f (·) and equitably

partitioning µ (·) and S, we will find an asymptotically load-balancing partition. Using the result of [27] (also men-
tioned in Section 2 of this paper), we see that this partitioning result also holds when the underlying combinatorial
structures are minimum-weight matchings, minimum spanning trees, Steiner trees, and Delaunay triangulations,
as opposed to TSP tours. To be precise, our partitioning algorithm is asymptotically optimal (within o(

√
k)) when-

ever the underlying combinatorial structure being constructed for each depot is a subadditive Euclidean functional,
as defined in [27]. In certain situations it may be advantageous to set µ (·) = f (·) instead; this is the case, for
example, if each client requires a randomly distributed service time, and these service times dwarf the amount of
time spent in transit.

One situation in which this algorithm does not generate load-balancing tours is the case where point-to-point
distances are defined by an arbitrary metric d (·, ·) (representing, for example, a hilly terrain or an area with heavily
congested traffic), rather than a “natural” norm such as the Euclidean distance or an Lp norm. When this is the
case, the law of large numbers (1) from Section 2 no longer applies (since the shortest path between two points
is not necessarily a straight line) and we cannot guarantee asymptotic optimality. However, we can still define
G (u, v |S ) for any points u and v under such a metric, and hence L (u, v |S ) must still be “relatively convex” to
S when we consider the shortest path between any two points u, v under d (·, ·).The following theorem is proven
directly from Theorem 9:

Theorem 19. Let S ⊂ R2 be a simple polygon with m vertices, let µ (·) be a probability density defined on S, let d (·, ·) be
a metric defined on S, and let P = {p1, . . . , pn} ⊂ S be a collection of points, where the vertices of S and the points in P
are all in general position. Suppose that, for any simple sub-region S̃ ⊂ S, for any point u ∈ ∂S̃, and for any α ∈ (0, 1),
there exists a point v ∈ ∂S̃ such that

˜
L(u,v|S̃ ) µ (x) dA = α

˜
S̃ µ (x) dA, where the boundary component G

(
u, v

∣∣S̃ ) of

L
(
u, v

∣∣S̃ ) is taken with respect to d (·, ·). Then there exists a partition of S into n disjoint sub-regions S1, . . . , Sn satisfying
the following three properties:

1. Each sub-region Si contains exactly one point from P.

2. For any two points u, v ∈ Si, the shortest path G (u, v |S ) is contained in cl (Si).

3. For each sub-region Si,
˜

Si
µ (x) dA = 1/n.

We will refrain from detailing the computability conditions on d (·, ·) for a running time of O (nN log N) to
be obtainable, as there are many of them and they are outside the scope of this paper. However, the methods in
Theorem 9 can still be used in practice to obtain an equitable partition of the type described in Theorem 19.
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4 Computational results

Theorem 2, our criterion for optimal partitioning, is an asymptotic result. We are guaranteed that vehicle work-
loads will differ by terms of order o(

√
k), but we have not yet established that workloads are in fact balanced when

this algorithm is employed (e.g., that the convergence in k may be slow in practice). In this section we give some
examples that suggest that vehicle workloads will in fact be balanced in a practical setting when point-to-point
distances are Euclidean.Specifically, we present the results of a simulation in which we construct a synthetic data
set with n = 9 depots where f (·) is a mixture of three Gaussian distributions, truncated to lie within a simple
polygon S ⊂ [0, 1]2.

The two polygons that form the input and output to our simulation are shown in Figure 12. For each polygon,
we generate 20 scenarios, with each scenario consisting of 30 samples of k points in S, for k between 50 and
1500 (and hence we performed a total of 600 simulations per polygon). TSP tours were computed using the
Lin-Kernighan heuristic from Concorde [14]. Tour lengths for a particular scenario, and the average vehicle tour
lengths over all scenarios, are shown in Figure 13. As the plots show, the vehicle workloads are well balanced by
partitioning; these suggest that the o(

√
k) term of Theorem 2 may be negligible, although the variability between

vehicle tours for small k is still high. This is not surprising since our partition is “asymptotically optimal” and
makes no guarantees for the tour lengths when the number of points is small. One possibility for small k would
be to ignore the depot set and instead require that each sub-region equitably partition both

√
f (·) and f (·), since

this would ensure that on average the sub-regions will contain the same number of points. One can find an
approximate solution to this problem using a discrete equitable partitioning algorithm such as [6].

A second observation is that our algorithm performs well when many scenarios are averaged, as suggested in
Figures 13b and 13d. This is supported theoretically by Remark 4; our results additionally suggest that the O (1)
constant may exist (and be small) for certain non-uniform densities, as appears to be the case here.

One other important note is that, since our algorithm merely solves a feasibility problem, the partition sub-
regions can have undesirable shape properties depending on the depot placement. Figure 14 shows a partition
whose sub-regions are particularly long and skinny. In practice we find it helpful to start our algorithm with
various choices of starting point p0 to generate a partition.

For a related application, Figure 15 shows the result of this algorithm applied to a map of Hennepin County,
Minnesota, where µ (·) is the population density and P represents the 29 largest post offices. Rather than producing
equal TSP tour lengths, the algorithm partitions so that each mail carrier services the same number of houses each
day.
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Figure 16: In 16a and 16b we isolate the desired edge si∗ si∗+1, which is then refined in 16c. Here we have k = 2
and n = 7.

A Additional proofs

A.1 Theorem 15, Case 2

Proof. This is essentially the same as the proof of the ham-sandwich theorem in [6, 9], with one of the two point
sets replaced with the area functional. We must show that the partition (x̄, x̃) can be computed in running time
O (N (log m + log r)) = O (N log N). Suppose that we have three points x0, x1, and x2 as in the hypothesis. Since
the vertices of S are sorted, we let s1, . . . , sm′ denote the vertices of S lying between x0 and x2 when S is traversed
clockwise. Using Lemma 13, we perform a binary search on these vertices, computing at each query si the left shell
through vertex si with area k/n (and the number of points contained therein), until we either terminate or isolate an
edge si∗ si∗+1 that must contain x̄. We then perform another binary search to isolate the opposite edge sj∗ sj∗+1 that
must contain x̃. These computations can all be performed in running time O (m log m + N log m) = O (N log m).

We can further refine these two edges, si∗ si∗+1 and sj∗ sj∗+1, to a pair of line segments ab and cd, satisfying the
properties that

1. ab ⊆ si∗ si∗+1 and cd ⊆ sj∗ sj∗+1

2. Area (L (a, c |S )) = Area (L (b, d |S )) = k/n

3. |L (a, c |S ) ∩ P| > k and |L (b, d |S ) ∩ P| < k

as in Figure 16. This means that our desired equitable geodesic must lie in the funnel F := L (a, d |S ) ∩ L (c, b |S ).
There are two cases we must consider regarding the shape of F :

1. F is a “skinny funnel”; that is, F consists of two disjoint polygons, connected by a geodesic reflex chain
(Figure 17).

2. F is a “fat funnel”; that is, F is a single simple polygon with no degeneracies (Figure 18).

Case 1 Let F1 denote the polygon of F containing ab and let F2 denote the polygon of F containing cd. Let
h1 ∈ F1 be the reflex vertex of S in F1 that intersects the reflex chain, and define h2 ∈ F2 similarly. By building
the geodesic shortest-path tree between h1 and every vertex in F1 in O (m) time, we can divide segment ab into
at most r + 1 segments, as shown in Figure 19. We now perform a binary search on the endpoints of each such
segment, determining for each query x ∈ ab the corresponding point x̄ = LShellk/n (x) ∈ cd (using the same
procedure as described in Lemma 13), and the number of points |L (x, x̄ |S ) ∩ P|. Each query requires O (N) time
and consequently this binary search requiresO (N log r) running time. By performing this binary search, we refine
our search space F1 to a single triangle 4a

′
b
′
r1, where a

′
, b
′ ∈ ab and r1 is a reflex vertex. We perform the same
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(a) (b)

a c

d

b

h1

h2

(c)

Figure 17: 17a and 17b show the two half-shells induced by ab and cd; the “skinny funnel” and its reflex chain are
shown in 17c.

(a) (b)

(c)

Figure 18: 18a and 18b show the two half-shells induced by ab and cd; the “fat funnel”is shown in 18c.
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Figure 19: We divide segment ab into a collection of segments based on the reflex vertices of S.

binary search on F2, isolating two points c
′

and d
′

and a reflex vertex r2, which may cause us to further refine a
′

and b
′
.

Our search space has now been refined to a pair of triangles, connected by a reflex chain; the advantage of this
is that we can now make constant-time area queries. In particular, given any point x ∈ a′b′ , we can determine the
corresponding x̄ so that Area (L (x, x̄)) = k/n in constant time. Hence, for each point p ∈ P∩

(
4a

′
b
′
r1 ∪4c

′
d
′
r2

)
,

we can define a pair of points xp ∈ a′b′ and x̄p ∈ c′d′ that induce a desired area, in constant time. The collection of
all points xp and x̄p partitions a′b′ and c′d′ into at most n + 1 segments each. Each such segment defines a family of
partitions (each cutting off area k/n of S) that cut off the same subset of P, and any two adjacent segments define
families of partitions that cut off a pair of subsets of P differing by only one element. We can sort the endpoints of
these segments by the order in which they appear on a′b′ in O (n log n) time. Hence, by examining each segment
sequentially (in total time O (n)), we are guaranteed to find the segment whose induced partition is equitable;

(a) (b)

Figure 20: Dividing the two triangles 4a
′
b
′
r1 and 4d

′
c
′
r2 with segments that all cut off area k/n of S in constant

time.
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Figure 21: The diagrams above show the funnel F (we omit S and P for clarity). If point g does not intersect
segment cd, then any geodesic from a

′
or b

′
to cd must intersect segment sīsī+1 by construction.

see Figure 20. This completes the proof. The total complexity for this subroutine is O (m + N log r + n log n) =
O (N log N).

Case 2 We will follow a similar procedure to Case 1, although we cannot necessarily restrict our search space to
a pair of triangles. Let the lower (resp. upper) reflex chain of F be the geodesic that connects vertices a and d (resp.
b and c), and assume that S is oriented so that a and d lie “below” b and c. We will show that the funnel F can be
reduced to either a skinny funnel, or a funnel with at most six vertices. In particular, we will reduce the number
of reflex vertices on the upper and lower reflex chains to one. It will suffice to prove that we can reduce F to a
funnel with only one vertex on its lower reflex chain (since we can apply the same procedure then to the upper
reflex chain).

We can extend each edge in the lower chain until it touches ab (if at all); this divides ab into at most r + 1 seg-
ments. We also extend the cross tangent (the line tangent to the two chains, if it exists) to the upper and lower reflex
chains until it touches ab (if at all). We perform a binary search on the endpoints of these segments, where for each
query point x we compute LShellk/n (x), followed by the number of points cut off, |L (x, LShellk/n (x) |S ) ∩ P|.
On completion (which takes running time O (N log r)) we will isolate a segment a′b′ ⊆ ab that must contain an
endpoint of our desired equitable 2-partition. Note that if b = b

′
, then we are finished; this is because we know

that an equitable 2-partition must be contained in the funnel defined by a′b and c, d; by our construction, this is
either a skinny funnel, in which case we can apply the result of Case 1, or a funnel whose lower reflex chain has
only one vertex.

Assuming that b 6= b
′
, it must be the case that b

′
is induced by an edge sīsī+1 on the lower reflex chain. We

extend this edge to the right until it intersects with F at a point g; if g does not lie on segment cd, then we are
finished, since we can reduce F to a skinny funnel as shown in Figure 21.

If the extension of this segment lies on cd at a point g then we compute LShellk/n

(
a
′
)

and LShellk/n

(
b
′
)

. There
are three cases we must consider:

1. If LShellk/n

(
a
′
)

and LShellk/n

(
b
′
)

are both below g, then we have isolated our search to a skinny funnel
and we apply the result of Case 1; see Figure 22.

2. If LShellk/n

(
a
′
)

and LShellk/n

(
b
′
)

both lie above g, then we can refine our search to either a skinny funnel
or a funnel whose lower reflex chain is a line segment; see Figure 23.

3. If LShellk/n

(
a
′
)

lies above g and LShellk/n

(
b
′
)

lies below g, then we compute h = LShell(n−k)/n (g) (which

lies on a′b′ ) . We perform one more search query at this point, counting the number of points in L (h, g); see
Figure 24. Two cases can arise:
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Figure 22: If LShellk/n

(
a
′
)

and LShellk/n

(
b
′
)

are both below g, then the equitable partition lies inside a skinny

funnel, with both the lower and upper reflex chains containing
(
sī, sī+1

)
.

Figure 23: If LShellk/n

(
a
′
)

and LShellk/n

(
b
′
)

are both above g, then the geodesic G
(

a
′
, LShellk/n

(
b
′
)
|S
)

can

only intersect sī+1 (if it intersects any of the lower reflex vertices at all). If G
(

a
′
, LShellk/n

(
b
′
)
|S
)

intersects the
upper reflex chain, we have a skinny funnel.

Figure 24: If LShellk/n

(
a
′
)

is above g and LShellk/n

(
b
′
)

is below g, then we compute h = LShell(n−k)/n (g).

Our search is then reduced to either a skinny funnel or a funnel whose bottom reflex chain is
(

a
′
, sī+1, sī, g

)
=(

a
′
, sī+1, g

)
, which contains only one reflex vertex.

23



Figure 25: The points x̄ and x̄
′
.

(a) If |L (h, g) ∩ P| > k, then the endpoints of the desired equitable partition must lie in the funnel joining
segments a′h and

(
LShellk/n

(
a
′
)

, g
)

. We have then isolated our search space to a funnel whose bottom
reflex chain contains only one reflex vertex sī+1.

(b) If |L (h, g) ∩ P| < k, then the endpoints of the desired equitable partition must lie in the funnel joining
segments hb′ and g LShellk/n

(
b′
)
. This is a skinny funnel and we can apply Lemma 1.

To complete the proof, we require one more lemma:

Lemma 20. Let F ′ be a fat funnel with both reflex chains having only one reflex vertex (so F ′ is a hexagon) as in the
preceding description. We can find an equitable partition of S and P in running time O (n log n).

Proof. Let (a, b, c, d, e, f ) denote the vertices of F ′ , with reflex vertices e and f . By our assumption, there exists an
equitable partition of S whose boundary is the geodesic G (u, v |S ), where u ∈ ab and v ∈ cd. For each point p ∈ P
in F ′ , we can compute in constant time every geodesic G (u, v |S ) 3 p cutting off a fixed area of F ′ . Intuitively,
this is because every such geodesic is either a line segment or a path with a single reflex vertex (e or f ), by our
general position assumption, and we can determine the existence of all such geodesics (there can be no more than
6 of them for each p) in constant time.

Lemma 20 completes the proof of Theorem 15 and we are finished.

A.2 Theorem 17, Cases 2 and 3

Case 2 Suppose without loss of generality that Area (L1) > k/n and Area (L2) < k/n . As in Case 1, there exists
a point x̄ on ∂S between u2 and u1 (traversed clockwise) such that

Area (L (x1, x0 |S ) ∩ L (p0, x̄ |S )) = k/n .

We set L∗ := L (x1, x0 |S ) ∩ L (p0, x̄ |S ). Next, let x̄
′

denote the extension of G (x̄, p0 |S ) to ∂S as in definition 10;
see Figure 25. Note that if Area

(
L
(

p0, x̄
′ |S
))
≤ 1/n then we are guaranteed to find an equitable 2-partition by

Corollary 16. Hence, we assume that Area
(
L
(

p0, x̄
′ |S
))

> 1/n, in which case

Area
(
L (x0, x1 |S ) ∩ L

(
x̄
′
, p0

))
< k/n .
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(a) (b)

Figure 26: Finding the point x̃ and the partition {U∗, L∗, R∗}.

Finally, since
Area (L (x0, x1 |S )) > k/n

by our initial assumption 3, there exists a point x̃ on ∂S between x0 and x̄
′

(traversed clockwise) such that

Area (L (x0, x1 |S ) ∩ L (x̃, p0)) = k/n .

Setting

U∗ := L (p0, v1 |S ) ∩ L (u1, p0 |S )
L∗ := L (x1, x0 |S ) ∩ L (p0, x̄ |S )
R∗ := L (x0, x1 |S ) ∩ L (x̃, p0 |S )

and assigning p0 to U∗ we obtain an equitable relatively convex 3-partition and we are finished. See Figure 26.

Case 3 Suppose without loss of generality that Area (L2) > k/n. Let pi∗ with i∗ ≤ n
′

be the element of P such
that L (pi∗ , x0 |S ) is a supporting shell to GH (P |S ), where as in definition 10 we must extend point pi∗ to a point
x2 on ∂S. We can find pi∗ in O (N log r) time using Lemma 12. We assume that Area (L (x2, x0 |S )) > 1/n, since
otherwise Corollary 16 applies. Since Area (L (x0, x1 |S )) > k/n, it must therefore be the case that

Area (L (x1, x0 |S ) ∩ L (x0, x2 |S )) < k/n

and
Area (L (x1, x0 |S ) ∩ L (v2, u2 |S )) > k/n ,

and therefore there must exist a point x̄ ∈ ∂S between x2 and u2 (traversed clockwise) and a point pī ∈ GH (P |S )
such that

Area (L (x1, x0 |S ) ∩ L (pī, x̄ |S )) = k/n

and L (x̄, pī |S ) is a supporting shell to GH (P |S ). See Figure 27. Next we can isolate pī by performing a bi-
nary search on the ordered point set

{
x2, pi∗ , pi∗+1, . . . , pn′ , p0

}
. For each query, we take a pair of adjacent points(

pj, pj+1
)

(or (x2, pi∗) or
(

pn′ , p0
)

in the boundary case) and compute Area
(
L (x1, x0 |S ) ∩ L

(
pj+1, pj |S

))
. At the

end of this procedure we will isolate two pairs
(

pī−1, pī
)

and
(

pī, pī+1
)
, which gives us the point pī. By then per-

forming a binary search on the vertices of S, we isolate an hourglass shape (or a skinny funnel) that contains our
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(a) (b)

Figure 27: The inputs and solution procedure for Case 3. Beginning with Area (L2) > k/n as shown in 27a, we
find the point p4 = pi∗ in 27b.

Figure 28: After isolating pī in a binary search of GH (P |S ), we conclude that our desired point x̄ lies be-
tween the points u

′
and u

′′
(traversed clockwise on ∂S), which are determined by intersecting G

(
pī−1, pī |S

)
and

G
(

pī, pī+1 |S
)

with ∂S. We perform a binary search on the vertices of ∂S to reduce our search space to an hourglass
(or a skinny funnel in other cases), indicated by the shaded region.
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(a) (b)

Figure 29: Finding the partition {U∗, L∗, R∗}.

Figure A.1: The “hourglass” region corresponding to point p.

desired x̄ as shown in Figure 28. Let π denote the intersection G (x̄, pi∗ |S ) with G (x1, x0 |S ) and let x̄
′

denote the
extension of G (x̄, pi∗ |S ) to ∂S, also shown in Figure 28. Note that L (x̄, pī |S ) = L (x̄, π |S ) = L

(
x̄
′
, π |S

)
by

definition of π.
Next, we can assume without loss of generality that Area (L (x̄, π |S )) > 1/n, since otherwise Corollary 16

applies. Since Area (L (x1, x0 |S ) ∩ L (π, x̄ |S )) = k/n, this implies that Area (L (x0, x1 |S ) ∩ L (π, x̄ |S )) < k/n.
However, since Area (L (x0, x1 |S )) > k/n by assumption, there must exist a point x̃ between x0 and x̄

′
(traversed

clockwise) such that Area (L (x1, x0 |S ) ∩ L (π, x̃ |S )) = k/n. Using Lemma 13, we can find x̃ with a binary search
on the vertices of S, and we are finished. See Figure 29.

B Proof of Lemma 20

As in Theorem 15 and Lemma 20, we have a funnel F ′ with vertices (a, b, c, d, e, f ) as shown in Figure A.1. Given
any point p ∈ P in F ′ , we want to find every geodesic G (u, v |S ) 3 p cutting off a fixed area A of F ′ , where
u ∈ (a, b) and v ∈ (c, d). Every such geodesic is either a line segment (u, v) that contains p, or a path with a single
reflex vertex (u, e, v) or (u, f , v) that contains p. We first determine all line segments that cut off a fixed area of
F ′ : these are all contained in an hourglass as shown in Figure A.1, whose bounds are determined by the placement
of the funnel vertices and p (which we can determine in constant time). In order to find a segment cutting off a
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Figure A.2: A collection of geodesics (u, e, p, v), for varying u’s; notice that v does not change, as it is constrained
to lie on the line between e and p.

desired area, we must solve

F (u, v) :=
1
2

det
(

1 1 1
a p u

)
+

1
2

det
(

1 1 1
p d v

)
= A

where a, p, u, v, and d are column vectors, subject to the constraint that p lies on the segment from (u, v), for some
desired area A. It is easy to verify that the coordinates of v are a linear fractional function G (u) of u (due to the
constraint that p ∈ (u, v)), and therefore we are seeking a solution to

H (u) :=
1
2

det
(

1 1 1
a p u

)
︸ ︷︷ ︸

linear in u

+
1
2

det
(

1 1 1
p d G (u)

)
︸ ︷︷ ︸

linear fractional in u

= A

Since H (u) is the sum of a linear function of u and a linear fractional function of u, we can find a solution to
H (u) = A by solving a quartic equation, which has at most 4 solutions.

In addition to finding all line segments cutting off a desired area, we can also consider all paths of the form
(u, e, v) or (u, f , v) that contain p; these are both straightforward. There are a total of four such paths that may exist:
those of the form (u, e, p, v) and (u, p, e, v), and those of the form (u, f , p, v) and (u, p, f , v). To find a geodesic of
the form (u, e, p, v) cutting off a desired area, for example, we observe that the only variable that we may change
is u, since v is constrained to lie on the line determined by e and p. This is a linear equation in u; see Figure A.2.

At this point, for each point p ∈ P in F ′ , we have a collection of at most 6 points on ∂F ′ that cut off a desired
area. We can sort these points. Again, the collection of all such points divides the edges (a, b) and (c, d) into O (n)
segments. Each such segment defines a family of partitions (each cutting off area k/n of S) that cut off the same
subset of P, and any two adjacent segments define families of partitions that cut off a pair of subsets of P differing
by only one element. Hence, by sorting the endpoints of segments (in total time O (n log n)) and examining each
segment sequentially (in total time O (n)), we are guaranteed to find the segment whose induced partition is
equitable. This completes the proof.

28


