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Abstract

We consider the problem of dividing a geographic region into sub-regions so as to minimize the maximum

workload of a collection of facilities over that region. We assume that the cost of servicing a demand point is a

monomial function of the distance to its assigned facility and that demand points follow a continuous probability

density. We show that, when our objective is to minimize the maximum workload of all facilities, the optimal

partition consists of a collection of circular arcs that are induced by a multiplicatively weighted Voronoi diagram.

When we require that all sub-regions have equal area, the optimal partition consists of a collection of hyperbolic

or quartic curves. We show that, for both problems, the dual variables correspond to "prices" for a facility to

serve a demand point, and our objective is to determine a set of prices such that the entire region is "purchased"

by the facilities, i.e. that the market clears. This allows us to solve the partitioning problem quickly without

discretizing the service region.

1 Introduction

Given a collection of facilities, a natural question in many disciplines is to balance the load between these facilities
while minimizing the cost of providing service. Speci�cally, suppose that P = {p1, . . . , pn} is a collection of �xed
points representing facilities in a convex region C. We would like to partition C into n sub-regions so that all
clients in sub-region Ri are satis�ed by facility i, while balancing the workloads of the facilities. For example,
if the points P represent �re stations, we might want to minimize the maximum workload that any of the �re
stations experiences over a long time horizon. On the other hand, we might want to minimize the total workload
experienced by all �re stations, while imposing the constraint that all �re stations service the same amount of
customers in the long run. In this paper, we consider the case where the cost of service between a demand point x
and a facility i is of the form c (x, pi) = αi ‖x− pi‖k2 (hereafter simply αi ‖x− pi‖k) and we assume that demand
points follow a probability density function f (x) on C. Thus, the average workload assigned to facility i is given

by
˜
Ri
αif (x) ‖x− pi‖k dA. We prove that the optimal boundaries between sub-regions must be circular arcs that

are induced by a multiplicatively weighted Voronoi diagram. Furthermore, when we require that all sub-regions
service the same average number of customers (so that

˜
Ri
f (x) dA = 1/n), the optimal partition consists of a

collection of hyperbolic arcs or quartic curves called Cartesian ovals. We suggest two heuristics for enforcing shape
constraints, such as connectivity and restricting the maximum distance from a point to its assigned facility. Both
problems can be solved quickly by solving a convex optimization problem with no more than 2n variables and
without discretizing C. Although our result is a simple and immediate consequence of complementary slackness in
linear programming, we are unaware of its existence elsewhere in the literature.

Related work

A well-studied related problem in operations research is the Fermat-Weber problem, in which our objective is to
place a facility p (or collection of facilities) in C so as to minimize the average distance between points in C and p.
Discrete and continuous versions of this problem are discussed at length in [6], and [7] gives the �rst polynomial-
time algorithm for various versions of the 1-norm problem. The authors also prove that the 1-norm problem with
multiple facilities is NP-hard for large n.

Two other variations commonly encountered in continuous facility placement are the n-center problem [14],
in which the objective is to cover C with n identical circles with the smallest possible radius, and the minimum
equitable radius problem [15], in which the objective is to place n facilities whose Voronoi cells have equal area
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while minimizing the maximum distance from a point to its assigned facility. In most continuous facility placement
problems, the partition of C is given by the Voronoi diagram of the facilities [12]. Thus, the main contribution of
this paper is to show that not-insigni�cant savings can be made when the partition is also an optimization variable,
and in fact that it can be optimized for a given set of facilities in a tractable way.

Considerably less work is published on the problem of partitioning C optimally when the depot points are �xed.
One notion of �partitioning� discussed in [2] is to allow facilities to have variable �coverage radii� ri, where the cost
φ (ri) is a monotonically increasing function; the problem is to �nd the optimal number, location, and coverage
radii of a collection of facilities. Another paper [1] describes a constant-factor approximation algorithm for the
problem of partitioning C so as to minimize the aggregate workload over all facilities while imposing an equal-area
constraint (clearly, without the equal-area constraint, the solution to this problem is a Voronoi diagram for the
facilities). The authors prove that the optimal solution consists of a collection of hyperbolic arcs. The authors also
describe a constant-factor approximation algorithm for dividing C into equal-area convex pieces to maximize the
minimum �fatness� of any piece. This in turn gives an approximation algorithm for the problem of minimizing the
aggregate workload over all facilities when facility placement is variable, as well as the sub-region boundaries.

In [4, 5], the authors consider the problem of partitioning a convex region so as to minimize the maximum
workload of a �eet of vehicles originating at depots P . They give an exact algorithm for partitioning a convex
polygon into n convex pieces, with each piece containing one point pi and all pieces having equal area. This
algorithm is proven to be asymptotically optimal for the multi-depot vehicle routing problem when demand is
uniformly distributed.

2 Optimal partitioning

Initially, we consider the case where demand is uniformly distributed in C, in which case our problem can be
formulated as

minimize
R1,...,Rn

max
i

¨
Ri

‖x− pi‖ dA s.t. (1)

n⋃
i=1

Ri = C

where ‖·‖ denotes the Euclidean norm. This admits an in�nite-dimensional integer programming formulation

minimize
I1(·),...,In(·),t

t s.t. (2)

t ≥
¨
C

Ii (x) ‖x− pi‖ dA ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ∈ {0, 1} ∀i, x

where

Ii (x) =

{
1 if x is assigned to facility i

0 otherwise
.

Relaxing the integrality constraint, we obtain an in�nite-dimensional linear program over a Banach space. The
dual of the relaxation is

maximize
λ,σ(·)

¨
C

σ (x) dA s.t. (3)

σ (x) ≤ λi ‖x− pi‖ ∀x ∈ C, ∀i
n∑
i=1

λi ≤ 1

λi ≥ 0 ∀i .

which is proven in the appendix (a proof sketch can easily be obtained by discretizing the problem). We consider
the optimal dual variables λ∗ and σ∗ (·). It is clearly true that λ∗i > 0 for all i, since otherwise the value of the
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Figure 1: A load-balancing partition of the unit square with 13 facilities. Since the partitioning problem for �xed
facility locations is convex, the above partition is globally optimal (within the margin of error of our ability to
evaluate integrals). See section 4 for our procedure for �nding such a partition.

dual program (3) is 0. It follows from complementary slackness that t∗ =
˜
C
I∗i (x) ‖x− pi‖ dA for all i, i.e. that

all facilities have the same workload at optimality. Next, we observe that, for any point x ∈ C, it must be the case
that σ∗ (x) = λ∗i ‖x− pi‖ for some index i (since otherwise the solution is clearly sub-optimal). If that index i is
unique, then clearly I∗i (x) = 1 and I∗j (x) = 0 for all other j 6= i, again by complementary slackness. Therefore, we
�nd that the optimal boundaries between sub-regions are those points x for which λ∗i ‖x− pi‖ = λ∗j ‖x− pj‖ for a
pair of indices i and j. By the theorem of Apollonius [11], for λi 6= λj , these are simply arcs of a circle centered at
λ2

ipi−λ2
jpj

λ2
i−λ2

j
with radius

λiλj

λ2
i−λ2

j
‖pi − pj‖ (a negative radius corresponds to pi lying outside the circle). We de�ne the

multiplicatively weighted Voronoi partition of C and P , denoted V (C,P, λ) = {V1, . . . , Vn}, by

Vi = {x ∈ C|λi ‖x− pi‖ ≤ λj ‖x− pj‖ ∀j 6= i} .

It turns out that V (C,P, λ∗) exactly describes an optimal partition.

Theorem 1. Let λ∗ be the weight vector obtained by solving the dual program (3). Then setting

I∗i (x) =

{
1 if x ∈ V ∗i
0 otherwise

,

with {V ∗1 , . . . , V ∗n } = V (C,P, λ∗), is an optimal partition of C with respect to the primal problem (9).

Proof. Observe that for each i we have
˜
C
Ii (x) ‖x− pi‖ dA =

˜
C
I1 (x) ‖x− p1‖ dA, since

˜
C
I∗i (x) ‖x− pi‖ dA

is equal for all i. Plugging λ∗ and the induced σ∗ (·) into (??), we have

¨
C

σ∗ (x) dA =
¨
C

min
i
λ∗i ‖x− pi‖ dA

=
n∑
i=1

λ∗i

¨
V ∗i

‖x− pi‖ dA

=
n∑
i=1

λ∗i

¨
V ∗1

‖x− p1‖ dA

=
¨
V ∗1

‖x− p1‖ dA =
¨
C

I∗i (x) ‖x− pi‖ dA

since
∑
i λ
∗
i = 1, which completes the proof.

See Figure 1 for an example of an optimal partition with n = 13 facilities. We describe our algorithm for quickly
constructing these partitions in section 4.1.

Remark 2. Theorem 1 also applies to the case where the cost between a point x and its assigned depot pi is a
linear function of ‖x− pi‖ or any power of ‖x− pi‖, say αi ‖x− pi‖k. In this case we �nd that the sub-regions

of the optimal partition all have the same value of
˜
V ∗i
αi ‖x− pi‖k dA. In fact, the same result holds if demand

is not uniformly distributed, in which case the expected cost for pi to serve a region R is
˜
R
f (x) ‖x− pi‖ dA,

where f (x) is a probability density function. The optimal sub-region boundaries are still circular arcs because the
boundaries still must satisfy λ∗i f (x) ‖x− pi‖ = λ∗jf (x) ‖x− pj‖.
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(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 10 (e) p =∞

Figure 2: Apollonian curves for various p-norms.

Figure 3: The partition shown above has a disconnected sub-region.

Remark 3. One interpretation of the dual variables λi is as follows: suppose that facilities each charge a certain
service rate, i.e. a client at a point x must pay λi ‖x− pi‖ to use facility pi. The dual problem asks us to choose
rates to maximize our revenue, assuming that all clients use the cheapest facility, subject to a cap on the total rate
at which we are permitted to charge them.

Remark 4. The theorem of Apollonius (that the points x for which λ∗i ‖x− pi‖ = λ∗j ‖x− pj‖ are circular arcs)
applies only to the Euclidean norm ‖·‖2. Some Apollonian �curves� for other p-norms are shown in Figure 2. One
might also consider this problem in a simply connected polygon, in which we de�ne ‖x− pi‖ to be the geodesic
distance from x to pi. We �nd in this case that the optimal boundaries between sub-regions are quartic curves
called Cartesian ovals, discussed in more detail in the next section.

Remark 5. One drawback to our formulation is that we have not imposed connectivity between regions; indeed, an
optimal multiplicatively weighted Voronoi diagram need not be connected, as shown in Figure 3.
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Figure 4: An equal-area load balancing partition of 7 points.

Partitioning with an equal-area constraint

One may also consider the scenario where we constrain each of our sub-regions to have equal area, in which case
the integer program is

minimize
I1(·),...,In(·),t

t s.t. (4)

t ≥
¨
C

Ii (x) ‖x− pi‖ dA ∀i
¨
C

Ii (x) dA ≥ 1/n ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ∈ {0, 1} ∀i, x

where we assume that Area (C) = 1. The dual of the linear relaxation of this program is

maximize
λ,γ,σ(·)

1
n

n∑
i=1

γi +
¨
C

σ (x) dA s.t. (5)

σ (x) ≤ λi ‖x− pi‖ − γi ∀x ∈ C
n∑
i=1

λi ≤ 1

λi, γi ≥ 0 ∀i .

Again, we observe that for every x, the constraint σ (x) ≤ λi ‖x− pi‖ − γi must be tight for some i, which means
that we assign x to facility i. We thus �nd that our sub-region boundaries are curves of the form X = {x :
λi ‖x− pi‖ − γi = λj ‖x− pj‖ − γj}. If λi > 0, then these boundaries are quartic curves called Cartesian ovals [8].
However, the degenerate case may occur where λi = λj = 0 (meaning that workloads may not be equal across all
facilities) and γi = γj for some pair i, j, and thus we cannot uniquely determine the assignment for those points x
for which λi ‖x− pi‖ − γi = λj ‖x− pj‖ − γj is minimal.

To address this situation, we observe that we must have at least one strictly positive entry (say λ1) of λ. By
complementary slackness, it is easy to show that we can obtain the optimal function I∗1 (·); �rst, we must have
I∗1 (x) = 1 for all points x where λ1 ‖x− p1‖− γ1 is strictly minimal and I∗1 (x) = 0 for all x where λ1 ‖x− p1‖− γ1

is strictly non-minimal. Thus, the only points x where I∗1 (x) is not de�ned are those where λ1 ‖x− p1‖ − γ1 =
λi ‖x− pi‖ − γi for some i. If λi > 0 then this boundary is a Cartesian oval, and if λi = 0 then this boundary is
a circle. Thus the set of all x where I∗1 (x) is unde�ned is a �nite one-dimensional set that has no impact on the
value of the original problem (2), and we can set I∗1 (x) = 0 on these points without loss of generality.

By the preceding argument, we �nd an easy algorithm for �nding the optimal functions I∗i (·): solve the
dual problem (5), and let I denote the set of all indices i where λi > 0 . Then, construct I∗i (·) for all i ∈
I and remove those regions from C. While {1, . . . , n} \ I is non-empty, repeat the algorithm on the region
C \ {x : I∗i (x) = 1 for some i ∈ I}. An equal-area optimal partition is shown in Figure 4. Unlike the preceding
problem, the case may arise where a sub-region does not contain its assigned facility, as shown in Figure 5.
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Figure 5: An equal-area load balancing partition of 7 points. Note that one sub-region does not contain its facility
and one sub-region is not connected.

Remark 6. The preceding argument also holds for any arbitrary assignment of areas to sub-regions (not necessarily
equal) or for soft constraints on the area of each region, in which our objective is to minimize maxi

˜
Ri
‖x− pi‖ dA+

αi Area (Ri). Again, the result also holds if demand is not uniformly distributed, in which case we substitute the
constraint that

˜
C
Ii (x) f (x) dA = 1/n for all i.

Minimizing the total workload

We may also change the objective function to
˜
C

∑n
i=1 Ii (x) ‖x− pi‖ dA while retaining the equal-area constraint

(minimizing the aggregate workload over all facilities), whose formulation is given by

minimize
I1(·),...,In(·)

¨
C

n∑
i=1

Ii (x) ‖x− pi‖ dA s.t. (6)

¨
C

Ii (x) dA ≥ 1/n ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ∈ {0, 1} ∀i, x

which case we �nd the same result as the existence proof of [1] (that the optimal boundaries are hyperbolic arcs)
using our complementary slackness argument. In addition, we are able to �nd these arcs e�ciently using the dual
program of the linear relaxation

maximize
γ,σ(·)

¨
C

σ (x) dA s.t. (7)

σ (x) ≤ ‖x− pi‖ − γi∑
i

γi = 1 .

It turns out that the sub-regions are star-convex ; that is, if point x is assigned to pi, then so is every point x′ on
the segment connecting x and pi. This is true for the same reason that an optimal (bipartite) Euclidean matching
has no crossing edges. An interpretation of this dual program is as follows: suppose that clients are continuously
distributed in C and suppose that each facility charges a �fee� γi (which may be positive or negative). The cheapest
facility for a client located at a point x to use is the facility that minimizes ‖x− pi‖ − γi. The optimal solution to
(7) gives the �market-clearing� fee vector γi so that all facilities service the same number of clients.

Remark 7. Again, this argument applies to the non-uniform case. This result also holds for any assignment of mass
to the facilities (not necessarily equal). An application of this situation is for carbon capture and sequestration,
in which carbon emissions are taken from the facilities through pipelines and deposited in the surrounding forests,
grasslands, and peat swamps. Here the density f (·) represents the amount of biomass available for accepting these
emissions, which varies continuously over the terrain. Since carbon transportation is costly (estimated at $1-3
per ton of CO2 across a pipeline), we clearly want to minimize the amount of transportation required, while still
managing all emissions by the facilities.
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(a) µ = 0 (b) µ = 1 (c) µ = 0.42

Figure 6: Load-balancing partitions for µ = 0 (disconnected Apollonian circles), µ = 1 (connected hyperbolic arcs),
and µ = 0.42 (connected Cartesian ovals).

Remark 8. It is not hard to see that the primal problem (6) is a special �mixed� case of the Monge-Kantorovich
transportation problem [16]: our objective is to �transport� the continuously distributed demand to the �nite
collection of facilities, while obeying capacity constraints and minimizing the aggregate transportation cost.

Enforcing shape properties

The algorithms given above do not always ensure that the sub-regions will be connected. We also have not put a
bound on the maximum distance from a facility to a point assigned to it. In practice these are both clearly desirable
properties and we show that they can be enforced using penalty functions or additional constraints.

Connectivity

We just observed that, when our objective is to minimize the aggregate workload over all facilities, the optimal
sub-regions are connected, even when we impose an equal-area constraint. Therefore, we propose a �homotopy
method� in which we minimize a weighted combination of the aggregate and maximum workloads:

minimize
I1(·),...,In(·),t

(1− µ) t+ µ

n∑
i=1

¨
C

Ii (x) ‖x− pi‖ dA s.t. (8)

t ≥
¨
C

Ii (x) ‖x− pi‖ ∀i
¨
C

Ii (x) ‖x− pi‖ ≤ (1− µ)A0 + µ/n ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ∈ {0, 1} ∀i, x .

Here A0 denotes the maximum area of any sub-region in the original problem (2) and we solve the above problem
for µ ∈ [0, 1] (we are guaranteed that regions will be connected at µ = 1). Complementary slackness conditions
imply again that the optimal sub-region boundaries are Cartesian ovals; an example is given in �gure 6.

Diameter constraint

We may also impose a constraint on the maximum distance r between a point x and its assigned facility. The
integer program in this case is

minimize
I1(·),...,In(·),t

t s.t. (9)

t ≥
¨
C

Ii (x) ‖x− pi‖ dA ∀i

Ii (x) = 0 ∀i : ‖x− pi‖ > r
n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ∈ {0, 1} ∀i, x .
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Figure 7: At left, a load-balancing partition without a distance constraint; the shaded region is disconnected. We
can force our regions to be connected by imposing the distance constraint as shown at right.

Figure 8: At left, an equal-area partition without a distance constraint; the shaded region is disconnected. Again
we force our regions to be connected by imposing the distance constraint as shown at right.

The dual of the linear relaxation is

maximize
λ,σ(·)

¨
C

σ (x) dA s.t. (10)

σ (x) ≤ λi ‖x− pi‖ dA ∀x ∈ C, ∀i : ‖x− pi‖ ≤ r
n∑
i=1

λi ≤ 1

λi ≥ 0 ∀i .

The optimal sub-region boundaries are a collection of circular arcs that come either from Apollonian circles or from
the distance constraint. An example of such a partition is shown in Figure 7. When we impose an equal-area
constraint, the optimal boundaries are either Cartesian ovals or the circles that arise from the distance constraint,
as shown in Figure 8.

3 Simultaneous facility placement and partitioning

In the preceding section, we assumed that facility placement was �xed. A natural question is to consider the
problem in which both the facility placement and the subdivision of territory is variable. When demand follows a
uniform distribution, the n-medians algorithm described by [3] also �nds an approximate (factor 5.02) solution to
our min-max problem by �rst dividing the territory into rectangular cells, then placing the facilities. In this section
we describe a local search procedure for simultaneously placing the facilities and dividing the territory. Unlike
the partitioning problem in the preceding section, this problem is highly non-convex (with respect to the facility
placement), and therefore the �nal con�guration is in no way guaranteed to be globally optimal.

Let P = {p1, . . . , pn} denote the current placement of depot points and let R = {R1, . . . , Rn} denote the optimal
solution to (1) at P as computed via the dual program (3). We de�ne the objective function F (P ) by

F (P ) =
¨
C

σ∗ (x) dA =
n∑
i=1

λ∗i

¨
Ri

‖x− pi‖ dA
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where σ∗ (x) and λ∗ are de�ned via (3). Letting pi =
(
p1
i , p

2
i

)
and x = (x1, x2), we can approximate ∂F/∂pki by

∂F

∂pki
≈ λ∗i

¨
Ri

(
∂

∂pki
‖x− pi‖

)
dA (11)

= λ∗i

¨
Ri

(
xk − pki
‖x− pi‖

)
dA .

The inaccuracies in this approximation arise due to the fact that the region Ri depends on pi and λ
∗
i . However,

provided λ∗i is su�ciently large, we �nd the above to be a useful and practical approximation. One approach for
the uniform case would be to use the approximation algorithm of [3] as an initial guess, and then improve this guess
with our iterative procedure; however, we believe that this is likely to converge to a local minimizer rather early.
This is because the approximation algorithm divides C into rectangles, and consequently as n becomes large we
expect the division to resemble a square grid (a local minimizer for our objective function). Based on the result of
[13], we expect that the globally optimal con�guration of P should be a �honeycomb�, or hexagonal, tiling.

4 Computational experiments

In this section we report our results in a numerical experiment in which facility placement is variable. We let
C = [0, 1]2 be the unit square and we assume that demand f (·) is uniformly distributed in C. We use a simple
local search procedure to place facilities as described in the following section; the algorithm terminates when no
further local improvement can be made.

4.1 Finding optimal partitions

A required sub-routine in placing facilities is to determine, for �xed facility locations P , the (globally) optimal
solution to (1). As mentioned earlier we �nd it easier to solve (1) via the dual program (3) because it only depends
on the n variables λi and because we can use numerical cubature to evaluate the objective function (as opposed
to discretizing C). We performed all computations in Python and used the collapsed-square Gaussian cubature
method [10] with tolerance 10−5 for all such evaluations. Given a con�guration of facilities P ⊂ C, we �nd an initial
guess of λ by using the Lagrange multipliers of a discretization of the linear relaxation of the primal problem (1)
into a 25× 25 grid. After obtaining an initial guess λ̄, we then approximate the gradient (of the dual) with respect
to λ using �nite di�erencing to obtain a search direction. Since (3) is a convex problem, we use the golden section
method to �nd the optimal λ along the gradient direction before choosing a new search direction. In practice we
�nd that the solution converges after no more than 7 gradient evaluations are taken. We used this same procedure
(possibly with more dual variables, depending on the problem and constraints) to generate the other �gures in this
paper. See Algorithm 1.

4.2 Local search for facility points

In our simulations we perform a gradient descent search on the points pi. For any placement P , we approximate
the gradient ∇F (P ) with (11). Again, we evaluate the integrals with the collapsed-square Gaussian cubature
method [10]. After determining the approximate search direction −∇F (P ), we choose the next iteration of P using
a backtracking line search with parameter 0.9 (i.e. the search interval shrinks by a factor of 0.9 if the su�cient
decrease condition is not met). See Algorithm 2.

4.3 Results

In our experiments, we initially place the points P uniformly at random in C. Our results are shown in Figure 9,
where we compare the maximum workload and the maximum radius (distance from a facility to a point assigned
to it) of our �Apollonian partitions� with the Voronoi diagrams corresponding to the best known optimal solutions
to the n-center problem as reported in [14, 15]. Not surprisingly, we �nd that as n increases we have many values
of λi that are the same, which causes the corresponding sub-region boundaries to be straight lines. Notably, this is
not generally the case for points that are near the boundary of the square. A few examples of some locally optimal
solutions are shown in Figure 10.
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Input: A convex region C and a point set P = {p1, . . . , pn} ⊂ C.
Output: A partition of C into n sub-regions Ri that minimizes maxi

˜
Ri
‖x− pi‖ dA and the coe�cients λi

that de�ne that partition.
Note: all integrals in this expression are evaluated using the collapsed-square Gaussian cubature method.

Discretize C into a collection of grid cells �j and solve problem (13);
Let λ̄ denote the Lagrange multipliers to the optimal solution of the discretization;
Using �nite di�erencing, approximately construct a gradient ḡ ∈ Rn to the objective function of (13), written
H(λ), evaluated at λ̄, restricted to the subspace {g ∈ Rn|

∑
i gi = 0};

while ‖ḡ‖ ≥ 10−3 do

Perform a golden-section search of H(λ) on the line segment with direction ḡ starting at λ̄ and
terminating at the boundary of the simplex {λ ∈ Rn :

∑
i λi = 1, λi ≥ 0};

Let λ̄ denote the value of λ returned by the golden-section search;
Using �nite di�erencing, approximately construct a gradient ḡ ∈ Rn to the objective function of (13),
written H(λ), evaluated at λ̄, restricted to the subspace {g ∈ Rn|

∑
i gi = 0};

end

Set Ri =
{
x ∈ C

∣∣λ̄i ‖x− pi‖ ≤ λ̄j ‖x− pj‖ ∀j 6= i
}
;

return {R1, . . . , Rn} and λ̄;
Algorithm 1: Algorithm FacilityPartition (C,P ) takes a convex region C and a point set P = {p1, . . . , pn} ⊂ C
as input and returns an optimal solution to problem (1).

Input: A convex region C and an integer n.
Output: A point set P = {p1, . . . , pn} ⊂ C and a load-balancing partition FacilityPartition (C,P ) that is

locally optimal with respect to P .
Let P be a set of n points distributed uniformly at random in C;
Let {R1, . . . , Rn} and λ be the output of FacilityPartition (C,P );

Build an approximate gradient vector g ∈ R2n of F (P ) by de�ning ∂F/∂pki = λi
˜
Ri

(
xk−pk

i

‖x−pi‖

)
dA for

i ∈ {1, . . . , n} and k ∈ {1, 2};
while ‖g‖ ≥ 10−3 do

Perform a backtracking line search for the function F (P ), starting at P , in the direction −g with
parameter 0.9;
Let P denote the best facility placement obtained from this line search;
Let {R1, . . . , Rn} and λ be the output of FacilityPartition (C,P );

Build an approximate gradient vector g ∈ R2n of F (P ) by de�ning ∂F/∂pki = λi
˜
Ri

(
xk−pk

i

‖x−pi‖

)
dA for

i ∈ {1, . . . , n} and k ∈ {1, 2};
end

return P and {R1, . . . , Rn};
Algorithm 2: Algorithm FacilityLocation (C, n) takes a convex region C and an integer n as input and returns
a point set P = {p1, . . . , pn} ⊂ C and a load-balancing partition FacilityPartition (C,P ) that is locally optimal
with respect to P .
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Figure 9: The maximum workloads and radii of our method compared to those of the best known solutions to the
n-center problem.
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(a) n = 5 (b) n = 7

(c) n = 8 (d) n = 49

Figure 10: The locally optimal facility placements and their associated partitions for select values of n.
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A Appendix

In this section we give a derivation of the dual problem (3) of the linear relaxation of problem (2), given by

minimize
I1(·),...,In(·),t

t s.t. (12)

t ≥
¨
C

Ii (x) ‖x− pi‖ dA ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ C

Ii (x) ≥ 0 ∀i, x ∈ C .

We can without loss of generality replace the equality constraint with the constraint
∑n
i=1 Ii (x) ≥ 1 ∀x ∈ C (our

reason for doing this will be made clear shortly). An easy proof �sketch� is to note that the discretization of (12)
into grid cells �j admits the LP

minimize
x,t

t s.t. (13)

t ≥ ε
∑
j

cijxij ∀i

n∑
i=1

xij ≥ 1 ∀j

xij ≥ 0 ∀i, j

where ε is the area of grid cell �j , cij represents the Euclidean distance from pi to the center of �j , and xij
represents the fraction of grid cell j assigned to facility i. The dual of (13) is

maximize
q,r

∑
j

qj s.t.

qj ≤ εcijri ∀i, j
n∑
i=1

ri ≤ 1

ri, qj ≥ 0 ∀i, j .

Finally, note that we can de�ne the variable q
′

j := qj/ε which gives

maximize
q′ ,r

ε
∑
j

q
′

j s.t.

q
′

j ≤ cijri ∀i, j
n∑
i=1

ri ≤ 1

ri, qj ≥ 0 ∀i, j ,
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which is precisely a discretization of (3).

A.1 Proof of optimality

For any Banach space X, let X? denote its dual space. Let θ denote the zero vector for a Banach space (precisely
which space will be clear from the context) and let 〈x, x?〉 denote the value of the functional x? ∈ X? at the point
x ∈ X. Theorem 1 of section 8.6 of [9] states the following:

Theorem 9. (Lagrange Duality) Let f be a real-valued convex functional de�ned on a convex subset Ω of a vector
space X, and let G be a convex mapping of X into a normed space Z. Suppose there exists x1 ∈ X such that G (x1) < θ
and that µ0 := inf {f (x) : G (x) ≤ θ, x ∈ Ω} is �nite. Then

inf
x∈Ω,G(x)≤θ

f (x) = max
z∗≥θ

ϕ (z?)

where
ϕ (z?) = inf

x∈Ω
f (x) + 〈G (x) , z?〉 ,

and the maximum on the right is achieved by some z?0 ≥ θ.

We shall begin with the dual problem (3) and show that it is equivalent to the primal problem (2). The reason
we perform things in this order is because the dual problem can be written as a �nite-dimensional optimization
problem over λ in a compact set, and thus an optimal solution λ∗ must exist for (3). Theorem 9 then guarantees
that an optimal solution exists for (2) as well, which will prove equivalence.

In problem (3), our variables consist of a nonnegative vector λ and a function σ (·), and consequently we have
an in�nite-dimensional optimization problem in the Banach space X = R⊕ · · · ⊕ R︸ ︷︷ ︸

n

⊕L1, where L1 represents all

functions h (·) de�ned on the convex region C such that |h (x)| is Lebesgue integrable on C. Let Ω denote the
positive orthant, i.e. λi ≥ 0 and σ (x) ≥ 0 (almost everywhere). Let f (x) be de�ned by

f (x) = f (λ1, . . . , λn, σ (·)) = −
¨
C

σ (x) dA .

We have the constraints that σ (x) ≤ λi ‖x− pi‖ for all i and for all x ∈ C and the constraint that
∑n
i=1 λi ≤ 1

and therefore we de�ne the map G : X→ Z = L1 ⊕ · · · ⊕ L1︸ ︷︷ ︸
n

⊕R by

G :


λ1

...
λn
σ (·)

 7→


ξ1 (·)
...

ξn (·)∑n
i=1 λi − 1


where ξi (x) := σ (x) − λi ‖x− pi‖. By the preceding existence argument we can replace the in�mum operator in
Theorem 9 with the minimum operator. Let (I1, . . . , In, t) ∈ L∞ ⊕ · · · ⊕ L∞︸ ︷︷ ︸

n

⊕R denote an element of Z?. We have

min
x∈Ω,G(x)≤θ

f (x) = max
z∗≥θ

ϕ (z?)

min
x∈Ω,G(x)≤θ

−
¨
C

σ (x) dA = max
z∗≥θ

{
inf

λi≥0, σ(x)≥0
−
¨
C

σ (x) dA+
n∑
i=1

¨
C

ξi (x) Ii (x) dA+ t

(
n∑
i=1

λi − 1

)}

= max
z∗≥θ

{
inf

λi≥0, σ(x)≥0

¨
C

[
n∑
i=1

Ii (x)σ (x) + λi (t− ‖x− pi‖ Ii (x))

]
− σ (x)− t dA

}

= max
z∗≥θ

{
inf

λi≥0, σ(x)≥0

¨
C

σ (x)

(
n∑
i=1

Ii (x)− 1

)
+

[
n∑
i=1

λi (t− ‖x− pi‖ Ii (x))

]
− t dA

}

= max
z∗≥θ

{
inf

λi≥0, σ(x)≥0

¨
C

σ (x)

(
n∑
i=1

Ii (x)− 1

)
dA+

n∑
i=1

λi

(
t−
¨
C

‖x− pi‖ Ii (x) dA
)
− t

}
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where we have used the fact that Area (C) = 1 and therefore
˜
C
t dA = t, so that at optimality we know that∑n

i=1 Ii (x) ≥ 1 for all x ∈ C and t ≥
˜
C
‖x− pi‖ Ii (x) dA for all i. Thus, the optimal solution to (3) is the same

as the optimal solution to

minimize
I1(·),...,In(·),t

t s.t.

t ≥
¨
C

Ii (x) ‖x− pi‖ dA ∀i

n∑
i=1

Ii (x) ≥ 1 ∀x ∈ C

Ii (x) ≥ 0 ∀i, x

as desired.
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