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Abstract

We give a fast and simple factor 2.74 approximation algorithm for the problem of choosing the k medians of the

continuum of demand points de�ned by a convex polygon C. Our algorithm �rst surrounds the input region with a

bounding box, then subdivides the bounding box into subregions with equal area. Simulation results on the convex

hulls of the 50 states in the USA show that the practical performance of our algorithm is within 10% of the optimal

solution in the vast majority of cases.

1 Introduction

The k-medians problem, also called the multi-source Weber problem [3], is a well-studied geometry problem where the
objective is to select a set of k �landmark� points so as to minimize the total distance between the landmark points and
some other set of �client� points. The most natural setting for this problem is to let the clients be a discrete set of points
in a the plane, which was proved to be NP-hard in [8]. The papers [2] and [7] both describe PTASes for this case. In a
general metric space, [4] describes a factor 6 2

3 approximation algorithm.
Another setting is the case where client points form a continuum. This is a natural problem in facility location; in many

such scenarios the number of clients is large (say over 1000), which makes the corresponding discrete k-medians problem
intractable. Moreover, it may be more sensible, from the standpoint of modelling, to think of clients as being continuously
distributed. The �rst exact algorithmic study for this problem was performed in [5], which describes polynomial-time
algorithms for various versions of the 1-median (Fermat-Weber) problem under the L1 norm. The authors also consider
the multiple-center version of the L1 k-median problem, which they prove is NP-hard for large k. It is also possible to
obtain a PTAS to this problem by discretizing the region in question into grid cells and then applying one of the previously
mentioned PTASes; however, the running time of such a discretization depends on the �fatness� of the input shape, because
a long and skinny input region will require more grid cells to obtain a su�ciently re�ned grid approximation. In addition,
as of this writing, we are unaware of any implementations of the PTASes for the discrete case of our problem, likely due
to their fairly sophisticated nature (and possibly poor practical running time).

In this paper, we give a very simple constant-factor approximation algorithm for the continuous k-medians problem
in a convex polygon C with n vertices under the L2 norm. A worst-case theoretical analysis shows that our algorithm
always produces solutions within a factor of 2.74 of optimality. In addition, simulation results applied to the convex hulls
of the 50 states of the USA show that our algorithm generally performs within 10% of optimality in practice.

Preliminaries The notational conventions of this paper are as follows: we de�ne

FW (C) = min
p

¨
C

‖x− p‖ dA

FW (C, k) = min
P :|P |=k

¨
C

min
i
‖x− pi‖ dA

to be the Fermat-Weber objective functions that we seek to minimize, where ‖·‖ denotes the Euclidean norm. Let �C
denote the minimum-area bounding box of C (which can be computed in linear running time [10]), and let width (C) and
height (C) denote the dimensions of �C. Let AR (C) denote the aspect ratio of C, max

{
width(C)
height(C) ,

height(C)
width(C)

}
.
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Figure 1: The input and output of Algorithm 2. We begin in (1a) with a convex polygon C, whose minimum-area bounding
rectangle �C is computed in (1b). The bounding box is then partitioned into equal-area pieces in (1c) using Algorithm
1. Some of the centers of these pieces are then relocated in (1d), and (1e) shows the output and Voronoi partition.

2 The algorithm

The input to our algorithm is a convex polygon C with n vertices and an integer k. We assume without loss of generality
that C is aligned so that the long side of �C is aligned with the coordinate x-axis. Note that by construction, it must
be the case that Area(�C)/2 ≤ Area(C) ≤ Area(�C). Then, we let k1 = bk/2c and k2 = dk/2e and divide �C into two
pieces of areas k1

k ·Area (�C) = k1
k ·wh and k2

k ·Area (�C) = k2
k ·wh respectively, using a vertical line. This is performed

recursively (with the option to split using a horizontal line, if the height of an intermediate rectangle exceeds its width)
until all regions have area Area (�C) /k. This is given in Algorithms 1 and 2 and Figure 1.

The following lemma is a simpli�ed restatement of a result from [1]:

Lemma 1. Suppose that R̃ ⊆ �C is an intermediate rectangle obtained throughout Algorithm 1, which is further subdivided
into R̃

′
and R̃

′′
. Then:

1. If AR(R̃) > 3, then
AR(R̃

′
),AR(R̃

′′
) ≤ AR(R̃) .

2. If AR(R̃) ≤ 3, then
AR(R̃

′
),AR(R̃

′′
) ≤ 3 .

Proof. Claim 1 is trivial. To prove claim 2 we assume that AR(R̃) ≤ 3. Assume without loss of generality that width(R̃) ≥
height(R̃), so that height(R̃

′
) = height(R̃). Since R̃ is always divided into proportions as close as 1/2 as possible, we have

width(R̃)/3 ≤ width(R̃
′
) ≤ 2 width(R̃)/3

and, dividing by height(R̃), we �nd that

width(R̃)/(3 height(R̃)) ≤ width(R̃
′
)/ height(R̃

′
) = width(R̃

′
)/height(R̃) ≤ 2 width(R̃)/(3 height(R̃)) ≤ 2

so that width(R̃
′
)/ height(R̃

′
) ≤ 2. Taking the reciprocal of this expression and observing that 3 ≥ 3 height(R̃)/width(R̃)

since width(R̃) ≥ height(R̃), we have

3 ≥ 3 height(R̃)/width(R̃) ≥ height(R̃
′
)/width(R̃

′
) = height(R̃)/width(R̃

′
) ≥ 3 height(R̃)/(2 width(R̃))

so that 3 ≥ height(R̃
′
)/width(R̃

′
). This same argument clearly applies to R̃

′′
as well, which completes claim 2.
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Input: An axis-aligned rectangle R and an integer k.
Output: A partition of R into k rectangles, each having area Area (R) /k.
if k = 1 then

return R;
else

Set k1 = bk/2c and k2 = dk/2e;
Let w denote the width of R and h the height;
if w ≥ h then

With a vertical line, divide R into two pieces R1 and R2 with area k1
k ·Area (R) on the right and

k2
k ·Area (R) on the left;

else

With a horizontal line, divide R into two pieces R1 and R2 with area k1
k ·Area (R) on the top and

k2
k ·Area (R) on the bottom;

end

return RectanglePartition (R1, k1) ∪ RectanglePartition (R2, k2);
end

Algorithm 1: Algorithm RectanglePartition (R, k) takes as input an axis-aligned rectangle R and a positive integer
k.

Input: A convex polygon C and an integer k.
Output: The locations of k points pi in C that approximately minimize FW (C, k) within a factor of 2.74.
Let �C denote a minimal-area bounding box of C;
Rotate C so that �C is aligned with the coordinate axes;
Let R1, . . . , Rk = RectanglePartition (�C, k);
for i ∈ {1, . . . , k} do

Let ci denote the center of Ri;
if ci ∈ C then

Set pi = ci;
else

if Ri ∩ C is nonempty then

Let R
′

i be the minimum axis-aligned bounding box of Ri ∩ C and let c
′

i denote its center;

Set pi = c
′

i;
else

Place pi anywhere in C;
end

end

end

return p1, . . . , pk;

Algorithm 2: Algorithm ApproxFW (R, k) takes as input a convex polygon C and an integer k.
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Figure 2: The optimal regions C∗ in a given box B, for increasing values of A.

3 Upper and lower bounds

In this section we establish some upper and lower bounds for the Fermat-Weber value of any convex region C. We begin
with some simple lemmas:

Lemma 2. For a disk D with radius r,

FW (D) =
2πr3

3
.

Proof. Trivial.

Remark 3. It is well-known that, for a �xed area, the disk is the region with minimal Fermat-Weber value FW (C). This
gives us an easy lower bound:

FW (C) ≥ 2
3
√
π
A3/2

where A is the area of C.

De�nition 4. A region C is said to be star convex at the point p if the line segment from p to any point x ∈ C is itself
contained in C. Similarly, the star convex hull of a region S at the point p is the smallest star-convex region at the point
p that contains S (i.e. the union of all segments between points x ∈ S and p).

Lemma 5. Let B be a box of dimensions w× h centered at the origin. The region C∗ that solves the in�nite-dimensional
optimization problem

maximize
C

FW (C) s.t. (1)

C ⊆ B

Area (C) = A

C 3 (0, 0)
C is star convex at (0, 0)

is the star convex hull of B\D, where D is an appropriately chosen disk centered at the origin, as indicated in Figure 2.
Furthermore for �xed w and h, the function Φ (A) = FW (C∗) (i.e. the maximal value of (1)) is monotonically increasing
and concave.

Proof sketch. This follows from a standard argument where we consider the integer (or linear) program obtained by
discretizing problem (1) using polar coordinates. See Figure 3. Concavity of Φ (A) follows by observing that we build our
optimal solution by adding sectors containing points that are strictly closer than the points in the sector that preceded
them.

De�nition 6. Let x = (x, y) be a point in the plane. We de�ne the and norms by

‖x‖ = max {|x| , |y|}+
(√

2− 1
)

min {|x| , |y|}

‖x‖ = max
{
|x| , |y| , 1√

2
(|x|+ |y|)

}
.
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Figure 3: In the discretization above, our variables are set up in such a way that the star convexity constraint is equivalent
to setting zi(j+1) ≤ zij for all j. By the nature of the constraints it is clear that we may assume that z∗i(j+1) = z∗ij at
optimality since the distance from cell ij to the origin increases with j. The diagram above suggests a linear programming
formulation, where the lighter regions indicate fractional solutions.

Remark 7. The following identities are easy to verify:

‖x‖ ≤ ‖x‖2 ≤ ‖x‖
ψ ‖x‖ ≤ ‖x‖2 ≤ ‖x‖

‖x‖ ≤ ‖x‖2 ≤ 1
ψ
‖x‖

where ψ = cos (π/8) ≈ 0.9239. Both norms have a natural interpretation: ‖x‖ is the distance from (0, 0) to x if we
are only permitted to move horizontally, vertically, or diagonally (the cardinal and ordinal directions) and ‖x‖ is the
maximum distance from (0, 0) to x in the horizontal, vertical, or diagonal direction.

Lemma 8. Let C be a convex region, contained in a box B of dimensions w × h, that contains the center (0, 0) of B. If
A = Area (C), then we have

FW (C) ≤


√

2−1
3 Ah−

√
2−1
12 wh2 −

√
w2−h2

3 (wh−A) + 1
3w

2h− 1
12h

3 if A ≤ wh− h
2

√
w2 − h2

2
3Aw +

√
2−1
3 Ah− 1

3 ·
A2

h −
1
12w

2h−
√

2−1
12 wh2 if wh− h

2

√
w2 − h2 < A ≤ wh− h2/2

2
√

2−2
3 Aw + 1

3Ah+ 7−4
√

2
12 w2h+ 2−

√
2

12 h3 −
√

2−1
3 · A

2

h −
7−3
√

2
12 wh2 otherwise

.

Proof. We consider the relaxation of the in�nite-dimensional optimization problem

maximize
C

FW (C) s.t.

C ⊆ B

Area (C) = A

C 3 (0, 0)
C is convex ,
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Figure 4: The area of the shaded region is wh− h
2

√
w2 − h2.

obtained by replacing the convexity constraint with star convexity about the origin. The problem is now equivalent to
problem (1).

Following lemma 5 we see that the optimal star-convex region C∗ takes the form shown in Figure 2. If A ≥ wh −
h
2

√
w2 − h2, then the optimal solution consists of two components (rather than 4) as shown in Figure 4. We evaluate the

Fermat-Weber objective value under the norm and we �nd that

FW (C∗) =

{
4
´ h/2
0

´ w/2
y/m

x+
(√

2− 1
)
y dx dy if wh− h

2

√
w2 − h2 ≤ A ≤ wh− h2

4
´ h/2
0

´ y
y/m

(√
2− 1

)
x+ y dx+

´ w/2
y

x+
(√

2− 1
)
y dx dy if A > wh− h2

where m = h2

2(wh−A) ; the formulas are thus found by analytic integration. We �nd the upper bound for the case A ≤
wh− h

2

√
w2 − h2 simply by using the fact that FW (C∗) is concave in A, then taking a tangent line at A = wh− h

2

√
w2 − h2

and extrapolating.

For the remainder of this paper we de�ne ρ = 4.34818 and γ = 0.11719.

Lemma 9. Let C be a convex region with area A, contained in a box B of dimensions w×h, where w/h ≥ ρ. If A ≥ wh/2,
then

FW (C) ≥


(16+12

√
2)γ(γ−1)+

√
2

24(
√

2+1)2 h3 +
8+6
√

2−(28+20
√

2)γ
24(
√

2+1)2 Ah+ 16+11
√

2

24(
√

2+1)2A2/h if A ≤ (2
√

2−2)γ+1
√

2−1
h2(

γ3/3 +
√

2/6− 1/12
)
h3 − (γ/2)Ah+ (1/4)A2/h otherwise

.

Proof. Refer to Figure 5 for this proof. The shape C∗ that minimizes FW (C) in B is the intersection of a disk with a slab
of height h. Let R1 denote the largest rectangle contained in C∗ and let R2 denote the smallest rectangle containing C∗.
Clearly, for �xed h, the two rectangles become the same as Area (C∗) increases. In particular, if Area (C∗) ≥ wh/2 ≥ ρh2/2,
then we can verify numerically that the �gap� g between the two (as indicated in Figure 5b) is at most γh. Therefore, the
hexagon with vertices (±A/2h, 0) and (± (A/2h− γh) ,±h/2) is contained entirely in C∗ whenever Area (C∗) ≥ ρh2/2.
To obtain the desired result, we bound the Fermat-Weber value on this hexagon under the norm:

FW (C∗) ≥

4
´ h/2
0

´ y/m1

0
y dx+ 1√

2

´ y/m2

y/m1
x+ y dx+

´ −2γy+A/2h

y/m2
x dx dy if A ≤ (2

√
2−2)γ+1
√

2−1
h2

4
´ h/2
0

´ y/m1

0
y dx+ 1√

2

´ y/m3

y/m1
x+ y dx+

´ −2γy+A/2h

y/m3
x dx dy otherwise

where m1 =
√

2 + 1, m2 = h2

A−2γh2 , and m3 =
√

2− 1, which gives the desired bounds.

In summary, we have the following upper and lower bounds for FW (C) when C is a convex region of area A contained
in a box of dimensions w × h:
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(a)

(b)

(c)

Figure 5: The region C∗ of minimal Fermat-Weber objective value, the rectangles R1 and R2, and the hexagon that gives
our lower bound.

FW (C) ≤


√

2−1
3 Ah−

√
2−1
12 wh2 −

√
w2−h2

3 (wh−A) + 1
3w

2h− 1
12h

3 if A ≤ wh− h
2

√
w2 − h2

2
3Aw +

√
2−1
3 Ah− 1

3 ·
A2

h −
1
12w

2h−
√

2−1
12 wh2 if wh− h

2

√
w2 − h2 < A ≤ wh− h2/2

2
√

2−2
3 Aw + 1

3Ah+ 7−4
√

2
12 w2h+ 2−

√
2

12 h3 −
√

2−1
3 · A

2

h −
7−3
√

2
12 wh2 otherwise

(2)

FW (C) ≥ 2
3
√
π
A3/2 (3)

FW (C) ≥


(16+12

√
2)γ(γ−1)+

√
2

24(
√

2+1)2 h3 +
8+6
√

2−(28+20
√

2)γ
24(
√

2+1)2 Ah+ 16+11
√

2

24(
√

2+1)2A2/h if A ≤ (2
√

2−2)γ+1
√

2−1
h2(

γ3/3 +
√

2/6− 1/12
)
h3 − (γ/2)Ah+ (1/4)A2/h otherwise

if w/h ≥ ρ .(4)

Notice that both of our lower bounds are convex in A.

4 Proof of approximation

In this section, we show that Algorithm 2 has a constant-factor approximation. After performing our algorithm, we have
a collection of k rectangles with area wh/k; if k ≥ w/ρh, then these rectangles have an aspect ratio not exceeding ρ. If
k < w/ρh, then all rectangles are identical and have dimensions (w/k)× h. Since our lower bounds are convex in A and
the function Φ (A) is concave, we immediately know that the worst possible ratio between the upper and lower bounds
for FW (C, k) is attained when all rectangles contain area A/k of C. Therefore, to �nd the approximation bounds for this
algorithm, it will su�ce to consider a single such rectangle with height 1 and width z ≥ 1, containing area α = A/k of
C. The approximation bounds are determined by the value of A and the relationship between k and w/ρh. Our general
approach is to reduce the approximation ratio to a function of a single variable, whose upper bound can be easily be
veri�ed using standard methods from calculus. We omit these steps for brevity.
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4.1 The case k ≤ w/ρh

If k ≤ w/ρh, then our algorithm will divide �C into k identical rectangles of dimensions (w/k) × h. Thus we set
z = w/k ≥ ρ and assume without loss of generality that h = 1. We will use lower bound (4). Note that we may either

have
(2
√

2−2)γ+1
√

2−1
h2 < wh − h

2

√
w2 − h2 or

(2
√

2−2)γ+1
√

2−1
h2 ≥ wh − h

2

√
w2 − h2, depending on the dimensions of �C, and

therefore we have to consider these cases separately. In total, there are �ve cases that we have to consider:

1. A ≤ wh− h
2

√
w2 − h2 and A ≤ (2

√
2−2)γ+1
√

2−1
h2.

2.
(2
√

2−2)γ+1
√

2−1
h2 < A ≤ wh− h

2

√
w2 − h2.

3. wh− h
2

√
w2 − h2 < A ≤ (2

√
2−2)γ+1
√

2−1
h2.

4. A > wh− h
2

√
w2 − h2, A >

(2
√

2−2)γ+1
√

2−1
h2, and A ≤ wh− h2/2.

5. A > wh− h2/2.

We consider each case separately below.

Case 1 By assumption we have α ≤ z − 1
2

√
z2 − 1 and α ≤ (2

√
2−2)γ+1
√

2−1
and the approximation ratio is given by

√
2−1
3 α−

√
2−1
12 z −

√
z2−1
3 (z − α) + 1

3z
2 − 1

12

(16+12
√

2)γ(γ−1)+
√

2

24(
√

2+1)2 +
8+6
√

2−(28+20
√

2)γ
24(
√

2+1)2 α+ 16+11
√

2

24(
√

2+1)2α2

.

We notice that the denominator is quadratic in α and the numerator is linear in α, and it is therefore not hard to show

that the ratio is maximized when α is as small as possible, i.e. that α = z/2. Since we have α ≤ (2
√

2−2)γ+1
√

2−1
, it must be

the case that z ≤ (4
√

2−4)γ+2
√

2−1
< 5.30. The approximation ratio is therefore

√
2−1
6 z −

√
2−1
12 z −

√
z2−1
6 z + 1

3z
2 − 1

12

(16+12
√

2)γ(γ−1)+
√

2

24(
√

2+1)2 +
8+6
√

2−(28+20
√

2)γ
48(
√

2+1)2 z + 16+11
√

2

96(
√

2+1)2 z2

which is bounded above by 2.74 for z ∈ [ρ, 5.30].

Case 2 By assumption we have
(2
√

2−2)γ+1
√

2−1
< α ≤ z − 1

2

√
z2 − 1 and the approximation ratio is given by

√
2−1
3 α−

√
2−1
12 z −

√
z2−1
3 (z − α) + 1

3z
2 − 1

12(
γ3/3 +

√
2/6− 1/12

)
− (γ/2)α+ (1/4)α2

.

We again observe that the denominator is quadratic in α and the numerator is linear in α, and it is therefore not hard to

show that the ratio is maximized when α is as small as possible, i.e. that α = max
{

(2
√

2−2)γ+1
√

2−1
, z/2

}
. The approximation

ratio is given by

√
2−1
3 max

{
(2
√

2−2)γ+1
√

2−1
, z/2

}
−
√

2−1
12 z −

√
z2−1
3

(
z −max

{
(2
√

2−2)γ+1
√

2−1
, z/2

})
+ 1

3z
2 − 1

12(
γ3/3 +

√
2/6− 1/12

)
− (γ/2) max

{
(2
√

2−2)γ+1
√

2−1
, z/2

}
+ (1/4) max

{
(2
√

2−2)γ+1
√

2−1
, z/2

}2

which is bounded above by 2.74 for z ≥ ρ.
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Case 3 By assumption we have z − 1
2

√
z2 − 1 < α ≤ (2

√
2−2)γ+1
√

2−1
and the approximation ratio is given by

2
3αz +

√
2−1
3 α− 1

3α
2 − 1

12z
2 −

√
2−1
12 z

(16+12
√

2)γ(γ−1)+
√

2

24(
√

2+1)2 +
8+6
√

2−(28+20
√

2)γ
24(
√

2+1)2 α+ 16+11
√

2

24(
√

2+1)2α2

.

We notice that the numerator is increasing in z, and therefore we assume that z is as large as possible so that α =

z − 1
2

√
z2 − 1. Furthermore, since z − 1

2

√
z2 − 1 < (2

√
2−2)γ+1
√

2−1
, it must be the case that z < 5.2002. The approximation

ratio is given by

2
3

(
z − 1

2

√
z2 − 1

)
z +

√
2−1
3

(
z − 1

2

√
z2 − 1

)
− 1

3

(
z − 1

2

√
z2 − 1

)2 − 1
12z

2 −
√

2−1
12 z

(16+12
√

2)γ(γ−1)+
√

2

24(
√

2+1)2 +
8+6
√

2−(28+20
√

2)γ
24(
√

2+1)2

(
z − 1

2

√
z2 − 1

)
+ 16+11

√
2

24(
√

2+1)2

(
z − 1

2

√
z2 − 1

)2
which is bounded above by 2.74 for z ∈ [ρ, 5.2002].

Case 4 By assumption we have α > z − 1
2

√
z2 − 1, α >

(2
√

2−2)γ+1
√

2−1
, and α ≤ z − 1/2 and the approximation ratio is

given by
2
3αz +

√
2−1
3 α− 1

3α
2 − 1

12z
2 −

√
2−1
12 z(

γ3/3 +
√

2/6− 1/12
)
− (γ/2)α+ (1/4)α2

.

We notice that the numerator is increasing in z in this domain, and therefore we assume that z is as large as possible so
that α = z − 1

2

√
z2 − 1. The approximation ratio is therefore

2
3

(
z − 1

2

√
z2 − 1

)
z +

√
2−1
3

(
z − 1

2

√
z2 − 1

)
− 1

3

(
z − 1

2

√
z2 − 1

)2 − 1
12z

2 −
√

2−1
12 z(

γ3/3 +
√

2/6− 1/12
)
− (γ/2)

(
z − 1

2

√
z2 − 1

)
+ (1/4)

(
z − 1

2

√
z2 − 1

)2
which is bounded above by 2.74 for z ≥ ρ.

Case 5 By assumption we have α > z − 1/2 and the approximation ratio is given by

2
√

2−2
3 αz + 1

3α+ 7−4
√

2
12 z2 + 2−

√
2

12 −
√

2−1
3 α2 − 7−3

√
2

12 z(
γ3/3 +

√
2/6− 1/12

)
− (γ/2)α+ (1/4)α2

.

We notice that the numerator is increasing in z, and therefore we assume that z is as large as possible so that α = z−1/2.
The approximation ratio is therefore

2
√

2−2
3 (z − 1/2) z + 1

3 (z − 1/2) + 7−4
√

2
12 z2 + 2−

√
2

12 −
√

2−1
3 (z − 1/2)2 − 7−3

√
2

12 z(
γ3/3 +

√
2/6− 1/12

)
− (γ/2) (z − 1/2) + (1/4) (z − 1/2)2

which is bounded above by 1.4 for z ≥ ρ.

4.2 The case k > w/ρh

If k > w/ρh, then our algorithm will divide �C into k rectangles with aspect ratio at most ρ. Thus we assume that we
have k rectangles with height 1 and width z ∈ [1, ρ]. We will use lower bound (3). In total, there are three cases that we
have to consider:

6. A ≤ wh− h
2

√
w2 − h2.

7. wh− h
2

√
w2 − h2 < A ≤ wh− h2/2.

8. A > wh− h2/2.
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Case 6 By assumption we have α ≤ z − 1
2

√
z2 − 1 and the approximation ratio is given by

√
2−1
3 α−

√
2−1
12 z −

√
z2−1
3 (z − α) + 1

3z
2 − 1

12
2

3
√
π
α3/2

.

It is not hard to verify that the above ratio is decreasing in α, and therefore we assume that α is as small as possible, i.e.
that α = z/2. The approximation ratio is therefore

√
2−1
6 z −

√
2−1
12 z −

√
z2−1
6 z + 1

3z
2 − 1

12

2
3
√
π

(z/2)3/2

which is bounded above by 2.74 for z ∈ [1, ρ].

Case 7 By assumption we have z − 1
2

√
z2 − 1 < α ≤ z − 1/2 and the approximation ratio is given by

2
3αz +

√
2−1
3 α− 1

3α
2 − 1

12z
2 −

√
2−1
12 z

2
3
√
π
α3/2

.

We notice that the numerator is increasing in z in this domain and therefore we assume that α = z − 1
2

√
z2 − 1. The

approximation ratio is therefore

2
3

(
z − 1

2

√
z2 − 1

)
z +

√
2−1
3

(
z − 1

2

√
z2 − 1

)
− 1

3

(
z − 1

2

√
z2 − 1

)2 − 1
12z

2 −
√

2−1
12 z

2
3
√
π

(
z − 1

2

√
z2 − 1

)3/2
which is bounded above by 2.71 for z ∈ [1, ρ].

Case 8 By assumption we have α > z − 1/2 and the approximation ratio is given by

2
√

2−2
3 αz + 1

3α+ 7−4
√

2
12 z2 + 2−

√
2

12 −
√

2−1
3 α2 − 7−3

√
2

12 z
2

3
√
π
α3/2

.

We notice that the numerator is increasing in z, and therefore we assume that z is as large as possible so that α = z−1/2.
The approximation ratio is therefore

2
√

2−2
3 (z − 1/2) z + 1

3 (z − 1/2) + 7−4
√

2
12 z2 + 2−

√
2

12 −
√

2−1
3 (z − 1/2)2 − 7−3

√
2

12 z

2
3
√
π

(z − 1/2)3/2

which is bounded above by 1.8 for z ∈ [1, ρ].

4.3 Running time

This algorithm can be performed with running time O (n+ k + k log n). This is because Algorithm 1 takes O (k) operations
to partition the rectangle and Algorithm 2 requires O (n) operations to �nd a minimum bounding box of C. The last
step of Algorithm 2 consists of moving the center points to C when necessary, which takes O (k log n) operations using a
point-in-polygon algorithm [9].

5 Simulation results

In order to determine the practical performance of our algorithm (as opposed to the theoretical worst-case bounds),
we applied it to a dataset generated by forming the convex hulls of the 50 states of the USA. In order to improve the
practical performance of Algorithm 2, we introduce one small modi�cation, which we describe below; we have avoided
putting this modi�cation in the description of Algorithm 2 because it is not clear how to incorporate it into the theoretical
upper-bounding procedure.
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Modi�cation to Algorithm 2 In executing Algorithm 1 as a subroutine in Algorithm 2, it may be the case that a
�nal rectangle Ri lies entirely outside C. If this is the case, we add rectangle Ri to a list OUT. It may also be the case
that an intermediate (not necessarily �nal) rectangle R̃ lies entirely inside C; in this case, we add rectangle R̃ to a list
IN. We do not add any intermediate rectangles to IN if they are themselves contained in a larger intermediate rectangle
that is already contained in IN. Finally, it may be the case that a �nal rectangle Ri is partially contained by C; in this
case we also add Ri to list IN. See Figure 6a.

After executing Algorithm 1 as a subroutine in Algorithm 2, we now have the lists OUT and IN. The centers of the
rectangles of list OUT are clearly not helping us, and we now want to �nd a reasonable way to move them into C. Let the
jth rectangle of list IN (which may be an intermediate rectangle) be written as R̃j , let Ãj denote the area of R̃j , and let
Nj denote the number of points that would be assigned to R̃j (which is 1 if R̃j is a �nal rectangle). We then let

Ñj := k ·

⌊
Ãj∑|IN|
q=1 Ãq

⌋

and we then place Ñj points in each rectangle R̃j . This does not a�ect our approximation result because Ñj ≥ Nj and∑
j Ñj ≤ k. The remaining points are distributed arbitrarily among the rectangles in IN. See Figure 6b.

Results and discussion Figure 7 shows the approximation ratios for k ≤ 1000 when our algorithm is applied to the
convex hulls of the 50 states of the USA. As in the proof of the worst-case approximation ratio, we use lower bounds (3)
and (4). However, instead of using the theoretical upper bound (2), we simply evaluate the actual objective function value

¨
C

min
i
‖x− pi‖ dA

by �rst taking a Voronoi diagram of the points pi and then integrating the distance function ‖x− pi‖ over each Voronoi
cell using the collapsed-square Gaussian cubature method [6] with tolerance 10−5. As an example, Figure 8 shows the
output of our algorithm for k = 100 applied to the convex hull of the state of Minnesota. The running times of our trials
are basically trivial as explained in Section 4.3 and we have therefore omitted them.

We �rst observe that in nearly all of the cases (the exceptions being very low values of k), our algorithm gives a solution
that is within 10% of the theoretical lower bound; this suggests both that our algorithm generally performs well and that
lower bounds (3) and (4) are fairly tight. This also suggests that the upper bound (2) is the weak point of our worst-case
performance bounds. It is also interesting that the approximation ratios in Figure 7 seem to exhibit some periodicity;
we suspect that this is somehow related to the fact that our algorithm depends on partitioning a rectangle and therefore
some pattern persists among the various instances of C. The individual approximation ratios for each of the 50 states are
shown in the Appendix.

6 Conclusions

We have presented a fast and simple approximation algorithm for choosing the k medians of the continuum of demand
points de�ned by a convex polygon C. Although the theoretical worst-case approximation ratio of our algorithm is 2.74
using our current estimates of upper and lower bounds, we �nd that in practice the algorithm generally �nds solutions
within 10% of optimality.
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Table 1: Approximation ratios and point con�gurations for k = 25 for Alabama through Georgia.
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Table 2: Approximation ratios and point con�gurations for k = 25 for Hawaii through Maryland.
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Table 3: Approximation ratios and point con�gurations for k = 25 for Massachusetts through New Jersey.
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Table 4: Approximation ratios and point con�gurations for k = 25 for New Mexico through South Carolina.
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Table 5: Approximation ratios and point con�gurations for k = 25 for South Dakota through Wyoming.
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