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Abstract

We determine the efficiency of a delivery system in which an unmanned aerial vehicle (UAV),

or a fleet of UAVs, provides service to customers while making return trips to a truck that is

itself moving. In other words, a UAV picks up a package from the truck (which continues on

its route), and after delivering the package, the UAV returns to the truck to pick up the next

package. Although the hardware for such systems already exists, it is not yet understood to

what extent such an approach can actually provide a significantly improved quality of service.

By combining a theoretical analysis in the Euclidean plane with real-time numerical simulations

on a road network, we conclude that the improvement in efficiency due to introducing a UAV

is proportional to the square root of the ratio of the speeds of the truck and the UAV.

1 Introduction

One of the most talked-about developments in transportation and logistics in recent years has been

the potential use of unmanned aerial vehicles (UAVs), or “drones”, for transporting packages, food,

medicine, and other goods. The most famous proof-of-concept of such a service is the “Amazon

Prime Air” system, which was introduced in late 2013 and has since undergone several iterations

[8]. Other similar systems include Google’s “Project Wing” [29], DHL’s “Parcelcopter” [9], and a

joint effort between the Swiss Post, Swiss Worldcargo (the air freight division of Swiss International

Air Lines), and the California-based startup Matternet [14]. As described in [25], there are many

reasons to be optimistic about the role that UAVs can play in next-generation logistics systems:

[Demand for last-mile delivery] is likely to increase as e-commerce volumes grow.

... UAVs could provide major relief for inner cities, taking traffic off the roads and

into the skies. So far, payloads are limited but a network of UAVs could nevertheless
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(a) Truck only (b) UAV only (c) Truck + UAV

Figure 1: (a) shows a travelling salesman tour of a set of client destinations and a central depot,
which corresponds to the optimal provision of service by a delivery scheme that uses only a truck.
Similarly, (b) shows a collection of direct trips between the same set of points and the central
depot, which corresponds to the optimal provision of service by a delivery scheme that uses only
UAVs. Finally, (c) shows the solution to a problem in which we have a truck that follows a route
that is much shorter than that of (a), as indicated by the thick tour, as well as a single UAV that
alternates between visiting the client destinations and and the truck, as indicated by the dashed
lines. The routes shown correspond to the case where the UAV is about four times as fast as
the truck; it is also worth mentioning that the optimal sequence of the client destinations is not
necessarily the same as that induced by the TSP tour which is shown in (a), and indeed one can
readily observe that there are several places where the two sequences differ.

support first and last-mile logistics networks. ... This urban first and last-mile use case

is probably the most tangible and spectacular in the logistics industry.

UAVs are also already being used in many related industries including energy [38], agriculture and

forestry [4], environmental protection [34], and emergency response [33].

From a transportation scientist’s perspective, many of the benefits of a UAV-based delivery

system are obvious: UAVs have a low per-mile cost, can operate without human intervention, and

can travel at high speeds while being unaffected by road traffic. The shortcomings of such a system

are equally apparent: UAVs have an extremely low carrying capacity and short travelling radius,

both of which necessitate frequent returns to a central depot. Thus, as suggested in Figures 1a

and 1b, a conventional truck delivery system benefits from an economy of scale and suffers from

high per-mile costs, whereas a UAV delivery system benefits from low per-mile costs and lacks an

economy of scale.

The purpose of this paper is to determine the efficiency of a hybrid approach in which a UAV

(or a fleet of UAVs) provides service to customers while making return trips to a truck that is itself
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moving, as illustrated in Figure 1c. In other words, a UAV picks up a package from the truck

(which continues on its route), and after delivering the package, the UAV returns to the truck to

pick up the next package. Although the hardware for such systems has already been constructed

– one particular implementation is called the “HorseFly” and was developed jointly with AMP

Electric Vehicles and the University of Cincinnati [43] – it is not yet understood to what extent

such an approach can actually provide a significantly improved quality of service. Our goal is to

describe precisely how much improvement can be realized in a mathematically sound way.

Obviously, the “horsefly” problem is extremely difficult to solve to optimality because it is

a generalization of the travelling salesman problem (TSP) that requires the consideration of the

locations where the truck and the UAV meet. Thus, we approach this problem from the continuous

approximation paradigm, in which “detailed data are replaced by concise summaries, and numerical

methods are replaced by analytic models” [15]; our goal is to reduce the problem to a small set

of parameters, and then determine how these parameters affect the outcome of the problem. In a

nutshell, our model assumes that customers are distributed according to a known probability density

in the Euclidean plane. We primarily focus on the time to completion of all of the deliveries, and

our results are also easily applicable to other cost functions such as the net energy expenditure over

both vehicles.

The remainder of this paper is structured as follows: Section 2 defines our problem formally

and also gives a pair of geometric results. Section 3 gives upper and lower bounds for the time to

completion of a tour under the assumption that demand is continuously distributed in the Euclidean

plane, and characterizes the amount of improvement that is realized by a hybrid system in terms

of the speeds of the truck and the UAV. Finally, Section 4 describes two computational simulations

that verify that our continuous approximation result is a valid one in practice; one simulation is

conducted in the Euclidean plane, whereas the other uses real-time driving information on a road

network using the Google Directions API [3].

1.1 Related work

The use of UAVs in logistics is a prospect that is very much in its infancy, and as such, there is little

research on the economics of such systems. The recent papers [5, 22, 35] all describe mixed integer

programming formulations and heuristic algorithms for solving several optimization problems in
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which a truck and a UAV perform service in tandem. Even more recently, [42] describes “worst-case”

configurations of input points that minimize the benefit that a UAV can offer in assisting a truck;

their analysis further enables one to make “best-case” predictions as well, by establishing that the

improvement offered by adding a UAV (or multiple UAVs) cannot exceed a certain value. Instead

of examining solutions to specific problem instances or examining worst- or best-case scenarios,

our paper – by comparison – is concerned with the long-term behavior when many customers

are serviced in a region according to a population density (this is the principle of the continuous

approximation paradigm for transportation, which we discuss later in this section). The most

concrete discussion of the economic desirability thus far can be found in [16], which analyzes per-

mile costs based on the estimated energy consumption of UAVs and describes several feasibility

issues in implementation; the author concludes that “From a cost perspective, the numbers do

not look unreasonable”. Within the operations research community, extensive research has been

conducted on the use of UAVs for military applications; for example, [18] uses robust optimization

to plan reconnaissance missions subject to uncertainty in fuel usage between locations and weather

conditions and [31] uses scenario-based optimization to decide the number of UAVs to deploy; once

deployed, more information about the environment is learned, at which point the route must be

determined.

Our problem can essentially be thought of as an intermodal instance of the Vehicle Routing

Problem (VRP) [20, 41]. Because we seek to optimally coordinate two classes of vehicles that have

diametrically opposing strengths and weaknesses, our problem is particularly related to instances

of VRP in which vehicle heterogeneity plays an important role, such as [21]. A closely related

problem to ours is described in [32], which gives an integer programming formulation and a heuristic

algorithm for solving a routing problem in which a truck can carry a fleet of “foot couriers” on a

single- or multi-route assignment, and the goal is to coordinate resources between the truck and

the couriers effectively.

One of the basic phenomena that is of interest to us is the trade-off between efficiency in trans-

portation along a backbone network (in this case, the route of the truck) versus direct trips between

locations (in this case, the direct trips taken by UAVs); this is arguably one of the fundamental

dichotomies in transportation and logistics [12, 13]. In this sense, our problem of interest is philo-

sophically similar is [11], which asks whether small local retail stores are preferable to “big-box”
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retailers, with [44], which estimates the changes in net CO2 emissions that result by introducing

grocery delivery services, and with [45], which computes the optimal layout of a set of facility

locations that are themselves connected with a backbone network.

This paper is concerned with a continuous approximation model for a transportation problem,

and is therefore philosophically similar to (for example) [10], which analytically determines trade-

offs between transportation and inventory costs, [27], which shows how to route emergency relief

vehicles to beneficiaries in a time-sensitive manner, and [28], which describes a simple geometric

model for determining the optimal mixture of a fleet of vehicles that perform distribution. The basic

premise of the continuous approximation paradigm is that one replaces combinatorial quantities

that are difficult to compute with simpler mathematical formulas, which (under certain conditions)

provide accurate estimations of the desired quantity (and indeed, we will verify in Section 4 that

our theoretical analysis holds under realistic modelling assumptions). Such approximations exist

for many combinatorial problems, such as the travelling salesman problem [7, 19], facility location

[23, 26, 36], and any subadditive Euclidean functional such as a minimum spanning tree, Steiner

tree, or matching [37, 39, 40].

1.2 Notational conventions

Our notational conventions are as follows: we assume that there are n customer locations in the

Euclidean plane to be visited with a truck and a UAV whose speeds are φ0 and φ1 respectively, with

φ0 < φ1. These customers are assumed to follow an absolutely continuous probability distribution

f , which is defined on a compact planar region R. We use L to denote a loop in R (representing

the truck’s tour), we use Loop(R) to denote the set of all loops L in R whose length is well-defined,

and we let d(x,L) denote the distance between point x to loop L; that is,

d(x,L) = min
x′∈L
‖x− x′‖ ,

where ‖ · ‖ is the usual Euclidean distance. The set of permutations of {1, . . . , n} will be written as

Sn, with a particular permutation written as σ ∈ Sn; because these permutations always correspond

to a tour that our truck takes, we will adopt the convention that σ(n+ 1) = σ(1) for brevity. The
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(closed) ε-neighborhood of a (compact) set S in the plane will be written as Nε(S), which is to say,

Nε(S) = {x ∈ R2 : min
x′∈S
‖x− x′‖ ≤ ε} .

We say that a function g(x) satisfies g(x) ∼ h(x) as x → ∞ if limx→∞ g(x)/h(x) = 1. Finally, we

use the expression 1x∈S to denote the indicator function for membership in set S.

2 Preliminaries

We begin by formally defining the horsefly routing problem in which we coordinate a truck and a

single UAV:

Definition 1 (Horsefly routing with one truck and one UAV). Let p1, . . . , pn be a collection of

points in the plane and let φ0, φ1 > 0 denote the speeds of a truck and a UAV respectively, with

φ0 < φ1. The optimal horsefly tour of p1, . . . , pn is the solution to the optimization problem

minimize
x1,...,xn,σ∈Sn

n∑
i=1

max
{ 1
φ0
‖xσ(i) − xσ(i+1)‖ ,

1
φ1

(
‖xσ(i) − pσ(i)‖+ ‖pσ(i) − xσ(i+1)‖

)}
(1)

where Sn 3 σ is the set of all permutations of the set {1, . . . , n}, with the added convention that

σ(n+ 1) = σ(1) for notational convenience.

Figure 2 shows an example of a solution to the above problem. Each variable xi corresponds

to the “launch site” at which the truck releases the UAV to visit customer point pi; the first term

in the max{·, ·} expression simply corresponds to the amount of time needed for the truck to move

from one launch site to the next, whereas the second term corresponds to the amount of time

needed for the UAV to leave its launch site, arrive at its customer point, and return to rendezvous

with the truck at the next launch site. The generalization of (1) that arises when one has multiple

UAVs is also important and will be discussed in Section 3.3. It is worth noting that, if one fixes

the permutation σ, the remaining optimization problem over variables xi is convex.

The following classical theorem, originally stated in [7] and further developed in [39, 40], relates

the length of a TSP tour of a sequence of points with the distribution from which they were sampled:
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Figure 2: Solutions to an instance of the horsefly routing problem, with points p1, . . . , p6 as
shown and with φ1/φ0 = 3/2 and φ1/φ0 = 3 respectively. Defining x1 arbitrarily as a starting
point, we have σ = {1, 3, 5, 2, 6, 4} in both routes. The fact that φ1/φ0 = 3/2 in (a) is reflected
by the observation that each pair of dashed line segments to and from a customer point pσ(i)
(corresponding to a UAV’s trip that starts with the truck, visits the customer, and returns to the
truck) has length equal to 3/2 that of the thickened line segment from xσ(i) to xσ(i+1). Similarly,
in (b), each pair of dashed line segments has length equal to 3 times that of the corresponding
thickened line segment.
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Theorem 2 (BHH Theorem). Suppose that X = {X1, X2, . . . } is a sequence of random points i.i.d.

according to an absolutely continuous probability density function f defined on a compact planar

region R. Then with probability one, the length TSP(X) of the optimal travelling salesman tour

through X satisfies

lim
N→∞

TSP(X)√
N

= β

∫∫
R

√
f(x) dx

where β is a constant.

It is additionally known that 0.6250 ≤ β ≤ 0.9204 and estimated that β ≈ 0.7124; see [6, 7].

The following geometric result will be helpful to us later in relating the workload of the truck

and the workload of the UAV; given a loop L (which represents the tour taken by the truck), it is

useful to know how much area is within a given distance ε of L:

Lemma 3. Let L be a loop in the plane with length ` and let ε > 0. The area of an ε-neighborhood

of L is at most

Area(Nε(L)) ≤


2ε` if ε ≤ `

2π

πε2 + ε`+ `2

4π otherwise ,

which is tight when L is a circle, whereby Nε(L) is either an annulus (if ε ≤ `/(2π)) or a disk (if

ε > `/(2π)).

Proof. Assume without loss of generality that L forms the boundary of a convex region and that L

is piecewise linear, i.e. polygonal (see the appendix for justifications of both of these assumptions).

The ε-neighborhood of L has an “inner” portion Rin and an “outer” portion Rout as shown in Figure

3a, and we can also see from Figure 3a that the area of the “outer” portion Rout is always exactly

πε2 + ε`. It is also obvious that the outer perimeter of Rout is exactly ` + 2πε. The area of the

“inner” portion Rin is a little more complicated to bound; first, for any ε′ ≤ ε, we let Lε′ denote

the closed curve inside L consisting of points that are exactly ε′ away from their nearest point in L

(thus, our original L would simply be written as L0 under this notation). It is of course possible

that Lε′ = ∅ for sufficiently large ε′. Since Rin is simply the union of all curves Lε′ over ε′ ∈ [0, ε],

the coarea formula [30] says that the area of Rin is obtained by simply integrating the length of Lε′

from ε′ = 0 to ε′ = ε:

Area(Rin) =
∫ ε

0
length(Lε′) dε′ .
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(a) (b)

Figure 3: (a) shows the neighborhoods Rin and Rout; note that Rout is the union of the
shaded rectangles and the hatched circular sectors, and therefore Area(Rout) = πε2 + ε` and
perimeter(Rout) = ` + 2πε. (b) shows an inner loop Lε′ and illustrates that R′

out ⊆ Rin for all ε′
(which characterize R′out).

Let R′
out denote the “outer” portion of the ε′-neighborhood of Lε′ , as shown in Figure 3b. We then

have R′
out ⊆ Rin, which by convexity implies that the outer perimeter of R′

out is less than or equal

to the length of L, i.e. `. However, by the same reasoning as our calculation of the outer perimeter

of Rout, we also see that the outer perimeter of R′
out is exactly length(Lε′) + 2πε′, and therefore

` = length(L) ≥ perimeter(R′
out) = length(Lε′) + 2πε′

=⇒ length(Lε′) ≤ `− 2πε′

provided that Lε′ exists, i.e. that length(Lε′) > 0. Thus, we see that

Area(Rin) =
∫ ε

0
length(Lε′) dε′ ≤

∫ ε

0
max{`− 2πε′, 0} dε′ =


ε`− πε2 if ε ≤ `

2π

`2

4π otherwise

from which the desired result follows, since Area(Nε(L)) = Area(Rin) + Area(Rout).

3 Asymptotic analysis of the horsefly routing problem

This section derives upper and lower bounds for a continuous approximation of problem (1), under

the assumption that the customers are distributed according to a known absolutely continuous
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probability distribution f . Not surprisingly, it is useful to describe the average distance between a

customer sampled from f and a loop L:

Theorem 4. Let R be a compact planar region and let f be an absolutely continuous probability

density function defined on R. Let OPT(`) denote the optimal objective value to the problem

minimize
L∈Loop(R)

∫∫
R
f(x)d(x,L) dx s.t. (2)

length(L) = ` ,

where the optimization variable L is taken over the set of all loops in R whose length is well-defined.

Then

OPT(`) ∼ 1
4`

(∫∫
R

√
f(x) dx

)2

as `→∞.

Figure 4d shows an example of an optimal solution to this problem. In order to prove Theorem

4, it is easiest first to consider the special case where f is a uniform distribution:

Lemma 5. Let L be a loop in a compact region R with area A. Then
∫∫
R d(x,L) dx satisfies

∫∫
R
d(x,L) dx ≥


2A3/2

3
√
π
− A`

2π + `3

12π2 if ` ≤
√
Aπ

A2

4` otherwise.
(3)

Proof. We can assume without loss of generality that A = 1 because, if we apply the transformation

A 7→ cA and ` 7→
√
c` for any c > 0, then the right-hand side of the above is simply scaled by c3/2.

Thus, the quantity of interest
∫∫
R d(x,L) dx is simply equal to the expected distance between a

point X uniformly sampled in R and L, i.e. Ed(X,L). Recall that for any non-negative random

variable Z on the real line, we have

E(Z) =
∫ ∞

0
1− F (z) dz ,

where F is the cumulative distribution function of Z (this is a simple consequence of integration

by parts [24]). If we set Z = d(X,L), where X is uniformly sampled in L, then Lemma 3 tells us
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(a) (b) (c) (d)

Figure 4: Figures (a) and (b) show “zig-zagging” and “spiralling” tours through a region R with
a loop L, in such a way that

∫∫
R d(x,L) dx ∼ A2/(4`) as ` → ∞. When the demand density f

is non-uniform, an optimal loop should be more “concentrated” in denser areas, as shown in (c)
and (d); the precise nature of this concentration, as well as the asymptotic costs incurred, are
described in the proof of Theorem 4.

that

F (z) = Area(Nz(L) ∩R) ≤ Area(Nz(L)) ≤


2z` if z ≤ `

2π

πz2 + z`+ `2

4π otherwise .

Suppose that ` >
√
π as in the second case of the desired inequality. We then have

∫∫
R
d(x,L) dx = Ed(X,L) =

∫ ∞
0

1− F (z) dz ≥
∫ 1

2`

0
1− F (z) dz ≥

∫ 1
2`

0
1− 2z` dz = 1

4` .

On the other hand, if ` ≤
√
π as in the first case of the desired inequality, we have `/(2π) ≤

1/
√
π − `/(2π), whence

∫∫
R
d(x,L) dx =

∫ ∞
0

1− F (z) dz ≥
∫ `

2π

0
1− F (z) dz +

∫ 1√
π
− `

2π

`
2π

1− F (z) dz

≥
∫ `

2π

0
1− 2z` dz +

∫ 1√
π
− `

2π

`
2π

1− (πz2 + z`+ `2

4π ) dz = 2
3
√
π
− `

2π + `3

12π2

which completes the proof.

Remark 6. As in Lemma 3, the lower bound (3) is tight when L is a circle and R is either an

annulus or a disk. When R is an arbitrary region, we can construct a family of loops L with length

` that satisfy
∫∫
R d(x,L) dx ∼ A2/(4`) as ` → ∞ by “zig-zagging” or “spiralling” through R, as

shown in Figures 4a and 4b. In the non-uniform case, the optimal solution to (2) is to zig-zag or

spiral in a way that is consistent with the demand density f , as can be seen in Figure 4d.
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(a) (b) (c) (d)

Figure 5: In the above diagrams, we have N = 16 square patches Pi. Figures (a) and (b) show
that one can always decompose a single loop into multiple loops in a way that depends only on
the shapes of the patches. Figures (c) and (d) show that one can always join a collection of loops
into a single loop in a way that also depends only on the shapes of the patches.

Theorem 4 is now straightforward:

Proof of Theorem 4. It will suffice to show that, given any threshold ε > 0 together with R and f ,

it is always possible to select a length ¯̀ such that the optimal objective value to problem (2), i.e.

OPT(`), satisfies

1− ε
4`

(∫∫
R

√
f(x) dx

)2
≤ OPT(`) ≤ 1 + ε

4`

(∫∫
R

√
f(x) dx

)2

for all ` ≥ ¯̀. Because f is absolutely continuous, it is possible to approximate f arbitrarily well with

a step function f̄ = ∑N
i=1 f̄i, where each component f̄i is a constant function on a patch Pi ⊂ R.

That is, f̄i(x) = ai1x∈Pi for positive scalars ai, where 1x∈Pi is the indicator function for membership

in Pi. Given any loop L in R, it is always possible to create a collection of loops Li ⊂ Pi such

that L ⊆ ⋃i Li and ∑i length(Li) ≤ length(L) + c1, where c1 is a constant that depends only on

the patches Pi (for example, c1 is bounded above by the sum of the perimeters of the Pi’s); this is

illustrated in Figures 5a and 5b. Similarly, given any collection of loops Li ⊂ Pi, it is always possible

to create a single loop L such that ⋃i Li ⊆ L and such that length(L) ≤∑i length(Li) + c2, where

c2 again depends only on the patches; this is illustrated in Figures 5c and 5d. These observations

are useful to us because we are interested in the limiting behavior of (2) as `→∞, and we see that

c1 and c2 are independent of `.

Given a desired threshold ε > 0, choose δ > 0 so that (1 − ε) ≤ (1 − δ)2 < (1 + δ)2 ≤ (1 + ε)
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and let f̄ be a sufficiently fine approximation that (1− δ)f̄(x) ≤ f(x) ≤ (1 + δ)f̄(x) for all x ∈ R.

For reasons that will be clear later, we will also require that f̄ be chosen so that

1− δ ≤
∫∫
R
√
f(x) dx∫∫

R

√
f̄(x) dx

≤ 1 + δ .

By our previous observations, OPT(`) is bounded above by the optimal solution to

minimize
L1,...,LN

(1 + δ)
N∑
i=1

∫∫
Pi
f̄i(x)d(x,Li) dx (4)

N∑
i=1

length(Li) = `− c ,

where each Li is a loop in patch Pi. Consider the problem of selecting a single optimal loop Li ⊂ Pi,

under the assumption that length(Li) = `i is known; this is written as

minimize
Li∈Loop(Pi)

∫∫
Pi
f̄id(x,Li) dx s.t. (5)

length(Li) = `i ,

and since f̄i(x) = ai on Pi, we therefore can apply Lemma 5 and Remark 6, which say that, for

sufficiently large `i, the optimal objective value of (5) is asymptotically equal to ai Area(Pi)2/(4`i);

moreover, this is realizable by “zig-zagging” or “spiralling” in Pi as in Figure 4. Thus, we see that

as `→∞, problem (4) is asymptotically equivalent to the problem

minimize
`1,...,`N

(1 + δ)
N∑
i=1

ai ·
Area(Pi)2

4`i
s.t. (6)

N∑
i=1

`i = `− c

`i ≥ 0

as `→∞. The optimal solution to (6) is to set

`∗i =
√
ai Area(Pi)∑N

i=1
√
ai Area(Pi)

· (`− c)
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for each i, which gives an objective value of

(1 + δ)
N∑
i=1

ai ·
Area(Pi)2

4`∗i
= 1 + δ

4(`− c)

 N∑
j=1

√
ai Area(Pi)

2

= 1 + δ

4(`− c)

(∫∫
R

√
f̄(x) dx

)2

≤ (1 + δ)2

4(`− c)

(∫∫
R

√
f(x) dx

)2

=⇒ OPT(`) ≤ 1 + ε

4(`− c)

(∫∫
R

√
f(x) dx

)2
.

We can also derive a lower bound of (2) using nearly identical reasoning, because OPT(`) is bounded

below by the optimal solution to

minimize
L1,...,LN

(1− δ)
N∑
i=1

∫∫
Pi
f̄i(x)d(x,Li) dx

N∑
i=1

length(Li) = `+ c

and an entirely analogous argument shows that

OPT(`) ≥ 1− ε
4(`+ c)

(∫∫
R

√
f(x) dx

)2

for sufficiently large `, which completes the proof.

Remark 7. It is not surprising that the expression
∫∫
R
√
f(x) dx should appear because of its

connection to the length of the TSP tour as established in Theorem 2. Indeed, our proof strategy

for Theorem 4 is similar to Section 2.4 of [40].

Remark 8. Within patch Pi, if we let loop Li be a “zig-zag” or “spiral” with length `i as in

Figure 4, then standard arguments show that the distance d(X,Li) to a random point X sampled

uniformly in Pi satisfies `i · d(X,Li) → U [0,Area(Pi)/2] almost surely as `i → ∞, where U [·, ·]

denotes a uniformly distributed random variable. Stated informally, this means that d(X,Li) is

approximately uniformly distributed between 0 and Area(Pi)/(2`i). By using the expression for

the optimal `∗i together with the fact that f̄ is an approximation of the absolutely continuous

density f , we conclude that the distance between an optimal loop L and a point X sampled from

f , conditioned on the fact that X is near a fixed point x0, is (approximately) uniformly distributed
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between 0 and ∫∫
R
√
f(x) dx
2` · 1√

f(x0)
.

We will make use of this fact in Section 3.3, which describes how to analyze a horsefly problem

with more than one UAV.

3.1 A lower bound

It is fairly straightforward to derive a lower bound of problem (1) that is more amenable to asymp-

totic analysis:

Claim 9. The optimal objective value to the problem

minimize
x1,...,xn,σ∈Sn

max
{

1
φ0

n∑
i=1
‖xσ(i) − xσ(i+1)‖ ,

2
φ1

n∑
i=1
‖xi − pi‖

}
(7)

is a lower bound of problem (1).

Proof. This is sketched in Figure 6. Let x1, . . . , xn and σ be any input to problem (1) and let L

denote the loop that is obtained by visiting the points xi in the order determined by σ (in other

words, L is the truck’s route). For each point pi, let x′i be the point on L that is closest to point pi.

We then certainly have ‖x− pi‖ ≥ ‖x′i − pi‖ for all x ∈ L by definition, and therefore the objective

value of (1) satisfies

n∑
i=1

max
{ 1
φ0
‖xσ(i) − xσ(i+1)‖ ,

1
φ1

(
‖xσ(i) − pσ(i)‖+ ‖pσ(i) − xσ(i+1)‖

)}

≥ max
{

n∑
i=1

1
φ0
‖xσ(i) − xσ(i+1)‖ ,

1
φ1

n∑
i=1

(
‖xσ(i) − pσ(i)‖+ ‖pσ(i) − xσ(i+1)‖

)}

≥ max
{

n∑
i=1

1
φ0
‖xσ(i) − xσ(i+1)‖ ,

2
φ1

n∑
i=1
‖x′i − pi‖

}

≥ max
{

n∑
i=1

1
φ0
‖x′σ′(i) − x

′
σ′(i+1)‖ ,

2
φ1

n∑
i=1
‖x′i − pi‖

}

where σ′ is the optimal permutation corresponding to the optimal tour of the points x′i. We therefore

see that, for any input to (1), we can construct an input to (7) whose objective value is at most

equal to that of (1), which completes the proof.

15



x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

(a)

x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

(b)

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

(c)

Figure 6: A sketch of Claim 9. We start with a solution to problem (1) in (a), and the points x′i
are constructed in (b). We then take a tour through the points x′i in (c).

Both problem (1) and the lower bound (7) are parametrized in terms of the “launch sites” xi

because it is obvious that the truck should always move in a straight line from one launch site to

the next (there is nothing to be gained by travelling on a curved path). It is also possible to express

problem (7) as an infinite-dimensional optimization problem whose variable space is Loop(R), the

space of all rectifiable loops L in R, that is, all paths in R whose start and end points are the same

and whose length is well-defined. The equivalent problem of (7) would then be written as

minimize
L∈Loop(R)

max
{

1
φ0

length(L) , 2
φ1

n∑
i=1

d(pi,L)
}
, (8)

where d(pi,L) = minx∈L ‖pi − x‖ is the distance between pi and its closest point in L.

We now assume that customer demand points pi are independent samples from an absolutely

continuous probability density function f that is defined on R. The summation in problem (8)

then becomes an integral over R, so that the continuous approximation to (8) takes the form

minimize
L∈Loop(R)

max
{ 1
φ0

length(L) , 2n
φ1

∫∫
R
f(x)d(x,L)dx

}
. (9)

The optimal trade-off between the two components above is characterized as follows:

Theorem 10. For fixed R, f , φ0, and φ1, the optimal objective value OPT(n) to problem (9)
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satisfies

OPT(n) ∼
√

n

2φ0φ1
·
∫∫
R

√
f(x) dx

as n→∞.

Proof. It is obvious that, as n→∞, the optimal solution to (9) must have length(L)→∞ as well.

By Theorem 4, we see that for optimal L whose length ` is sufficiently large, we have

2n
φ1

∫∫
R
f(x)d(x,L)dx ∼ n

2φ1`

(∫∫
R

√
f(x) dx

)2
,

and therefore OPT(n) is asymptotically equivalent to the problem

minimize
`≥0

max
{
`

φ0
,

n

2φ1`

(∫∫
R

√
f(x) dx

)2
}
.

This is obviously solved by setting `∗ =
√

φ0n
2φ1
·
∫∫
R
√
f(x) dx, which gives an objective value of√

n
2φ0φ1

·
∫∫
R
√
f(x) dx as desired.

3.2 An upper bound

It is similarly easy to derive an upper bound of problem (1) that is also amenable to asymptotic

analysis:

Claim 11. The optimal objective value to the problem

minimize
x1,...,xn,σ∈Sn

1
φ0

n∑
i=1
‖xσ(i) − xσ(i+1)‖+ 2

φ1

n∑
i=1
‖xi − pi‖ (10)

is an upper bound of problem (1):

Proof. Problem (10) is nothing more than the total time required to complete a horsefly route

when one is subject to an additional constraint that the truck must remain stationary whenever

the drone is away from the vehicle (in other words, it is the sum of the cumulative time taken for

the entirety of the route shown in Figure 6c, for example).

Based on exactly the same reasoning as in the previous section, the continuous approximation
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of problem (10) is given by

minimize
L∈Loop(R)

1
φ0

length(L) + 2n
φ1

∫∫
R
f(x)d(x,L)dx (11)

and is similarly describable in terms of asymptotic analysis:

Theorem 12. For fixed R, f , φ0, and φ1, the optimal objective value OPT(n) to problem (11)

satisfies

OPT(n) ∼
√

2n
φ0φ1

·
∫∫
R

√
f(x) dx

as n→∞.

Proof. This is the exact same reasoning as Theorem 10 and we omit it for brevity.

3.3 Remarks and variations

We have now derived upper and lower bounds of a continuous relaxation of (1) that are proportional

to
√

n
φ0φ1

·
∫∫
R
√
f(x) dx, and that differ from one another by a factor of 2. Thus, we adopt the

expression

Time to perform service ≈ β′
√

n

φ0φ1
·
∫∫
R

√
f(x) dx

where β′ is some constant satisfying 1/
√

2 ≤ β′ ≤
√

2. In addition, by Theorem 2, we see that the

amount of time needed to visit n customers sampled from f using only a truck (and no UAVs) is

asymptotically equal to β
√
n

φ0
·
∫∫
R
√
f(x) dx , and it is estimated that β ≈ 0.7124 [6]. Hence, the

percent improvement that is gained by augmenting a truck with a UAV can be approximated as

Service time without UAVs
Service time with UAVs ≈

β
√
n

φ0
·
∫∫
R
√
f(x) dx

β′
√

n
φ0φ1

·
∫∫
R
√
f(x) dx

= α

√
φ1
φ0

, (12)

where α = β/β′ lies between 0.5037 and 1.0075 (based on the estimate that that β ≈ 0.7124 and the

fact that 1/
√

2 ≤ β′ ≤
√

2). Thus, we hypothesize that the gains in efficiency due to introducing a

UAV are proportional to
√
φ1/φ0, and we will estimate α in Section 4 (which would obviously also

give us an estimate for β′).
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Non-Euclidean distances It is important to recognize that, while UAV trajectories are always

measured in a Euclidean sense, the truck paths are not (since they are constrained by a road

network). One way to compensate for a heterogeneous road network is by computing an “adjusted

speed” φ0 for the truck as follows: initially, given the n locations of our customers, we compute a

TSP tour of those locations (using the road network) and report the length `0 of that tour (with

respect to the road network) and the amount of time t0 needed to visit those locations. An obvious

estimate for φ0 would then be to take `0/t0. A better “adjusted” estimate is obtained by defining

`′0 to be the Euclidean length of the tour of the n points when visited in the same sequence as in

the TSP tour on the road network, and estimating φ0 = `′0/t0. This results in smaller values of φ0

because `′0 ≤ `0. In other words, we treat the truck as if it is travelling in a Euclidean sense, but at

a sufficiently slow speed that the amount of time to travel from one point to the next is the same

as if the truck had been using a road network.

4 Computational results

In this section we conduct two computational experiments. The first experiment is done in the unit

square with uniformly distributed demand, which we use to estimate the coefficient α introduced

in equations (12) and (??). The second experiment uses these estimates of α to make predictions

about the improvements in efficiency when demand follows a non-uniform distribution and real-time

driving information on a road network is used.

4.1 Experiments using Euclidean distances

In our first experiment, we sample n = 500 points uniformly in the unit square, we fix a truck speed

of φ0 = 1, and we allow the UAV speed φ1 to vary with φ1 ∈ {1.5, 2, 3, 5}. The number of UAVs,

k, also varies with k ∈ {1, 2, 3, 5}. Because of the difficulty of solving a given problem instance to

optimality, we apply the following intuitive heuristic rule:

• Stage 1:

– Assume initially that points p1, . . . , pn are ordered according to their optimal TSP tour.

The targets of the k UAVs are initially set to the points p1, . . . , pk.
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– The truck always drives towards the next point that is not currently a target of any of

the UAVs (for example, initially, the truck drives towards pk+1).

– Each UAV flies to its target and returns to the truck, at which point its new target

becomes the next point that is not currently a target of any of the UAVs.

• Stage 2:

– After recording the sequence of events that occurred in Stage 1, we have a list of the

points that each UAV visited, which is written as P i, for i ∈ {1, . . . , k}.

– Solve the following convex optimization problem, which finds an optimal horsefly tour

for fixed ordered assignments P i:

minimize
x1,...,xn+1,t1,...,tn+1

tn+1 s.t.

tr ≥ tq + (‖xq − pq‖+ ‖pq − xr‖)/φ1 ∀(q, r) : q = P ij , r = P ij−1

ti ≥ ti−1 + ‖xi − xi−1‖/φ0 ∀i ∈ {2, . . . , n+ 1}

t1 = 0

x1 = xn+1 .

Figure 7 shows two of the solutions that are obtained when using this procedure. Table 1 shows

the estimates of the coefficient α as computed by performing the above procedure 50 times for each

pair of φ1 and k (hence, 50× 4× 4 trials in total). Each estimate α̂ is obtained by computing the

TSP tour of the sampled points p1, . . . , p500 as well as the horsefly tour that results from performing

the heuristic above, and then setting

α̂ = Service time without UAVs
Service time with UAVs ·

√
kφ1/φ0

; (13)

the values shown in the table are simply the averages of the 50 different trials. Note that, for fixed k,

the estimates of α are more or less consistent for varying φ1, and that α seems to decrease in terms of

k. The results shown are for the most part consistent with our prediction that 0.3562 ≤ α ≤ 1.0075.

Thus, by taking averages over the columns of Table 1, we estimate that for k = 1, we have α = 1.00,

for k = 2, we have α = 0.91, for k = 3, we have α = 0.84, and for k = 5, we have α = 0.78.
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(a) φ1/φ0 = 3/2 (b) φ1/φ0 = 3

Figure 7: Two different horsefly tours with k = 1 and φ1 = 1.5 (a) and with k = 3 and φ1 = 3
(b); in the latter, the different colors of the points pi (black, gray, and white) indicate which of
the three UAVs visits that point.

k
1 2 3 5

φ1

1.5 1.02 0.88 0.84 0.80
2 1.00 0.93 0.86 0.78
3 0.95 0.89 0.85 0.74
5 1.02 0.92 0.83 0.80

Table 1: Estimates of α, the proportionality term introduced in equations (12) and (??).
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4.2 Experiments using road network distances

In our second experiment, we use the results of the preceding section to predict the changes in

service time when UAVs are introduced to a truck that visits a collection of n destination points

in a map of Pasadena, California, with n ∈ {25, 50, 100}. These n destination points are sampled

uniformly from the centers of all 1734 US census blocks that belong to Pasadena, as shown in

Figure 8b, which were obtained from [1]. Next, we compute a TSP tour of those n points with

respect to the road network distance, as shown in Figure 8c; the length and duration of this TSP

tour is estimated using the Google Maps Directions API [3], the Google Distance Matrix API [17],

and the Concorde TSP Solver [2]. Finally, we apply the same two-stage heuristic from the previous

section to compute a horsefly tour of those same points, as shown in Figure 8d. The “adjusted”

truck speed φ0 is generally around 20km
hr in these experiments, and the UAV speed φ1 satisfies

φ1 ∈ {30km
hr , 40km

hr , 50km
hr , 60km

hr }.

Based on our preceding analysis (namely, equations (??) and (13)), we expect that the two

service times should satisfy

Service time with UAVs = Service time without UAVs
α ·
√
kφ1/φ0

, (14)

where there is k = 1 UAV and so we use α = 1.00 (as determined from the previous section).

Figure 9 shows these “predicted” service times compared with the actual service times for 10

individual experiments for n ∈ {25, 50, 100} and φ1 ∈ {30km
hr , 40km

hr , 50km
hr , 60km

hr }. The “quality” of

our approximation, so to speak, is therefore obtained by dividing the actual time by the predicted

times (which we hope is close to 1); Figure 10 shows a histogram of these ratios, which confirms

that our approximation is indeed a sensible “back-of-the-envelope” estimate of the true service

time. Figures 11 and 12 show essentially the same thing for a set of experiments in which we fix

n = 100 instead and we allow k to vary with k ∈ {2, 3, 5}, where we again see that the predictions

are faithful to the true service times.
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(a) (b)

(c) (d)

Figure 8: Figure (a) shows a map of Pasadena, California, and (b) shows the initial dataset
consisting of the centers of all 1734 US census blocks located in Pasadena, California. Figure
(c) shows the TSP tour with respect to the road network of n = 25 points sampled from those
centers, and (d) shows the horsefly tour computed using the two-stage heuristic from Section 4.1.
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Figure 9: Each of the 12 charts above corresponds to an experiment performed for a particular
number of customers n and UAV speed φ1. Each chart contains 10 triplets, corresponding to 10
individual experiments. The three bars (black, gray, and white) in each triplet are interpreted as
follows: the black bar simply indicates the amount of time, in hours, that a single truck takes to
visit the n points. The gray bar represents the predicted amount of time that the truck and the
UAV will take in a horsefly tour, as determined by the right-hand side of (14). The white bar
indicates the actual amount of time that the truck and the UAV take in performing their horsefly
tour.
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Figure 10: Histogram of the ratios of the predicted service times in each of the 10 × 3 × 4
experiments shown in Figure 9 (in other words, the gray bars in Figure 9 divided by the white
bars in Figure 9).
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Figure 11: Each of the 12 charts above corresponds to an experiment performed for a particular
number of UAVs k and UAV speed φ1; the interpretation of these is the same as that of Figure 9.
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Figure 12: Histogram of the ratios of the predicted service times in each of the 10 × 3 × 4
experiments shown in Figure 11 (in other words, the gray bars in Figure 11 divided by the white
bars in Figure 11).
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5 Conclusions

By using an asymptotic theoretical analysis in the Euclidean plane as well as a collection of com-

putational experiments, we have concluded that the improvement in efficiency due to augmenting a

delivery truck with a UAV is proportional to the square root of the ratio of the speeds of the truck

and the UAV. One of the weak points in our analysis is the fact that we use heuristic methods

to compute the coordinated routes between the truck and the UAV, rather than a true globally

optimal solution. While we are unaware at present of any techniques that find these solutions for

the problem scales discussed in this paper, we expect them to become available in the coming years

as interest in UAVs in logistics increases.
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Figure 13: Reflecting the polygonal chain s about the line joining v1 and v2.

Appendix: Proof of Lemma 3

The assumption that L is polygonal is a valid one because the standard definition of the length of

L is simply the limit of a discretization; if we say that L is the image of the continuous mapping

γ : [0, 1]→ R2, then the length of L is defined as

length(L) = sup
0=t0<t1<···<tM=1

M−1∑
i=1
‖γ(ti)− γ(ti−1)‖

where the supremum is taken over all possible partitions of [0, 1] and M is unbounded.

The assumption that L forms the boundary of a convex region is also straightforward: at the

very least, we can certainly assume that L is simple, that is, that L does not intersect itself (since

one can always “un-cross” a pair of intersecting edges of L in an obvious way). If L is not the

boundary of a convex region, then (since we have assumed that L is polygonal) there must exist a

pair of vertices v1, v2 of L such that v1 and v2 are adjacent on the convex hull Conv(L) of L, but

not adjacent on L itself; see Figure 13a. If we let s denote the component of L that lies between

v1 and v2, then it is obvious that we can reflect s about the line joining v1 and v2, to obtain a new

curve L′ with the same length as L, as shown in Figure 13b. It is then an entirely straightforward

argument to verify that, for any ε, we have Area(Nε(L′)) ≥ Area(Nε(L)), which completes the

proof.
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