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Abstract
The hub-and-spoke distribution paradigm has been a fundamental principle in geographic network design for more

than 40 years. One of the primary advantages that such networks possess is their ability to exploit economies of scale
in transportation by aggregating network flows through common sources. In this paper, we consider the problem of
designing an optimal hub-and-spoke network in continuous Euclidean space: the “spokes” of the network are distributed
uniformly over a service region, and our objective is to determine the optimal number of hub nodes and their locations.
We consider seven different backbone network topologies for connecting the hub nodes, namely the Steiner and minimum
spanning trees, a travelling salesman tour, a star network, a capacitated vehicle routing tour, a complete bipartite graph,
and a complete graph. We also perform an additional analysis on a multi-level network in which network flows move
through multiple levels of transshipment before reaching the service region. We describe the asymptotically optimal
(or near-optimal) configurations that minimize the total network costs as the demand in the region becomes large and
give an approximation algorithm that solves our problem on a convex planar region for any values of the relevant input
parameters.

1 Introduction
The hub-and-spoke distribution paradigm has been a fundamental principle in geographic network design for more than 40
years [15]. The distinguishing characteristic of such a network is that direct connections between locations in a geographic
region are replaced with indirect connections facilitated with the use of hub nodes. As identified in [36], such a network
topology is desirable because it reduces and simplifies network construction costs, centralizes commodity handling, and
allows carriers to take advantage of economies of scale through consolidation of flows. It was noted in [14], for example,
that for air traffic networks,

The simplest manifestation of these economies of scale appear in areas such as maintenance, where staff
and inventory costs can be reduced by having one central maintenance facility. A subtler and more important
reason for hub-and-spoke arrangements, however, has to do with economies of scale applied to frequency and
passenger preferences.... A hub-and-spoke network topology has a consolidating effect that makes it possible
to justify more flights to each city.

Broadly speaking, the optimal size and shape of a hub-and-spoke network depends on costs from three sources:

1. Fixed costs incurred from installing, operating, and maintaining hub facilities,

2. Backbone network costs incurred from transporting goods along the network that connects the hubs, and

3. Local transportation costs incurred from transporting goods between hubs and spokes.
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In this paper we consider the problem of selecting the optimal locations of a set of hubs X = {x1, . . . , xk} in a planar Eu-
clidean region R where the “spokes” are continuously and uniformly distributed in the region; specifically, our optimization
problem is given by

minimize
X

Fix(|X|) + φBBN(X) + ψ FW(X,R) (1)

where φ and ψ are given scalar parameters. Here the term Fix(|X|) = Fix(k) represents the fixed costs and depends
only on the number of elements of X, i.e. k (which is a decision variable), and not their geographic locations. The term
φBBN(X) represents the cost of the backbone network of the points X, which may be a Euclidean Steiner or minimum
spanning tree (MST), a travelling salesman (TSP) tour, a star network (SN), a collection of capacitated vehicle routing
(VRP) tours, a complete bipartite graph (CBG), or a complete graph (CG) on the points X. Finally, we define the
Fermat-Weber cost function

FW(X,R) =
¨
R

min
i
{||x− xi||} dA , (2)

where x is the variable of integration, the points xi are the members of the hub set X, and dA denotes the area differential,
to represent the local transportation costs incurred from providing service from the hubs X to the region R; the above
quantity is simply proportional to the average distance between a point x uniformly sampled in R and its nearest hub
point xi ∈ X. This models the case where the “spokes” of the network are uniformly distributed in R and each spoke uses
its nearest hub xi by means of a direct trip. These three costs are illustrated in Figure 1, which shows the seven backbone
network structures of interest and the Voronoi partition of the service region, which we include so as to suggest the local
hub-to-spoke transportation costs.

The specific contributions of this paper are as follows: in our earlier manuscript [8], we have considered the special case
of problem (1) where BBN(·) = TSP(·) (and by extension, the cases where BBN(·) = Steiner(·) and BBN(·) = MST(·) as
well). This paper extends that analysis to the other four cases BBN(·) ∈ {SN(·),VRP(·),CBG(·),CG(·)}, deriving both
the asymptotic behavior of the optimal solution in Part I and fast and simple approximation algorithms in Part II. Our
approach here additionally allows us to quantify precisely what values of the input parameters affect the optimal cost and
structure of the problem most significantly. In Section 5, we consider a further generalization of problem (1) in which the
region R is serviced by a multi-level network in which network flows move through multiple levels of transshipment before
reaching the service region. We derive asymptotic expressions that describe various properties of the optimal solution of
such a multi-layer problem, such as the optimal number of points to place, their spatial distribution, and the optimal
overall objective cost as a function of the region size and the relevant input parameters.

Related work
Our problem (1) can be seen as a particular instance of the hub location problem [6, 22, 36] in which we have a continuum
of “spokes” in a planar region and we are permitted to choose a variety of backbone network topologies that connect
our hubs. Another model closely related to (1) can be found in the seminal paper [25], which describes several discrete
and continuous models and algorithms for simultaneous facility location and routing; further developments on discrete
formulations of problems of this type have since emerged [1, 27, 28]. The recent paper [2] considers a discrete version of
problem (1) where a Steiner tree of the facilities is used as a backbone network.

Our analysis here involves a planar version of an intrinsically discrete problem (in which we assume that demand
is uniformly distributed in a region), and as such it falls in the company of such continuous approximation models as
[6, 11, 13, 21, 24, 30, 42], the three-part series [31, 32, 33], and much of the material in the monograph [10]. The recent
paper [5] considers a special case of (1), in which fixed costs are omitted and the backbone network cost function is a
TSP tour of the points X, to estimate the “carbon penalty” of the emissions produced by a set of facilities (that is, the
difference between the carbon cost to a firm and the true externality cost of the total emissions generated). The author
shows that, using reasonable estimates of the input parameters, the realized penalty is negligible.

A relatively new branch in location theory deals with location-routing problems (LRP) that pay special attention to
vehicle routing issues in facility placement [29]. Such problems are substantially more difficult than the canonical location
models because, as the paper [4] observes,

[T]he facility...must be “central” relative to the ensemble of the demand points, as ordered by the (yet unknown)
tour through all of them. By contrast, in the classical problems the facility...must be located by considering
distances to individual demand points, thus making the problem more tractable.
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(a) Steiner (b) MST (c) TSP

(d) Star (e) VRP

(f) Complete bipartite graph (g) Complete graph

Figure 1: The seven backbone network structures considered in this paper for a fixed point set X, together with the
induced Voronoi partition. Note that we have shown additional “root” or “depot” nodes in (1d)-(1f), as prescribed by
their definitions.
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One important distinction between the LRP and our problem (1) is that we think of the backbone network as connecting
the facilities together, whereas the LRP considers networks that connect the customers together (i.e. vehicle tours that
provide service to the customers).

Sections 2 and 4 of this paper concern the limiting behavior of the optimal solution to our problem (1) as the various
input parameters of the objective function become large or small. As such, our analysis closely resembles other research
on the asymptotic behavior of Euclidean optimization problems, such as the travelling salesman problem [3] and general
subadditive Euclidean functionals [40, 44] as well as the k-center and k-medians problems [20, 49]. Although our analysis is
deterministic (as opposed to the cited works which are probabilistic), the spirit of our contribution is most closely related
to the aforementioned results.

Backbone network topologies
Before proceeding further, we find it useful to briefly give some context to the seven backbone network topologies that we
study in this paper.

Steiner trees, MSTs, and TSPs The Steiner tree, minimum spanning tree, and travelling salesman tour are all subad-
ditive Euclidean functionals [40, 44] whose lengths in a bounded region increase at a rate proportional to

√
k in the

worst case (here k = |X| represents the number of hub points that we place). It is well-known [45] that the lengths
of these configurations are always within a constant factor of each other; specifically, in Euclidean space, we have

Steiner(X) ≤ MST(X) ≤ TSP(X) ≤ 2 Steiner(X) .

In the context of hub location, backbone structures of this type are often called corridor or fixed-route transportation
networks [19, 41, 46].

Star networks The discrete case of problem (1) with a star network SN(X) as a backbone structure is known as a
“star-star” hub location problem [23] (because we have a star network that connects the hubs together as well
as small-scale star networks that connect the hubs to spokes), which is commonly encountered in communication
network design [37, 47] and satellite allocation [18]. Section 5.3.5 of the monograph [10] explains that such a network
also occurs in air transportation of valuable goods because “the cost (and delay) of a stop is large compared with
that of the moving portion of the trip.” In the worst case, the length of the star network in a bounded region R
increases at a rate proportional to k. In this paper, unless otherwise stated, we will assume that the root node of
SN(X) is the geometric median of X, which we write as x̄ (this allows us to treat the points of X homogeneously,
i.e. to not identify a distinct “root node” and treat it separately from the others).

VRP tours A VRP tour of the points X is a generalization of the TSP tour in which vehicles depart from a central
depot and visit the points X. The vehicle, however, is now capacitated: it can only visit a given number of stops κ
before it is required to return to the depot. We therefore see that the TSP tour and the star network are special
cases of the VRP tour in which κ = ∞ and κ = 1 respectively. Such a distribution model is canonical in a wide
variety of contexts for modelling “one-to-many” relationships; see for example Chapter 4 of [10].

Complete bipartite graphs The complete bipartite graph is a “many-to-many” backbone structure that arises when
our facilities X are interconnected with a second set of facilities Y . This might arise in a supply chain in which
each facility yj ∈ Y produces a specific component that is used to construct a product at each facility xi. Since
components from each facility yj are needed to construct the product, we must therefore connect each facility yj ∈ Y
to each facility xi ∈ X. Distribution networks of this type are sometimes referred to as point-to-point networks [41].
In the worst case, the length of a complete bipartite graph in a bounded region R increases at a rate proportional
to k1k2, where k1 = |X| and k2 = |Y |.

Complete graphs The complete graph CG(X) is the most frequently used backbone structure in hub location problems
[7] and is commonly encountered in airline network design [22], freight delivery [35], and urban transportation [34].
In the worst case, the length of the complete graph in a bounded region R increases at a rate proportional to k2.
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Notational conventions
In this paper we adopt the following notational conventions: we use |X| to denote the cardinality of a set X, we let btc,
dte, and bte denote the floor, ceiling, and rounding functions of a real number t, we let diam(R) = maxx,y∈R ‖x − y‖
denote the diameter of a region R, we let Nε(x) denote an ε-neighborhood of a point x (or a set of points X), and we let
AR(R) denote the aspect ratio of a rectangle R, i.e. the ratio of the longer side to the shorter side. When Q is a (possibly
infinite) set of points, we define the distance function

d(x,Q) = min
q∈Q
||x− q|| .

As mentioned in the previous section, we use x̄ to denote the geometric median of the point set X, which we assume to
be the root node of any star network SN(X) or VRP tour VRP(X) that we come across unless otherwise stated. We use
the letter c as a generic constant that may change from one expression to the next; constants with numerical subscripts
(such as α1 in the next section) are those with a more permanent existence.

We previously defined the Fermat-Weber function FW(X,R) in (2), which models the cost of serving region R with
the facilities X via direct trips. We will also define a function FW(R), which does not depend on any point set, as

FW(R) = min
x0∈R

¨
R

‖x− x0‖ dA ,

so that x0 ends up being the geometric median of the region R. We will commit a minor abuse of notation by using
the terms BBN(·), Steiner(·), MST(·), TSP(·), SN(·), VRP(·), CBG(·), and CG(·) to refer both to the various backbone
networks and to their lengths. Note that, in the above integral, we have used x as a variable of integration and dA to
denote the area differential; we will maintain this convention throughout.

Finally, we shall make use of four common conventions in asymptotic analysis:

• We say that f(x) ∈ Ω(g(x)) if there exists a positive constant c and a value x0 such that f(x) ≥ c · g(x) for all
x ≥ x0,

• We say that f(x) ∈ O(g(x)) if there exists a positive constant c and a value x0 such that f(x) ≤ c · g(x) for all
x ≥ x0,

• We say that f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1, and

• We say that f(x) ∝ g(x) if there exist positive constants c1 and c2 and a value x0 such that c1g(x) ≤ f(x) ≤ c2g(x)
for all x ≥ x0.

Part I

Asymptotic analysis
2 Special cases of (1)
In this section, we will examine the optimal solutions to certain special cases of problem (1). Before doing anything else,
we find it useful to state a classical result of continuous location theory proven in [16], as well as an immediate corollary
thereof:

Theorem 1. If R is a bounded region in the plane with area (i.e. Lebesgue measure) A, then

inf
X:|X|=k

FW(X,R) ∼ α1A
3/2
√
k

as k → ∞, where X = {x1, . . . , xk} denotes a finite subset of R2 and α1 is the Fermat-Weber value of a regular hexagon
with unit area:

α1 = FW (Hexagon) = 33/4 (4 + 3 log 3)
√

6
108 ≈ 0.37721 .
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Theorem 1 says that, for sufficiently large point sets X, the optimal configuration that minimizes FW(X,R) is always
a regular hexagonal lattice, i.e. the “honeycomb heuristic” [13, 20, 39], which is shown in Figure 3a. The paper [16]
actually generalizes Theorem 1 to a more versatile setting in which, rather than minimizing the quantity

FW(X,R) =
¨
R

min
i
{||x− xi||} dA ,

we are interested in minimizing quantities of the more general form

FWf (X,R) :=
¨
R

min
i
{f(||x− xi||)} dA ,

where f(·) : [0,∞)→ [0,∞) is a monotonically increasing function:

Theorem 2. If R is a bounded region in the plane with area (i.e. Lebesgue measure) A, and f(·) : [0,∞) → [0,∞) is a
monotonically increasing function, then

inf
X:|X|=k

FWf (X,R) ∼ k · FWf (Hex(A/k))

as k →∞, where X = {x1, . . . , xk} denotes a finite subset of R2, Hex(A/k) denotes a regular hexagon of area A/k, and

FWf (Hex(A/k)) :=
¨

Hex(A/k)
f(‖x− x0‖) dA

where x0 is the centroid of the hexagon in question.

Simply put, Theorem 2 says that the honeycomb heuristic is an asymptotically optimal configuration whenever our
objective is to minimize any monotonically increasing function of the distances from the landmark points xi to the region
R. This will be useful to us in Section 5 when we analyze hub-and-spoke networks with multiple levels.

2.1 The case φ = 0: the honeycomb heuristic
Before studying our problem (1) for various forms of BBN(·), we remark that it is obvious that the solution to (1) when
backbone network costs are ignored, i.e.

minimize
X

Fix(|X|) + ψ FW(X,R) , (3)

is the honeycomb heuristic. In particular, provided the optimal number of points X to place is sufficiently large (which
would happen as ψ →∞), we can apply Theorem 1 to obtain a nearly optimal solution by minimizing the expression

Fix(k) + ψα1√
k

(4)

over k.

2.2 The case Fix(·) = 0 and BBN(·) ∈ {Steiner(·),MST(·),TSP(·)}: the Archimedes heuristic
If Fix(k) = 0 for all k, then we do not incur any penalty for placing hubs in the region if they do not lengthen the backbone
network. Thus, when BBN(·) ∈ {Steiner(·),MST(·),TSP(·)}, our optimal configuration will be to place infinitely many
hubs along the backbone network (see Figure 2), although we have not yet discussed what the shape of the backbone
network should be. We can derive the optimal shape by proving the following lemma:

Lemma 3. Suppose that T is a tree in a region R such that length(T ) = ` and Area(R) = A. Then FW (T,R) ≥ 2A2

8`+3
√
πA

.
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(a) (b)

Figure 2: If Fix(k) = 0 for all k, then the absence of fixed costs for hubs implies that configuration (2a) is strictly worse
than (2b); that is, we should place infinitely many hubs along the backbone network to maximize network utilization.

Proof. See Section A of the Online Supplement. For ease of intuition, we can show that FW(T,R) ∈ Ω(1/`) if A = 1:
we observe that the area of a neighborhood Nε(T ) of T with radius ε = 1/4` is approximately 1/2, and therefore there
exists an area of approximately 1/2 lying outside that neighborhood, i.e. Area(R \ Nε(T )) ≈ 1/2. Every point lying
outside this neighborhood is at a distance of at least 1/4` away from T and therefore the Fermat-Weber value FW(T,R)
is approximately bounded below by (1/2)(1/4`) = 1/8`.

The optimal solution to problem (1) is then described by the following:

Theorem 4. As φ/ψ → 0, the optimal solution X∗ to the problem

minimize
X

φBBN(X) + ψ FW(X,R)

with BBN(·) ∈ {Steiner(·),MST(·),TSP(·)} satisfies

φBBN(X∗) + ψ FW(X∗, R) ∼ A
√
φψ

where A = Area(R). Moreover, an optimal solution X∗ is the Archimedean spiral configuration, as shown in Figure 3b.

Proof. Using Lemma 3, we can determine a lower bound for the problem

minimize
X

φBBN(X) + ψ FW(X,R) (5)

via
min
`
φ`+ ψ

2A2

8`+ 3
√
πA

which is minimized at `∗ = max{A/2
√
ψ/φ− 3/8

√
πA, 0}. Since we are performing an asymptotic analysis as φ/ψ → 0, we

are free to assume that `∗ = A/2
√
ψ/φ− 3/8

√
πA, at which point the objective function evaluates to

φ`∗ + ψ
2A2

8`∗ + 3
√
πA

= A
√
φψ − 3

√
πA

8 φ ∼ A
√
φψ as φ/ψ → 0 .

We conclude by observing that if we configure an infinite number of hubs X on an Archimedean spiral of the form r = aθ in
polar coordinates, where a =

√
φ/ψ/π, then for a sufficiently small ratio φ/ψ we have φBBN(X)+ψ FW(X,R) ∼ A

√
φψ,

thus proving that the Archimedes heuristic is an optimal configuration for minimizing (5) when we use a Steiner tree,
MST, or TSP tour of X as a backbone network.
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(a) Honeycomb (b) Archimedes

(c) “Contracted honeycomb” (d) “Less contracted honeycomb”

Figure 3: Optimal configurations for four of the special instances of (1) described throughout Section 2 and their Voronoi
diagrams.
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2.3 The case Fix(·) = 0 and BBN(·) = SN(·): the “contracted honeycomb”
We next consider the case where (1) takes the form

minimize
X

φ SN(X) + ψ FW(X,R) . (6)

It is clear that, as φ/ψ →∞, the optimal solution to (6) involves placing fewer and fewer facilities throughout the region
because the backbone network costs dominate the local transportation costs. We therefore consider instead the case where
φ/ψ → 0, whose optimal solution is characterized by the following theorem:

Theorem 5. As φ/ψ → 0, the optimal solution X∗ to problem (6) satisfies

φSN(X∗) + ψ FW(X∗, R) ∼ cA7/6φ1/3ψ2/3 ,

where A = Area(R) and c is a constant that depends only on the shape of the region R. Moreover, the optimal solution
X∗ is a “contracted honeycomb” configuration that follows the distribution f(x) = c

′‖x‖−2/3 on R for a suitable constant
c
′ , as shown in Figure 3c.

Proof sketch. Suppose without loss of generality that the center of the star network x̄ ∈ R is the origin, and that we divide
R into N cells �i of size ε = A/N . Let di = minx∈�i

‖x‖ and let the variable ki = |X ∩�i| denote the number of points
in �i (so that k =

∑N
i=1 ki). Consider a particular cell �i: as φ/ψ → 0, it must be true that the optimal number of points

k∗i in �i increases. Thus, for sufficiently large ki, Theorem 1 says that

min
Xi:|Xi|=ki

FW(Xi,�i) ∼
α1ε

3/2
√
ki

.

We therefore find that, as φ/ψ → 0, a lower bound of (6) is given by solving

minimize
(k1,...,kN )

φ

N∑
i=1

diki︸ ︷︷ ︸
≤SN(X)

+ψ α1ε
3/2

N∑
i=1

1√
ki︸ ︷︷ ︸

≤FW(X,R)

.

The above problem is convex in (k1, . . . , kN ). Setting first derivatives to zero, we find that for each i we must have

φdi = 1
2 ·

ψα1ε
3/2

k
3/2
i

.

Introducing a variable fi := ki/εk, the above can equivalently be written as

fi = (α1/2)2/3 · (ψ/φ)2/3

d
2/3
i k

which is simply a finite discretization of the expression

f(x) = (α1/2)2/3 · (ψ/φ)2/3

‖x‖2/3k

where f(x) describes the “density” of the points X. Introducing c′ = (α1/2)2/3(ψ/φ)2/3/k , the above can equivalently
be written as

f(x) = c
′
‖x‖−2/3 .

This tells us that as k becomes large, the optimal X that minimizes (6) is a “contracted honeycomb” configuration:
we define c′ =

(˜
R
‖x‖−2/3 dA

)−1 and then place a total of k = (α1/2)2/3(ψ/φ)2/3/c
′ points in R in a honeycomb
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configuration that follows the distribution f(x) = c
′‖x‖−2/3 on R. Note that the optimal number of points k is proportional

to (ψ/φ)2/3, the backbone network cost is

φ

N∑
i=1

diki ∼
(α1

2

)2/3
(¨

R

‖x‖1/3 dA

)
φ1/3ψ2/3 , (7)

and the coverage cost is

ψα1ε
3/2

N∑
i=1

1√
ki
∼
(

21/3α
2/3
1

)(¨
R

||x||1/3 dA

)
φ1/3ψ2/3 .

If we assume that the shape of R is fixed, we see that
˜
R
‖x‖1/3 dA ∝ A7/6, so that the optimal objective function value

is proportional to A7/6φ1/3ψ2/3. This completes the proof.

Remark 6. It is worth noting that as φ/ψ → 0, the optimal number of points k varies but the overall spatial distribution
f(x) = c

′‖x‖−2/3 does not. Practically speaking, this a useful property of the star network because, if φ decreases (or
conversely if ψ increases), we can improve our objective value by simply placing additional points distributed according
to f(x), rather than having to start from scratch. The same cannot be said of the optimal solution when the backbone
network is a Steiner tree, MST, or TSP – i.e. the Archimedes heuristic – which becomes more tightly “coiled” as φ/ψ → 0.

2.4 The case Fix(·) = 0 and BBN(·) = VRP(·)
A VRP tour of the points X is a generalization of the TSP tour in which vehicles depart from a central depot x̄ (which
we will again assume to be the origin) and visit the points X. The vehicle, however, is now capacitated: it can only visit
a given number of stops κ before it is required to return to the depot. We therefore see that the TSP tour and the star
network are special cases of the VRP tour in which κ =∞ and κ = 1 respectively. We will consider here the case where
(1) takes the form

minimize
X

φVRP(X) + ψ FW(X,R) . (8)

The paper [17] proves that, for any point set X, we have

max
{

TSP(X), 2
κ

SN(X)
}
≤ VRP(X) ≤ 2

⌈
|X|
κ

⌉
· SN(X)
|X|

+ (1− 1/κ) TSP(X) . (9)

We will disregard the upper bounds of VRP(X) for now. The fact that VRP(X) ≥ TSP(X) allows us to immediately
conclude (owing to the result of Section 2.2) that a valid asymptotic lower bound of (8) as φ/ψ → 0 is A

√
φψ. Similarly,

the fact that VRP(X) ≥ 2/κ SN(X) allows us to conclude (owing to the result of Section 2.3) that another valid asymptotic
lower bound of (8) is (

22/3 + 2−1/3
)
α1

(¨
R

‖x‖1/3 dA

)
︸ ︷︷ ︸

=:cA7/6

(
φ

κ

)1/3
ψ2/3 .

Some simple algebra shows that the two lower bounds are equal when κ = c3
√
Aψ/φ. Moreover, as κ becomes small

relative to c3
√
Aψ/φ, we find that VRP(X) ∼ 2/κ SN(X), and as κ becomes large relative to c3

√
Aψ/φ, we find that

VRP(X) ∼ TSP(X) (this follows from the analysis in [17]). Thus, when κ � c3
√
Aψ/φ, we find that a “contracted

honeycomb” configuration becomes optimal (i.e. treating our problem as that of Section 2.3, making the substitution
φ 7→ 2/κ · φ), and when κ� c3

√
Aψ/φ, the Archimedes heuristic becomes optimal (with the same coefficients φ and ψ).

2.5 The case Fix(·) = 0 and BBN(·) = CBG(·)
When the backbone network is a complete bipartite graph, we have an additional set of hub nodes Y and our problem
takes the form

minimize
X

φCBG(X,Y ) + ψ FW(X,R) (10)
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Figure 4: A contracted honeycomb configuration derived for a complete bipartite graph with |Y | = 2.

where we define

CBG(X,Y ) =
|X|∑
i=1

|Y |∑
j=1
‖xi − yj‖ .

Note that in (10) we are only treating X as an optimization variable and assuming that Y is exogenous. This is because,
if Y were an optimization variable as well, the optimal solution to (10) would be to set Y = ∅, thus incurring no backbone
network costs whatsoever. When Y is given and fixed, we simply have a generalization of problem (6) in which we define

c
′

=

¨
R

 |Y |∑
j=1
‖x− yj‖

−2/3

dA


−1

and then place a total of k = (α1/2)2/3(ψ/φ)2/3/c
′ points in R in a honeycomb configuration that follows the distribution

f(x) = c
′

 |Y |∑
j=1
‖x− yj‖

−2/3

on R. The optimal objective function value is again proportional to A7/6φ1/3ψ2/3. Figure 4 shows a picture of this
configuration for the case where |Y | = 2.

2.6 The case Fix(·) = 0 and BBN(·) = CG(·): the “less contracted honeycomb”
When (1) takes the form

minimize
X

φCG(X) + ψ FW(X,R) , (11)

it is difficult to determine a closed-form solution for the optimal configuration of the facilities X as in the previous
examples, although it is straightforward to find a solution whose objective value is guaranteed to fall within roughly 15%
of the optimum. It is clear that, as φ/ψ → ∞, the optimal solution to (11) involves placing fewer and fewer facilities
in the region because the backbone network costs dominate the local transportation costs. We therefore again consider
instead the case where φ/ψ → 0, whose optimal solution is characterized by the following:

Theorem 7. As φ/ψ → 0, the optimal solution X∗ to problem (11) satisfies

φCG(X∗) + ψ FW(X∗, R) ∝ A13/10φ1/5ψ4/5
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where A = Area(R). Moreover, an approximately optimal solution X∗∗ is a “less contracted honeycomb” configuration
that follows the distribution f(x) = c

′(‖x‖+ c
′′)−2/3 on R for suitable constants c′ and c′′ , as shown in Figure 3d; such a

configuration is guaranteed to have an objective value that falls within 21/5 − 1 ≈ 15% of the optimum.

Proof sketch. Let x̄ denote the geometric median of X. By definition, we have

k∑
j=1
‖x̄− xj‖ ≤

k∑
j=1
‖x− xj‖ ∀x ∈ R

and so in particular, for any point xi ∈ X, we have
∑k
j=1 ‖x̄− xj‖ ≤

∑k
j=1 ‖xi − xj‖. It follows that

CG(X) = 1
2

k∑
i=1

k∑
j=1
‖xi − xj‖ ≥

1
2

k∑
i=1

k∑
j=1
‖x̄− xj‖ = k

2

k∑
j=1
‖x̄− xj‖ = k

2 SN(X) .

However, by the triangle inequality, it also holds that

CG(X) ≤ 1
2

k∑
i=1

k∑
j=1
‖xi − x̄‖+ ‖x̄− xj‖ = k SN(X)

so that k/2 · SN(X) ≤ CG(X) ≤ k · SN(X). Thus, we can find an upper bound to problem (11) by solving

minimize
X

φk SN(X) + ψ FW(X,R) (12)

where k = |X| is also a variable as before. Treating this problem in precisely the same manner as Section 2.3, and assuming
that x̄ is the origin, we find that the optimal “density” f(·) of the points that minimizes (12) must satisfy

φk5/2
(
‖x‖+

¨
R

‖x‖f(x) dA
)

= 1
2 ·

ψα1

f(x)3/2

i.e.

f(x) = k−5/3(α1/2)2/3 (ψ/φ)2/3
(
‖x‖+

¨
R

‖x‖f(x) dA
)−2/3

.

Finally, introducing c such that k = ψ2/5

c3/5φ2/5 , we can write

f(x) = c(α1/2)2/3︸ ︷︷ ︸
c′

‖x‖+
¨
R

‖x‖f(x) dA︸ ︷︷ ︸
c′′


−2/3

= c
′
(
‖x‖+ c

′′
)−2/3

(13)

so that we merely need to find constants c′ and c′′ such that
¨
R

c
′
(
‖x‖+ c

′′
)−2/3

dA = 1 (14)
¨
R

c
′
(
‖x‖+ c

′′
)−2/3

‖x‖ dA = c
′′
. (15)

We thus find that the approximately optimal solution to (11) is to distribute a total of k = ψ2/5

c3/5φ2/5 hub points in a
honeycomb lattice that follows the distribution f(x) = c

′(‖x‖ + c
′′)−2/3 for appropriate constants c, c′ and c

′′ . This

12



Objective function Optimal configuration Optimal objective value

Fix(|X|) + ψ FW(X,R) Honeycomb Depends on Fix(·)

φSteiner(X) + ψ FW(X,R) Archimedes ∝ A
√
φψ

φMST(X) + ψ FW(X,R) Archimedes ∝ A
√
φψ

φTSP(X) + ψ FW(X,R) Archimedes ∝ A
√
φψ

φ SN(X) + ψ FW(X,R) Contracted honeycomb ∝ A7/6φ1/3ψ2/3

φVRP(X) + ψ FW(X,R)
κ� c3

√
Aψ/φ: Contracted honeycomb

κ� c3
√
Aψ/φ: Archimedes

∝ A7/6φ1/3ψ2/3/κ1/3

∝ A
√
φψ

φCBG(X) + ψ FW(X,R) Contracted honeycomb ∝ A7/6φ1/3ψ2/3

φCG(X) + ψ FW(X,R) Less contracted honeycomb ∝ A13/10φ1/5ψ4/5

Table 1: Summary of the major results from Section 2. In the row corresponding to the case where BBN(·) = VRP(·), the
value κ is the vehicle capacity and the value c is a quantity derived from the shape of the service region R (see Section
2.4).

configuration is shown in Figure 3d. Note that the optimal number of points k is proportional to (ψ/φ)2/5, the backbone
network cost approaches

φk

N∑
i=1

diki ∼
[

1
c6/5 ·

¨
R

c
′
(‖x‖+ c

′′
)−2/3‖x‖ dA

]
φ1/5ψ4/5 as φ/ψ → 0 , (16)

and the coverage cost approaches

ψα1ε
3/2

N∑
i=1

1√
ki
∼
[

2
c6/5 ·

¨
R

c
′
(
‖x‖+ c

′′
)1/3

dA

]
φ1/5ψ4/5 as φ/ψ → 0 .

If we assume that the shape of R is fixed, we see that the optimal objective function value is proportional to A13/10φ1/5ψ4/5.
Note that a lower bound of our problem is obtained by solving

minimize
X

φ

(
k

2

)
SN(X) + ψ FW(X,R)

which has an objective function value within a factor of 21/5 ≈ 1.15 of the upper bound that we just computed.

Remark 8. Similarly to Remark 6, it is worth noting that as φ/ψ → 0, the near-optimal number of points k varies but
the overall spatial distribution f(x) = c

′(‖x‖+ c
′′)−2/3 does not.

2.7 Summary table
We summarize the major results of this section in Table 1.
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3 A practical example
Before extending the results of Section 2, we find it helpful to first give a practical example using parameter estimates
taken from the existing literature. Suppose that we are to provide service to a circular geographic region of 100 square
miles containing 150 customers that are uniformly distributed throughout. Our goal is to transport goods from a supply
depot that is initially located in the center of the region to a set of transshipment nodes (whose locations we will determine)
along to our customers. We are to accomplish this using a combination of large, high-efficiency electric trucks to transport
goods from the depot to the transshipment nodes, together with smaller gasoline-powered vans for transportation to the
customers. We can calculate the cost per mile for transportation along the backbone network for the Smith Newton
all-electric truck using the estimates in Tables 1 and 4 of [12], which gives

80 kW h
100 miles ·

$0.1106
kW h = $0.0885

mile =: φ
′
.

The cost per mile for an all-purpose van such as the Suzuki APV can similarly be estimated via

1 gallon
25 miles ·

$3.603
1 gallon = $0.1441

mile =: ψ
′
.

Our reason for using the notation “φ′” and “ψ′” will be clear shortly. We will assume that the large electric trucks deliver
goods from the central depot to the transshipment nodes by way of direct trips and that the small vans also deliver goods
from the transshipment nodes to the customers by way of direct trips (see Section 5.3.5 of [10] for an explanation of the
circumstances that result in such a scenario). Thus, if X denotes the set of transshipment nodes, we find that the cost
of the backbone network is 2φ′ SN(X) =: φ SN(X), where the multiplier “2” is used because we are making round trips
to and from the transshipment nodes. Since the small vans are also providing service via direct trips, and since there are
150 customers distributed in 100 square miles, we see that the total workload of the small vans is

2ψ
′ 150
100 FW(X,R) =: ψ FW(X,R) .

Our problem is then given by
minimize

X
φ SN(X) + ψ FW(X,C)

with φ = 0.1770 and ψ = 0.4324. The solution is to define c′ =
(˜

R
‖x‖−2/3 dA

)−1 and then place a total of k =⌊
(α1/2)2/3(ψ/φ)2/3/c

′
⌉

= 28 transshipment nodes in the region following a contracted honeycomb configuration. If we
were to double the size of the region, resulting in 200 square miles with 300 customers, we would obtain a solution consisting
of 44 transshipment nodes placed in a contracted honeycomb configuration. If we were to increase the size of the region
by a factor of 10, resulting in 1000 square miles with 1500 customers, our solution would have 131 transshipment nodes.
This is simply a reflection of the basic property of the contracted honeycomb configuration that transshipment nodes are
placed much more sparsely as one moves increasingly far from the central depot.

4 Asymptotic solutions to (1)
In this section, we analyze the solutions to problem (1) as the various coefficients become large or small relative to one
another. Since we are only concerned with the limiting behavior of the model, we find it useful to express the utility
functions in their highest-order terms. To this end, we assume that the service region R has a population t and we impose
the following functional forms on Fix(·), φ, and ψ:

• We assume that the fixed cost for |X| = k hubs to serve the population t takes the form Fix(k; t) = k · f(t/k), where
f(τ) denotes the fixed cost associated with a single hub that provides service to a population of size τ . If we assume
that the fixed costs follow an economy of scale, it is natural to assume that f(τ) is concave and increasing, and (since
we are only concerned with the limiting behavior, i.e. the highest-order terms) we make the further assumption
that f(τ) = aτp, where 0 ≤ p ≤ 1. This is equivalent to assuming that the fixed costs follow the simplest possible
Cobb-Douglas production function with increasing returns to scale [26].
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• We assume that the backbone network cost for the hubs X to serve the population t takes the form φt BBN(X),
where BBN(·) is of the form Steiner(·), MST(·), TSP(·), SN(·), VRP(·), CBG(·), or CG(·), and φt is a concave
increasing function of the population t. This models the case where a higher population results in higher backbone
network costs (since there are more “things” to transport), but the network benefits from an economy of scale (see
for example Section 3.1 of [11]). As in the fixed costs, we therefore assume that φt takes the form φt = btq, where
0 ≤ q ≤ 1.

• We assume that the local transportation costs take the form tFW(X,R). This simply says that the cost increases
proportionally to the population in the region, which is justified by assuming that local transportation does not
benefit from an economy of scale.

Our model in this section then takes the form

minimize
X

ka (t/k)p + btq BBN(X) + tFW(X,R) . (17)

We shall assume throughout this section that Area(R) = 1 since we are considering the limiting behavior as t→∞. We
now proceed to describe the optimal solution to (17) as t→∞ for the various forms of BBN(·).

4.1 The case b = 0
Note first that if we do not impose backbone network costs, then by Section 2.1 it will suffice to consider the problem

minimize
k

ka (t/k)p + tα1/
√
k

where α1 ≈ 0.37721 as before, which is minimized at k = ct
2−2p
3−2p , where

c =
[

α1

2a(1− p)

] 2
3−2p

.

The optimal objective function value is then proportional to t
2−p

3−2p (the proportionality constant can be computed, but we
omit it here for brevity).

4.2 The case BBN(·) ∈ {Steiner(·),MST(·),TSP(·)}
Suppose that we adopt a Steiner tree, minimum spanning tree, or travelling salesman tour as our backbone network. We
will show that the optimal solution to (17) depends on the relationship between p and 3/2− 1/2q:

• If p > 3/2− 1/2q, then we claim that the uniform honeycomb heuristic, with c =
[

α1
2a(1−p)

] 2
3−2p and k = ct

2−2p
3−2p as in

Section 4.1, is asymptotically optimal as t→∞. Under a honeycomb configuration, we see that

MST(X),TSP(X) ∼ β0
√
k :=

√
6

33/4

√
k ≈ 1.0746

√
k

as explained in [5], and therefore that Steiner(X) ∈ O(
√
k) as well (this is because 1/2 MST(X) ≤ Steiner(X) ≤

MST(X); see for example [45]). Thus, objective function (17) is at most

ka (t/k)p + btq · β0
√
k + tα1/

√
k . (18)

We take the ratio of the fixed costs to the backbone network costs

ka (t/k)p

btq · β0
√
k

∣∣∣∣
k=ct

2−2p
3−2p

∈ Ω
(
t

1
3−2p−q

)
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which is increasing in t provided that p > 3/2− 1/2q. This shows that as t→∞, the backbone network cost becomes
arbitrarily small relative to the fixed costs, and therefore

ka (t/k)p + btq · β0
√
k + tα1/

√
k

ka (t/k)p + tα1/
√
k

∣∣∣∣∣
k=ct

2−2p
3−2p

→ 1

which proves asymptotic optimality, since the denominator in the above expression is clearly a lower bound on
problem (17), given that it simply consists of neglecting the backbone network costs.

• If p < 3/2 − 1/2q, then we claim that the Archimedes heuristic, with k = t
3−q−2p

4−2p points placed equidistantly along
an Archimedean spiral with length `∗ = t(1−q)/2/(2

√
b) (i.e. with polar equation r = θ/2π`∗), is optimal as t → ∞.

First, we note that from Section 2.2, it is clear that an asymptotic lower bound for our problem is
√
bt(q+1)/2; this

is simply the optimal objective value A
√
φψ with A = 1, φ = btq, and ψ = t when fixed costs are ignored. When X

consists of k points distributed along a spiral of length `, then provided k is sufficiently large, we have

FW(X,R) ≤ `

4k + 1
4`

(this is true because the Voronoi diagram of X approximately consists of k rectangles having dimensions `/k × 1/`,
which is apparent from Figure 3b; the right-hand side of the above expression is the Fermat-Weber value of these
under the `1 norm). Objective function (17) is then at most

ka (t/k)p + btq · `∗ + t

(
`

4k + 1
4`

)∣∣∣∣
k=t

3−q−2p
4−2p ,`∗=t(1−q)/2/(2

√
b)

=
√
bt(q+1)/2 +O

(
t

3+qp−q−p
4−2p

)
∼
√
bt(q+1)/2 as t→∞

because 3+qp−q−p
4−2p < (q + 1)/2.

4.3 The case BBN(·) = SN(·)
Suppose that we adopt a star network topology as our backbone network. We will show that the optimal solution to (17)
depends on the relationship between p and 3q

2q+1 :

• If p > 3q
2q+1 , then we claim that the uniform honeycomb heuristic, with c =

[
α1

2a(1−p)

] 2
3−2p and k = ct

2−2p
3−2p as in

Section 4.1, is asymptotically optimal as t→∞. Under this configuration, we can write (17) as

ka (t/k)p + btq · βk + tα1/
√
k (19)

where β = FW(R) represents the average distance between a uniformly sampled point in R (or, for large k, a point
in X) and x̄, which we again assume to be the origin. We take the ratio of the fixed costs to the backbone network
costs

ka (t/k)p

btq · βk

∣∣∣∣
k=ct

2−2p
3−2p

∈ Ω
(
t

p
3−2p−q

)
which is increasing in t provided p > 3q

2q+1 . This shows that as t→∞, the backbone network cost becomes arbitrarily
small relative to the fixed costs, and therefore

ka (t/k)p + btq · βk + tα1/
√
k

ka (t/k)p + tα1/
√
k

∣∣∣∣∣
k=ct

2−2p
3−2p

→ 1

which proves asymptotic optimality, since the denominator in the above expression is clearly a lower bound on
problem (17), given that it simply consists of neglecting the backbone network costs.
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• Conversely, if p < 3q
2q+1 , then we claim that the “contracted honeycomb” configuration, with c′ =

(˜
R
‖x‖−2/3 dA

)−1

and k = (α1/2)2/3(t/btq)2/3/c
′ , is asymptotically optimal as t → ∞. This is because, by (7), the backbone network

costs approach (α1

2

)2/3
(¨

R

‖x‖1/3 dA

)
(btq)1/3t2/3 ∈ Ω

(
t(2+q)/3

)
,

whereas the fixed costs approach

ka (t/k)p|k=(α1/2)2/3(t/btq)2/3/c′ ∈ O
(
t(2−2q+p+2qp)/3

)
,

and thus we find that the backbone network costs dwarf the fixed costs as t→∞ since (2+q)/3 > (2−2q+p+2qp)/3.

4.4 The case BBN(·) = VRP(·)
Suppose that we adopt a capacitated VRP tour as our backbone network. As we have seen in Section 2.4, the backbone
network costs incurred under such a topology are essentially inherited from either a star network or a TSP tour depending
on the vehicle capacity κ. We will assume that κ = κ0t

r, i.e. that the vehicle capacities vary with respect to the population
t; this simply models the case where different modes of transportation are available to provide service to the region as
demand increases. Applying the result of Section 2.4 to our model (17), we find that the capacity constraints become
increasingly restrictive when r < (1 − q)/2, so that the star network approximation of VRP(·) becomes tight as t → ∞,
and similarly the TSP tour approximation becomes tight when r > (1 − q)/2. The optimal solution to (17) can then be
classified as follows:

• If r < (1− q)/2, then our problem can be approximated as

minimize
X

ka (t/k)p + 2b
κ0
tq−r SN(X) + tFW(X,R)

as t→∞, and consequently the optimal solution depends on the relationship between p and 3(q−r)
2(q−r)+1 (this is nothing

more than a restatement of the result of Section 2.3, making the substitution q 7→ q − r):

– If p > 3(q−r)
2(q−r)+1 , then the uniform honeycomb heuristic is asymptotically optimal as t → ∞ because the fixed

costs dominate the backbone network costs.
– If p < 3(q−r)

2(q−r)+1 , then the “contracted honeycomb” configuration is asymptotically optimal as t → ∞ because
the backbone network costs dominate the fixed costs.

• If r > (1− q)/2, then our problem can be approximated as

minimize
X

ka (t/k)p + btq TSP(X) + tFW(X,R)

as t→∞, and consequently the optimal solution depends on the relationship between p and 3/2− 1/2q in the same
fashion as in Section 4.2.

4.5 The case BBN(·) = CBG(·)
As we have seen previously in Section 2.5, the case where BBN(·) = CBG(·) is a straightforward generalization of the case
where BBN(·) = SN(·). Thus, there is nothing more to do in this section because the result of Section 2.3 carries over
without incident.
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Backbone network Conditions Optimal configuration k∗ Optimal objective value

Steiner/MST/TSP
p > 3

2 −
1
2q Honeycomb ∝ t

2−2p
3−2p ∝ t

2−p
3−2p

p < 3
2 −

1
2q Archimedes ∝ t

3−2p−q
4−2p ∝ t(q+1)/2

Star network/CBG
p > 3q

2q+1 Honeycomb ∝ t
2−2p
3−2p ∝ t

2−p
3−2p

p < 3q
2q+1 Contracted honeycomb ∝ t2(1−q)/3 ∝ t(q+2)/3

VRP

r < (1− q)/2
p > 3(q−r)

2(q−r)+1 Honeycomb ∝ t
2−2p
3−2p ∝ t

2−p
3−2p

p < 3(q−r)
2(q−r)+1 Contracted honeycomb ∝ t2[1−(q−r)]/3 ∝ t(q−r+2)/3

r > (1− q)/2
p > 3

2 −
1
2q Honeycomb ∝ t

2−2p
3−2p ∝ t

2−p
3−2p

p < 3
2 −

1
2q Archimedes ∝ t

3−2p−q
4−2p ∝ t(q+1)/2

Complete graph
p > 3q+2

2q+3 Honeycomb ∝ t
2−2p
3−2p ∝ t

2−p
3−2p

p < 3q+2
2q+3 Less contracted honeycomb ∝ t2(1−q)/5 ∝ t(q+4)/5

Table 2: The optimal configurations, numbers of hubs, and objective values for various values of p and q and backbone
network structures in (17).

4.6 The case BBN(·) = CG(·)
When we adopt a complete graph as the backbone network, we can follow precisely the same line of reasoning as in Section
4.3 to show that the optimal solution to (17) depends on the relationship between p and 3q+2

2q+3 :

• If p > 3q+2
2q+3 , the uniform honeycomb heuristic with with c =

[
α1

2a(1−p)

] 2
3−2p and k = ct

2−2p
3−2p as in Section 4.1 gives an

asymptotically optimal solution with objective value proportional to t
2−p

3−2p .

• If p < 3q+2
2q+3 , the “less contracted honeycomb” configuration, with k = t2/5

c3/5(btq)2/5 and c, c′ , and c′′ defined in (13),
(14), and (15), is asymptotically optimal (within a factor of 15%) with objective value proportional to t(q+4)/5.

4.7 Summary table and discussion
Table 2 and Figure 5 summarize the results of this section. Another interpretation of these results allows us to understand
the benefits of improving infrastructures in either the fixed costs or the backbone network: for all seven backbone network
topologies, the optimal configuration is either the honeycomb heuristic or a heuristic that is associated with that backbone
network topology. One can also observe that, under the various conditions on p and q, it is always the case that either
the fixed costs dominate the backbone network costs or that the backbone network costs dominate the fixed costs. Thus,
for example, if we use a star network to connect our hubs and p < 3q

2q+1 , then there is little to be gained by reducing our
fixed costs because they are already dwarfed by the backbone network costs as it is. Similarly, if we use a TSP tour as
our backbone network and p > 3/2− 1/2q, we gain little by cheapening our backbone network because the fixed costs are
the dominant term. This allows us to quantify (in a very highly stylized sense, of course) the intrinsic trade-offs between
such fixed costs and transportation costs as a function of the input parameters [43].
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Figure 5: The boundary curves that distinguish different optimal solution configurations for various values of p and q in
five of the backbone network structures (we have omitted the cases where BBN(·) ∈ {VRP(·),CBG(·)} because they can
be described in terms of the others). If the pair (p, q) lies above the curve associated with a particular backbone network
configuration, then the backbone network costs dominate the fixed costs as t → ∞. Conversely, if (p, q) lies below the
curve of interest, then the fixed costs dominate the backbone network costs.

5 Multi-level networks
The problems we have considered thus far can be thought of as belonging to the class of two-level location and design
problems: goods are first transported along the backbone network to facilities, then to the customers in the service region
via direct trips. It is natural to generalize problem (1) to the case where we have multiple levels of distribution that occur
between the facilities and the customers,

minimize
X1,...,Xn

n∑
i=1

Fix
i

(|Xi|) +
n∑
i=1

φi BBNi(Xi) + ψ FW(X1, R) , (20)

where Xi denotes the set of facilities at the ith “level”; note that it is only the lowest-level facilities X1 that provide
service to the customers in the region (which they do via direct trips). This setup is shown in Figure 6. In this section,
we will consider the structure of the optimal solution to (20) when all backbone networks are star networks (which is
also suggested in Figure 6). Thus, a facility xi−1

j ∈ Xi−1 will be connected to the facility in Xi that is closest to it; let
NN(Xi, Xi−1) denote the “nearest neighbor” graph that is induced by this assumption. Since there are no facilities above
the nth level, we simply assume that those facilities at the nth level are connected with a star network rooted at the
geometric median of Xn, i.e. that BBNn(Xn) = SN(Xn). For simplicity, we will consider the case where no fixed costs
are imposed on any of the facilities, i.e. Fixi(·) = 0 for all levels. We devote the remainder of this section to a proof of
the following theorem:

Theorem 9. The optimal objective function value to the problem

minimize
X1,...,Xn

φn SN(Xn) +
n−1∑
i=1

φi NN(Xi+1, Xi) + φ0 FW(X1, R) (21)

takes the form (
2n+1 − 1

2
2+2n+1(n−1)

2n+1−1

)(
n−1∏
i=0

a2n+1−2n−i

i

) 1
2n+1−1

(
n∏
i=0

φ2n−i

i

) 1
2n+1−1 ¨

R

‖x‖
1

2n+1−1 dA (22)

as φi/φ0 → 0 for all i ≥ 1, where we define

ai =
¨

Hex(1)
‖x‖

1
2i+1−1 dA
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Figure 6: A four-stage hub-and-spoke network with star backbone networks at each level. For aesthetic purposes, we have
refrained from labelling the first-level facilities x1

1, . . . , x
1
k. We also show the Voronoi partition induced by these first-level

facilities as in Figure 1.

n Optimal value to (21)

1 3
22/3

(
a2

0a
3
1
)1/3 (

φ2
0φ1
)1/3

A7/6

2 7
210/7

(
a4

0a
6
1a

7
2
)1/7 (

φ4
0φ

2
1φ2
)1/7

A15/14

3 15
234/15

(
a8

0a
12
1 a

14
2 a

15
3
)1/15 (

φ8
0φ

4
1φ

2
2φ3
)1/15

A31/30

4 31
298/31

(
a16

0 a
24
1 a

28
2 a

30
3 a

31
4
)1/31 (

φ16
0 φ

8
1φ

4
2φ

2
3φ4
)1/31

A63/62

Table 3: Values of (23) for n ∈ {1, 2, 3, 4}.

with Hex(1) denoting a regular hexagon with unit area, which simplifies to(
2n+1 − 1

2
2+2n+1(n−1)

2n+1−1

)(
n∏
i=0

a2n+1−2n−i

i

) 1
2n+1−1

(
n∏
i=0

φ2n−i

i

) 1
2n+1−1

A
2n+2−1
2n+2−2 (23)

when R is a regular hexagon of area A. The optimal configuration of points at the nth level is a contracted honeycomb
configuration that follows the distribution f(x) = c‖x‖

−2
q+2 for a suitable constant c, where q = 1

2n−1 .

The above expression is quite unwieldy, but becomes clearer when we write out its first few values, which are shown
in Table 3. Note that higher-level facilities are more concentrated about their centers than lower-level facilities because
the exponent −2

q+2 approaches −1 from the right as n increases. We require a fairly simple lemma in order to prove this
result:

Lemma 10. Let R be a compact planar region with area A. As ψ/φ→∞, the optimal objective value to the problem

minimize
X

φSN(X) + ψ FWf (X,R) , (24)

where f(τ) = τ q and FWf (·, ·) is as defined in Theorem 2, is given by

c
(
φqψ2) 1

q+2

¨
R

‖x‖
q

q+2 dA ,
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where we define

c =
(
α2
q

4qq

) 1
q+2

(q + 2)

and
αq =

¨
Hex(1)

‖x‖q dA .

Proof. Note that this is a generalization of Section 2.3 (which deals with the special case q = 1) and that our values αq
generalize our previous definition of α1. This result is proven in an entirely analogous manner to Section 2.3.

Remark 11. If we vary the area A but retain the same shape, the integral
˜
R
‖x‖

q
q+2 dA in the above scales proportionally

to A
3q+4
2q+4 .

We can now proceed to prove Theorem 9 by induction:

Proof of Theorem 9. It is clearly true that Theorem 9 holds for the base case where n = 1, which was demonstrated in
Section 2.3. Assume that Theorem 9 holds for networks of up to n− 1 levels and consider the problem with n levels; for
any placement of the points Xn = {xn1 , . . . , xnk} (with k obviously a variable) let Vj denote the Voronoi cell of point xnj .
By the induction hypothesis, we see that the optimal cost to cover cell Vj with those facilities at levels 1 through n− 1 is
given by (

2n − 1

2
2+2n(n−2)

2n−1

)(n−2∏
i=0

a2n−2n−1−i

i

) 1
2n−1

(
n−1∏
i=0

φ2n−1−i

i

) 1
2n−1 ¨

Vj

‖x− xnj ‖
1

2n−1 dA

and therefore the total cost of coverage of these regions is simply the sum of this over all cells:

n−1∑
i=1

φi NN(Xi+1, Xi) + φ0 FW(X1, R) ∼
(

2n − 1

2
2+2n(n−2)

2n−1

)(n−2∏
i=0

a2n−2n−1−i

i

) 1
2n−1

(
n−1∏
i=0

φ2n−1−i

i

) 1
2n−1 k∑

j=1

¨
Vj

‖x− xnj ‖
1

2n−1 dA

=
(

2n − 1

2
2+2n(n−2)

2n−1

)(n−2∏
i=0

a2n−2n−1−i

i

) 1
2n−1

(
n−1∏
i=0

φ2n−1−i

i

) 1
2n−1

︸ ︷︷ ︸
ψ

FWf (Xn, R)

where f(τ) = τ
1

2n−1 . We therefore find that problem (21) can be written as

minimize
Xn

φn SN(Xn) + ψ FWf (Xn, R) ,

whose optimal objective value is given by Lemma 10; the remainder of the proof then becomes a tedious calculation by
substituting for ψ which we omit for brevity.

To conclude this section, Figure 7 shows an optimal configuration of a three-level network.

Part II

Algorithmic analysis
6 An algorithmic formulation of (1)
In this section we describe an algorithm for minimizing objective function (1) within a constant factor. Unlike the preceding
analysis in Part I, we will require upper and lower bounds for (1) that are uniform: that is, we must find bounds that are
valid for all possible input parameters, rather than merely looking at limiting behaviors as we did before. This complicates
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Figure 7: An optimal configuration for a three-level network.

matters because we have to explicitly take shape constraints of the input region into account, and as a consequence, the
bounds we derive are somewhat unwieldy.

We will assume without loss of generality that ψ = 1, and for purposes of clarity we will treat the fixed costs as a hard
constraint that |X| ≤ k0 for some fixed input k0. We will also assume that the service region R is a convex polygon C and
that C is oriented in such a way that diam(C) is aligned with the x-axis, so that C is contained in a box of dimensions
(w = diam(C)) × h. We will further assume without loss of generality that w = 1/h, which implies by convexity of C
that 1/2 ≤ A = Area(C) ≤ 1. For purposes of clarity, we will use the terms w and 1/h interchangeably depending on the
context. In summary, we will show how to obtain an approximately optimal solution for the problem

minimize
X

F (X) = φBBN(X) + FW(X,C) s.t. (25)

|X| ≤ k0

for a given convex polygon C, a backbone network topology BBN(·), a positive scalar φ, and a positive integer k0. Our
general procedure will be to run a simple subroutine, ApproxFW (which is itself based on an even simpler subroutine,
RectanglePartition), on C, applying several “strategic” choices of k = |X|. These are described in Algorithms 1 and
2 and Figures 8 and 9. As an aside, it turns out that Algorithm 2 is a constant-factor approximation algorithm for the
continuous Fermat-Weber problem in a convex polygon (that is, minimizing FW (X,C) in a given convex polygon C with
a constraint that |X| = k0), with approximation constant 2.74 [9].

In order to simplify our exposition as much as possible, we will apply a rigorous analysis only to the case where
BBN(·) = SN(·). This is because the case where BBN(·) = TSP(·) was already considered in [8], and the analysis therein
can be extended to the cases BBN(·) = Steiner(·) and BBN(·) = MST(·) in a straightforward way. Our analysis here
also suggests a natural approach for the case where BBN(·) = CG(·) because for any point set X we have already seen
that k/2 SN(X) ≤ CG(X) ≤ k SN(X). The key idea is to derive uniform bounds that relate BBN(X) and FW(X,C) in
a convex polygon, as we will do in Theorems 12, 15, and 17, for example, which relate SN(X) and FW(X). One would
similarly use the same bounds to relate k SN(X) and FW(X) to derive an approximation analysis for the case where
BBN(·) = CG(·). We will list all of the approximation constants associated with these five backbone network topologies
in Table 4; we will disregard the cases where BBN(·) = VRP(·) and BBN(·) = CBG(·) because they require additional
input parameters, namely the vehicle capacities and the facilities Y .
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Input: An axis-aligned rectangle R and an integer k.
Output: A partition of R into k rectangles, each having area Area (R) /k.
if k = 1 then

return R;
else

Set k1 = bk/2c and k2 = dk/2e;
Let w denote the width of R and h the height; if w ≥ h then

With a vertical line, divide R into two pieces R1 and R2 with area k1
k ·Area (R) on the right and

k2
k ·Area (R) on the left;

else
With a horizontal line, divide R into two pieces R1 and R2 with area k1

k ·Area (R) on the top and
k2
k ·Area (R) on the bottom;

end
return RectanglePartition (R1, k1) ∪ RectanglePartition (R2, k2);

end
Algorithm 1: Algorithm RectanglePartition(R, k) takes as input an axis-aligned rectangle R and a positive integer
k. This is used as a subroutine in Algorithm 2.

Input: A convex polygon C and an integer k.
Output: The locations of k points xi in C that approximately minimize FW (C, k) within a factor of 2.74.
Align a diameter of C with the coordinate x-axis;
Let �C denote an axis-aligned box of dimensions w × h, where w = diam (C);
Let R1, . . . , Rk = RectanglePartition (�C, k);
for i ∈ {1, . . . , k} do

Let ci denote the center of Ri;
if ci ∈ C then

Set xi = ci;
else

Set xi to be the projection of ci on C;
end

end
return x1, . . . , xk;

Algorithm 2: Algorithm ApproxFW(C, k) takes as input a convex polygon C and an integer k. This is used as a
subroutine in Algorithm 3.
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(a) (b) (c)

(d) (e)

Figure 8: The input and output of Algorithm 1. We begin in (8a) with a rectangle R and an integer k = 7; here we assume
that Area(R) = 1. In Figures (8b) through (8d), we subdivide R into smaller rectangles by a recursive subdivision; the
areas of each sub-rectangle are shown. Figure (8e) shows the output.

(a) (b) (c)

(d) (e)

Figure 9: The input and output of Algorithm 2. We begin in (9a) with a convex polygon C, whose axis-aligned bounding
box �C is computed in (9b). The bounding box is then partitioned into k = 19 equal-area pieces in (9c) using Algorithm
1. Some of the centers of these pieces are then relocated in (9d), and (9e) shows the output and Voronoi partition.
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Figure 10: The optimal region R that minimizes FW(X ′ ∪Q,R) in gray, where k′ = |X ′ | = 6.

6.1 Lower bounds
In this section we introduce some lower bounding functions that we will use in proving that our proposed Algorithm 3
minimizes (25) within a constant factor.

6.1.1 Lower bounds for BBN(·) = SN(·)

When we adopt a star network as our backbone network topology, we find three useful lower bounds which follow below.

Theorem 12. Suppose that X = {x1, . . . , xk} is a set of points in a convex polygon C with area A. Then

φ SN(X) + FW(X,C) ≥ φk
′

√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− k′p2

)
(k′ + 1)2

p3/2
, (26)

with p = 1/7 and

k
′

= max
{

0 , 2 · 211/3

21

(
3A2/3

φ2/3 −
A1/3

φ1/3

)
− 1
}
.

Proof. Suppose without loss of generality that x̄ is the origin. Consider a ball Br about the origin with radius r. Consider
the lower bound for SN(X) defined by

SNLBr(X) =
|X|∑
i=1

{
0 if ||xi|| ≤ r
r otherwise.

We can consider the related problem of minimizing φSNLBr(X) + FW(X,C), or equivalently

φr|X \Br|+ FW(X,C \Br) ,

since we can place infinitely many elements of X inside Br without incurring any additional penalty on the backbone
network. We now attempt to find a lower bound for FW(X,C \Br), and to this end we require the following lemma:

Lemma 13. Suppose that Q is a convex region in the plane with boundary length `′ and that X ′ = {x1, . . . , xk′} is a
finite set of points in the plane. Then for any region R outside of Q with area A′ , we have

FW(X
′
∪Q,R) ≥

(√
`′2 + 4A′π(k′ + 1)− `′

)2 (
2
√
`′2 + 4A′π(k′ + 1) + `

′
)

24π2(k′ + 1)2 (27)

where we define

FW(X
′
∪Q,R) =

¨
R

min
{
d(x,Q), min

i∈{1,...,k′}
||x− xi||

}
dA .
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Proof. It is clear that if Q is convex then Area(Nε(Q)) = ε`
′+πε2 for all ε. It is also clear that the region R that minimizes

FW(X ′ ∪ Q,R) is precisely given by Nε(Q ∪ X
′) for an appropriate choice of ε such that Area(Nε(X

′ ∪ Q)) = A
′ ; see

Figure 10. It follows that we should solve
(ε`
′
+ πε2) + k

′
πε2 = A

′

for ε, which gives

ε =
√
`′2 + 4A′π(k′ + 1)− `′

2π(k′ + 1) .

The minimal Fermat-Weber value is attained when R is the disjoint union of k′ balls of radius ε about the points xi plus
the neighborhood Nε(Q), as shown in Figure 10. Their Fermat-Weber value is precisely the right-hand side of (27).

We now continue with the proof of Theorem 12. It is straightforward to verify algebraically that the right-hand side
of (27) is decreasing in `′ because for any non-negative constant c,

∂

∂`′

(√
`′2 + c− `

′
)2 (

2
√
`′2 + c+ `

′
)

= 6`
′√

`′2 + c− 6`
′2 − 3c ≤ 0 .

Having established the preceding result, we let p denote the fraction of area of C that is contained in Br, so that
Area(C∩BR) = Ap and Area(C\Br) = A(1−p). In Section B of the Online Supplement, we show that that length((∂Br)∩
C) ≤ 2

√
πAp. Applying Lemma 13 with Q = Br, A

′ = A(1− p) and `′ = 2
√
πAp, we find that

FW(X ∪Br, C \Br) ≥
A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− k′p2

)
(k′ + 1)2

p3/2

where k′ = |X \Br| as before, and, using the fact that r ≥
√
Ap/π, we find that for any point set X,

φSN(X) + FW(X,C) ≥ φk
′

√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− kp2

)
(k′ + 1)2

p3/2
.

In order to remove the dependency of the right-hand side on X (since k′ = |X \Br| depends on X), we are free to simply
take a minimum over all values of k′ :

φSN(X) + FW(X,C) ≥ min
k′≥0

φk′
√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− kp2

)
(k′ + 1)2

p3/2

 .

In order to determine a closed-form lower bound for the left-hand side φ SN(X) + FW(X,C), it would be sensible to
differentiate the argument within the mink′{·} with respect to k′ , set the result to zero, then solve for k′ . Before doing
so, we note that the above inequality holds for any value of p whatsoever, and therefore we are free to simply fix p = 1/7
(for reasons explained in Remark 14). The differentiation and solution for k′ is then performed, which gives

arg min
k′≥0

φk′
√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− kp2

)
(k′ + 1)2

p3/2


= max

{
0 , 2 · 211/3

21

(
3A2/3

φ2/3 −
A1/3

φ1/3

)
− 1
}
,

thus completing the proof.
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Remark 14. The selection p = 1/7 in the above proof is not arbitrary; our reasoning follows thusly: as φ→ 0, the backbone
network costs are cheaper, and therefore it is in our interests to place more points in C \Br, i.e. to increase k′ . When k′

is large, we see that

φk
′

√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− kp2

)
(k′ + 1)2

p3/2
∼ φk

′

√
Ap

π
+ 2A3/2

3
√
π
· (1− p)3/2
√
k′

.

The right-hand side of the above is minimized at

k
′

= 1
32/3 ·

A2/3(1− p)
p1/3φ2/3 ,

at which point we find that

φk
′

√
Ap

π
+ 2A3/2

3
√
π
· (1− p)3/2
√
k′

= φ1/331/3A7/6p1/6(1− p)√
π

which is maximized at p = 1/7 (it is in our interests to select a value of p that maximizes the above expression because
we want our lower bound to be as tight as possible). By this very reasoning, we also find that as φ→ 0, the lower bound
satisfies

φk
′

√
Ap

π
+ A3/2

3
√
π
·

(√
p(k′ + 1)− k′p2 − p

)2 (
p+ 2

√
p(k′ + 1)− k′p2

)
(k′ + 1)2

p3/2
∼ 6 ·

√
7 · 211/3A7/6

49
√
π

· φ1/3 .

This proportionality to A7/6φ1/3 was also present in our asymptotic analysis in Section 2.3; the difference is that the
bound derived in Theorem 12 holds for any input parameters whereas the result of Theorem 5 holds only in the limiting
case where φ/ψ → 0.

The next two bounds in Theorems 15 and 17 are useful when the input polygon C is “skinny” or when φ/ψ is large;
as such, they do not have a counterpart in the asymptotic result of Part I of this paper.

Theorem 15. Suppose that X = {x1, . . . , xk} is a set of points in a convex polygon C with area A, which is itself contained
in a minimum bounding box �C of dimensions w × h. Then

φ SN(X) +ψ FW(X,C) ≥ φk
′
· Ap2h +

(√
16h2 + 4A(1− p)π(k′ + 1)− 4h

)2 (
2
√

16h2 + 4A(1− p)π(k′ + 1) + 4h
)

24π2(k′ + 1)2 , (28)

where p = 1/4 and

k
′

= max
{

0 , 31/3A1/3

π1/3 · h
2/3

φ2/3 −
8 · 32/3

3π2/3A1/3 ·
h4/3

φ1/3 − 1
}
.

Proof. See Section C of the Online Supplement.

Remark 16. Using the same reasoning as in Remark 14, we can show that, as max{φ, h} → 0, the lower bound satisfies

φk
′
· Ap2h +

(√
16h2 + 4A(1− p)π(k′ + 1)− 4h

)2 (
2
√

16h2 + 4A(1− p)π(k′ + 1) + 4h
)

24π2(k′ + 1)2 ∼ 34/3A4/3

8π1/3 · φ
1/3

h1/3 −
A

8 ·
φ

h
.

Theorem 17. Suppose that X = {x1, . . . , xk} is a set of points in a convex polygon C with area A, which is itself contained
in a minimum bounding box �C of dimensions w × h. Then for any p ∈ (0, 1), we have

φ SN(X) + FW(X,C) ≥ φk
′
· Ap2h + A2(1− p)2

4h(k′ + 1)
where

k
′

= max
{√

A(1− p)√
2pφ

− 1 , 0
}
. (29)
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Proof. See Section D of the Online Supplement.

Remark 18. Substituting k′ , the lower bound can be expressed equivalently as

φk
′
· Ap2h + A2(1− p)2

4h(k′ + 1) = (2A)3/2(1− p)
√
pφ− 2Apφ

4h .

6.2 Upper bounds
We begin this section by defining a function H(A,w, h), which we will use in all of the forthcoming backbone network
topologies, which is an upper bound on the Fermat-Weber value of a convex region with area A contained in a box of
dimensions w × h:

Theorem 19. Suppose that C is a convex region with area A in a rectangle R having dimensions w× h, with w ≥ h. We
have

FW(C) ≤ H(A,w, h) :=


[

log
(

h+
√

w2+h2

wa+w
√

1+a2

)
−a
√

1+a2
]

w3
12 +
[

log
(

bw+b
√

w2+h2

h+h
√

b2+1

)
−
√

b2+1
b2

]
h3
12 + wh

√
w2+h2
6 if A < wh− h

2
√
w2 − h2

log
(

h+
√

w2+h2
w

)
·w3

12 +
[

log
(

cw+c
√

w2+h2

h+h
√

c2+1

)
−
√

1+c2
c2

]
h3
12 + 1

6wh
√
w2+h2 otherwise ,

where

a =
w3h− wh3 − 2(wh−A)

√
(w2 + h2)2 − 8hwA+ 4A2

2Awh− 2w2h2 − w2
√

(w2 + h2)2 − 8hwA+ 4A2

b = 2(wh3 −Ah2) + wh
√
h4 + 2w2h2 + w4 − 8Awh+ 4A2

w4 + 3w2h2 − 8Awh+ 4A2

c = h2

2(wh−A) .

Proof. See Section E of the Online Supplement.

Remark 20. It is not hard to show that, if we fix the product wh, then as h/w → 0, we have

H(A,w, h) ∼ 2
3Aw −

1
12w

2h− 1
3 ·

A2

h
(30)

for all A (see the end of Section E of the Online Supplement). It can also be shown that, for fixed w and h, the function
H(A,w, h) is concave in A, and that the function H(A, 1/h, h) is decreasing in h whenever h ≤ 1.

Definition 21. The aspect ratio of a rectangle R, written AR(R), is the ratio of the longer side of R to the shorter side.

Before defining the appropriate values of k that should be passed to Algorithm 2 to solve problem (25), we find it
useful to state four claims regarding Algorithms 1 and 2 which are easy to verify:
Claim 22. Suppose that R is a box of dimensions w × h, where w ≥ h, and that {R1, . . . , Rk} = RectanglePartition(R, k)
is the output of Algorithm 1. If k ≥ w/3h, then we have AR(Ri) ≤ 3 for all sub-rectangles Ri. If k < w/3h, then
AR(Ri) = w/hk for all Ri.

Proof. See Section F of the Online Supplement.

Claim 23. Suppose that R is a box of dimensions w × h, where w ≥ h, and that {R1, . . . , Rk} = RectanglePartition(R, k)
is the output of Algorithm 1. If k ≤ 2w/h, then all sub-rectangles Ri are identical, with width w/k and height h.
BBN(·) ∈ {Steiner(·),MST(·),TSP(·),SN(·),CG(·)}

Proof. Obvious by inspection.

28



Claim 24. Suppose that C is a convex polygon and {R1, . . . , Rk} = RectanglePartition(�C, k) is the output of Algorithm 1
applied to�C. Further suppose that {c1, . . . , ck} is the set of centers of the rectangles {R1, . . . , Rk} and that {x1, . . . , xk} =
ApproxFW(C, k) is the output of Algorithm 2. Then FW({c1, . . . , ck}, C) ≥ FW({x1, . . . , xk}, C) and BBN({c1, . . . , ck}) ≥
BBN({x1, . . . , xk}) for any of the five backbone network configurations under consideration.

Proof. It is clear from Algorithm 2 that we only have ci 6= xi if ci /∈ C, so that xi is the projection of ci on C. It is
a well-known fact [48] of convex analysis that projection operators onto closed convex sets are nonexpansive, i.e. that if
PC(x) denotes the projection of x onto a convex set C, then ||x− y|| ≥ ||PC(x)− PC(y)||. The above claim immediately
follows from this fact.

Claim 24 is helpful to us because it allows us to assume, in our upper bounding analysis below, that pi = ci for
all i ∈ {1, . . . , k}, because the case where ci 6= pi leads to our using a projection operator which can only decrease our
objective function (25).
Claim 25. Suppose that C is a convex polygon whose bounding box has dimensions (w = 1/h) × h, where w ≥ h, and
that {x1, . . . , xk} = ApproxFW(C, k) is the output of Algorithm 2. Then if k ≥ w/3h, we have FW(X,C) ≤ α/

√
k, where

α = H(A,
√

3, 1/
√

3).

Proof. As in Claim 22, we know that the sub-rectangles Ri that led to the points xi all have an aspect ratio of at most
3, and therefore the maximum value of FW(X,C) is attained when each of the rectangles has an aspect ratio of exactly 3
and contains area A/k (here we are using concavity of H(·) in its first argument which we observed in Remark 20). Thus,
FW(X,C) is bounded above by k ·H(A/k,

√
3/k, 1/

√
3k) = k · (H(A,

√
3, 1/
√

3)/k3/2) = α/
√
k.

Using the preceding results we can now present our approximation algorithm HubPlacement for placing hubs so as
to minimize (25), which is given in Algorithm 3. Note that Algorithm 3 simply consists of an iterated application of

Input: A convex polygon C with area A ∈ [1/2, 1] contained in a minimum bounding box of dimensions
(diam(C) = 1/h = w)× h, a backbone network topology
BBN(·) ∈ {Steiner(·),MST(·),TSP(·),SN(·),CG(·)}, a positive scalar φ, and a positive integer k0.

Output: The locations of a set of points X∗ in C that approximately minimize, within a constant factor, the
objective function

F (X) = φBBN(X) + FW(X,C) ,

subject to the constraint that |X| ≤ k0.
Let α = H(A,

√
3, 1/
√

3);
if BBN(·) ∈ {Steiner(·),MST(·),TSP(·)} then

Set K = {1, bw/he , bα/2φe, bα/√3φe, k0};
else if BBN(·) ∈ SN(·) then

Set K =
{

1,
⌊√

8A−4A2−1
3φ

⌉
,

⌊(
α

2 FW(�C)φ

)2/3
⌉
, k0

}
;

else if BBN(·) ∈ CG(·) then

Set K =
{

1,
⌊(

8A−4A2−1
6φ

)1/3
⌉
,

⌊(
α

4 FW(�C)φ

)2/5
⌉
, k0

}
;

end
Remove from K all those elements k that are greater than k0;
for k ∈ K do

Set Xk = ApproxFW(C, k);
end
Let X∗ denote the set Xk for which F (Xk) is minimal;
return X∗;

Algorithm 3: Algorithm HubPlacement(C, φ, k0) takes as input a convex polygon C, a backbone network topology
BBN(·), a positive scalar φ, and a positive integer k0.
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Algorithm 2 for particular input values of k, which are determined by A, φ, FW(�C), and k0. (For example, when
BBN(·) = MST(·), we would use the four values K = {1, bw/he , α/2φ, k0}.) In the following section, we will explain why
our use of these particular values of k results in a constant-factor approximation algorithm for minimizing (25).

As stated previously, this paper will deal with the special case where BBN(·) = SN(·). As stated in Algorithm 3, we
consider only those elements of the set

K =
{

1,
⌊√

24A− 12A2 − 3
9φ

⌉
,

⌊
21/3α2/3

2 FW(�C)2/3φ2/3

⌉
, k0

}

that are bounded above by k0. For purposes of brevity, we will consider the case where all elements of K are at most k0,
so that our upper and lower bounds are not affected by k0; the general proof merely requires a case-by-case analysis on
the relationships between k0 and the other elements of K and can be solved using precisely the same kind of approach
we take here. See the Online Supplement of [8] for an example of how one would do this for the special case where
BBN(·) = TSP(·), for example.

Upper bound I When k = 1, it is clear that F (X) is bounded above by FW(C) ≤ H(A, 1/h, h).

Upper bound II When k =
⌊√

8A−4A2−1
3φ

⌉
, then provided that w/k ≥ h/2, we know from Claim 23 that Algorithm

1 divides �C into k identical rectangles with dimensions w/k × h and places the points X at their centers. The
backbone network cost of such a configuration is clearly

k∑
i=1
|i− (k + 1)/2| · w/k =

{
wk
4 if k is even
w(k2−1)

4k if k is odd

and the Fermat-Weber cost is at most k · H(A/k,w/k, h) (here we have used the monotonicity and concavity
properties in Remark 20). Thus, objective function (25) is at most

φ

(
k∑
i=1
|i− (k + 1)/2| · w/k

)
+ k ·H(A/k,w/k, h) . (31)

It turns out that when w/k < h/2 the case k =
⌊√

8A−4A2−1
3φ

⌉
is never optimal (we prefer upper bound III, described

below).

Upper bound III When k =
⌊(

α
2 FW(�C)φ

)2/3
⌉
, then provided that k ≥ w/3h, we are guaranteed (by Claim 22) that

all rectangles output by Algorithm 1 have an aspect ratio not exceeding 3, and therefore FW(X,C) ≤ α/
√
k as in

Claim 25. We can also show that SN(X) ≤ k · FW(�C): if we assume that �C is oriented so that its center is the
origin, then letting Z denote a point selected uniformly at random in �C, it is obvious that E(||Z||) = FW(�C)
(since Area(�C) = 1). We can also think of Z as being generated by uniformly selecting one of the rectangles Ri
output by Algorithm 1, then sampling a point Zi uniformly within Ri. It follows that

k · FW(�C) = k ·E(||Z||)
= k ·E (E (‖Zi‖ | Zi ∈ Ri))

≥ k ·E (ci) = k ·

(
1
k

k∑
i=1
||ci||

)
= SN(X)

where we have applied the law of iterated expectation and Jensen’s inequality. Thus, we we find that objective
function (25) is at most

φk · FW(�C) + α/
√
k .
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By differentiating with respect to k and looking at the highest order terms we can verify that as φ → 0, the above
expression approaches

3α2/3

22/3 FW(�C)1/3φ1/3 .

We do not use this upper bound when k < w/3h because Claim 22, and therefore Claim 25, does not apply (we must
use either upper bound I or II).

7 Proof of approximation bounds
We note here that the preceding upper and lower bounds for the objective function φ SN(X) + FW(X,C) depend only on
the input parameters A, h, and φ. Thus, in order to prove that Algorithm 3 minimizes (25) within a constant factor, it
will suffice to show that for any triplet (A, h, φ) ∈ [1/2, 1] × (0, 1] × (0,∞), there exists an upper bound UB and a lower
bound LB such that UB/LB is less than some constant factor. In our particular case we will show that UB/LB ≤ 5.86. In
what follows we will decompose the domain [1/2, 1]× (0, 1]× (0,∞) into a collection of sub-domains that we will address
individually. Alternatively, for fixed A, one can visualize the approximation ratio over varying h and φ by plotting the
ratio of the minimum of upper bounds I, II, and III to the maximum of the lower bounds; see Figure 11, for example.

7.1 Case-by-case analysis of the input domain
Throughout this section we set ε1 = 1/10 and ε2 = 1/4.

• Suppose that φ > 1. Then it is easy to see that upper bound I of FW(C) ≤ H(A, 1/h, h) is always within a factor
of 5.5 of the lower bound of Theorem 17 with p = 1/5; the approximation ratio is

UB
LB = H(A, 1/h, h)

4
√

10A3/2
√
φ−5Aφ

50h

< 5.5

for A ∈ [1/2, 1], h ∈ (0, 1), and φ > 1.

• Suppose that (h, φ) ∈ (0, ε1] × (0, ε2]. Consider the curves in this box of the form {(h, φ) : φ = ch4} for c ≥ 0.05.
If we use upper bound II, then it is not hard to see that, as k is large (since φ is small), the aspect ratios of the
rectangles Ri are all approximately constant along the curve. The upper bound for our objective function is then
approximately

φ

(
k∑
i=1
|i− (k + 1)/2| · w/k

)
+ k ·H(A/k,w/k, h) ≈

[√
24A− 12A2 − 3

12
√
c+

(
3

8A− 4A2 − 1

)1/4
α
′
c1/4

]
h

where we define

α
′

= H

(
A,

(
3c

8A− 4A2 − 1

)1/4
,

(
8A− 4A2 − 1

3c

)1/4)
.

Using the lower bound of Theorem 17 with p = 1/3, the approximation ratio is therefore

UB
LB =

[√
24A−12A2−3

12
√
c+

(
3

8A−4A2−1

)1/4
α
′
c1/4

]
h

√
6A3/2

√
φ

9h − φA
6h

=

[√
24A−12A2−3

12
√
c+

(
3

8A−4A2−1

)1/4
α
′
c1/4

]
h

√
6A3/2√ch

9 − Ach3

6

≈
3
√

24A−12A2−3
4

√
c+ 9

(
3

8A−4A2−1

)1/4
α
′
c1/4

√
6A3/2√c
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which is bounded above by 5.5 for c ≥ 0.05 and A ∈ [1/2, 1]. Conversely, if c < 0.05, then it is easy to verify that
k =

⌊
21/3α2/3

2 FW(�C)2/3φ2/3

⌉
≥ w/3h, so we can apply upper bound III. Since k is large and h and φ are both small, the

upper bound is approximately
3α2/3

22/3 FW(�C)1/3φ1/3 ≈ 3 · ˙22/3α2/3

4 c1/3h .

Using the lower bound of Theorem 15, the approximation ratio is therefore

UB
LB =

3· ˙22/3α2/3

4 c1/3h

34/3A4/3

8π1/3 · φ1/3

h1/3 − A
8 ·

φ
h

=
3· ˙22/3α2/3

4 c1/3h

34/3A4/3

8π1/3 · (ch4)1/3

h1/3 − A
8 ·

ch4

h

≈ 25/332/3π1/3α2/3

3A4/3 < 4

for A ∈ [1/2, 1].

• Suppose that (h, φ) ∈ [ε1, 1]× (0, ε2]. As before, the upper bound is approximately

3α2/3

22/3 FW(�C)1/3φ1/3 ≈ 3 · ˙22/3α2/3

4 c1/3h

and the lower bound of Theorem 12 is approximately

6 ·
√

7 · 211/3A7/6

49
√
π

· φ1/3

so that
UB
LB =

3α2/3

22/3 FW(�C)1/3φ1/3

6·
√

7·211/3A7/6

49
√
π

· φ1/3
=

3α2/3

22/3 49
√
π FW(�C)1/3

6 ·
√

7 · 211/3A7/6
< 5

since h ≥ ε1 (this allows us to bound the term FW(�C)1/3).

• Suppose that (h, φ) ∈ (0, ε1]× [ε2, 1]). We can use upper bound I of FW(C) ≤ H(A, 1/h, h) and the lower bound of
Theorem 17 with p = 1/5 so that the approximation ratio is

UB
LB = H(A, 1/h, h)

4
√

10A3/2
√
φ−5Aφ

50h

∼
2
3A/h−

1
12h −

1
3 ·

A2

h

4
√

10A3/2
√
φ−5Aφ

50h

= 100A/3− 50A2/3− 25/6
4
√

10A3/2√φ− 5Aφ
≤ 5.2

for φ ≥ ε2 and A ∈ [1/2, 1].

• The final sub-domain is (h, φ) ∈ [ε1, 1] × [ε2, 1]. This domain is compact and closed and therefore we can verify
that the approximation ratio is bounded above by 5.86 using a computational branch-and-bound procedure (one can
easily verify this for the cases A ∈ {1/2, 3/4, 1}, for example, by inspecting Figure 11).

7.2 Summary table
Table 4 lists the values of k that we use in Algorithm 3 for the various backbone network topologies and the resulting
approximation ratios.

8 Conclusions
We have considered a continuous hub-and-spoke location problem in the plane in which our objective is to balance the fixed
costs and transportation costs in providing service to a planar region R. One natural extension to the model proposed
here would be to consider a transport map Γ : R×R→ R such that Γ(x, y) denotes the amount of “travel” in the region
between points x and y; rather than charging a cost φBBN(X), we would then instead charge a cost that depended on
the amount of flow that would occur over each edge of the backbone network, given the map Γ(x, y). It appears that even
if the map Γ(·) is constant, the resulting problem brings with it a considerable set of challenges.
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(a) A = 1/2 (b) A = 3/4 (c) A = 1

Figure 11: Surface plots of the approximation ratio for h ∈ (0, 1], φ ∈ (0, 1], and A ∈ {1/2, 3/4, 1}.

Backbone network Values of k Approximation ratio

Steiner, MST 1,
⌊
1/h2⌉ , bα/√3φe 3.12

TSP 1,
⌊
1/h2⌉ , bα/2φe 3.70

Star network 1,
⌊√

8A−4A2−1
3φ

⌉
,

⌊(
α

2 FW(�C)φ

)2/3
⌉

5.86

Complete graph 1,
⌊(

8A−4A2−1
6φ

)1/3
⌉
,

⌊(
α

4 FW(�C)φ

)2/5
⌉

7.69

Table 4: Values of k that Algorithm 3 inputs to Algorithm 2 in order to achieve the approximation guarantees for (25)
shown.
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(a) (b)

Figure 12: The neighborhoods Nε(T ) for two trees of the same length, a line segment (12a) and a generic tree (12b).

Online supplement to “Euclidean hub-and-spoke
networks”
A Proof of Lemma 3
Lemma 3 is itself a consequence of two simple claims, which we will now prove:
Claim 26. For any tree T of length ` and any ε, we have Area (Nε (T )) ≤ πε2 +2ε`, which is tight when T is a line segment.

Proof. We prove this by induction on the number of line segments k that comprise T . The base case k = 1 is simply
a line segment for which Nε (T ) is shown in Figure 12a. To complete the induction, consider a tree consisting of k line
segments, which we can think of as the union of a tree T ′ with length `

′ with k − 1 line segments, and a line segment
s of length `

′′ such that ` = `
′ + `

′′ . Let T ′ ∪ s = T denote their union. Since T ′ and s are joined at a point, the
neighborhoods Nε(T

′) and Nε(s) must both contain a ball of radius ε about their point of intersection; in other words, we
have Area(Nε(T

′) ∩Nε (s)) ≥ πε2 and therefore we find that

Area (Nε (T )) = Area
(
Nε

(
T
′
∪ s
))

= Area
(
Nε

(
T
′
)
∪Nε (s)

)
= Area

(
Nε

(
T
′
))

︸ ︷︷ ︸
≤πε2+2ε`′

+ Area (Nε (s))︸ ︷︷ ︸
≤πε2+2ε`′′

−Area
(
Nε

(
T
′
)
∩Nε (s)

)
︸ ︷︷ ︸

≥πε2

and the desired result follows.

Claim 27. Let T denote a tree with length ` and let R denote a planar region with area A containing T . Further let L denote
a line segment with length ` and let εmax

L be chosen so that Area(Nεmax
L

(L)) = A. Then FW(L,Nεmax
L

(L)) ≤ FW(T,R);
in other words, for a given area A, among all trees with fixed length `, a line segment and its appropriately-chosen
neighborhood have the minimal Fermat-Weber value.

Proof. Assume without loss of generality that A = 1 and let εmax
T be chosen so that Area(Nεmax

T
(T )) = A = 1. It is obvious

that FW(T,Nεmax
T

(T )) ≤ FW(T,R) for all regions R with area 1. Thus it will suffice to show that FW(T,Nεmax
T

(T )) ≥
FW(L,Nεmax

L
(L)). Consider a random variable εT defined by setting εT := D (z, T ), where z is a random variable sampled

uniformly from Nεmax
T

(T ), and define εL similarly. Note that the cumulative distribution functions for εT and εL are given
by

FT (εT ) = min {1,Area (NεT
(T ))}

FL(εL) = min {1,Area (NεL
(L))} .

By Claim 26, for any ε > 0, we have FL(ε) ≥ FT (ε). Next note that

E(εL) =
ˆ ∞

0
1− FL(ε) dε ≤

ˆ ∞
0

1− FT (ε) dε = E(εT ) ,
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a well-known result of first-order stochastic dominance (see page 249 of [38], for instance). The proof is complete by
observing that by definition, E(εL) = FW(L,NεL

(L)) and E(εT ) = FW(T,NεT
(T )).

Having established the two preceding claims, we next note that for any line segment L with length ` and any ε, we
can compute

Area(Nε(L)) = πε2 + 2ε` (32)

FW (L,Nε (L)) = 2πε3

3 + ε2` .

Solving equation (32) in terms of ε > 0 and substituting, we find that

FW (L,Nε (L)) =
−2`3 − 3π`Area (Nε (L)) +

(
2`2 + 2πArea (Nε (L))

)√
`2 + πArea (Nε (L))

3π2 .

We can easily show that the above quantity is bounded below by 2A2

8`+3
√
πA

, where A = Area(Nε (L)). This is equivalent
to showing that [

2
(
`2 + πA

)3/2 − 3πA`− 2`3
] (

8`+ 3
√
πA
)

6π2A2 ≥ 1 .

Defining t := A/`2 so that A = `2t, the above expression is equivalent to[
(2 + 2πt)

√
1 + πt− 3πt− 2

] (
8 + 3

√
πt
)

6π2t2
≥ 1

which is easily verified using single-variable calculus. Our proof of Lemma 3 is complete; if we let T be a tree contained
in a region R with area A, then

FW (T,C) ≥ FW
(
T,Nεmax

T
(T )
)
≥ FW

(
L,Nεmax

L
(L)
)
≥ 2A2

8`+ 3
√
πA

where length(T ) = length(L) and εmax
T and εmax

L are chosen so as to induce the appropriate areas.

B Proof that length((∂Br) ∩ C) ≤ 2
√
πAp

Let C, Br, A, and p be as in the proof of Theorem 12, and define ` = length((∂Br)∩C). As Figure 13 shows, it is clearly
always the case that `r/2 ≤ Ap, or equivalently that ` ≤ 2Ap/r. It is of course always true that Ap ≤ πr2, or equivalently
that r ≥

√
Ap/π. Combining these two facts we see that

` ≤ 2Ap
r
≤ 2Ap√

Ap/π
= 2
√
πAp

as desired.

C Proof of Theorem 15
Proof. As in our proof of Theorem 12, we suppose without loss of generality that x̄ is the origin, and define Br about
the origin as before. However, we now note that, since C is contained in a “slab” of height h, it must be the case that
Area(Br ∩ C) ≤ Area(Br ∩�C) ≤ 2hr (see Figure 14). We again consider the lower bound for SN(X) defined by

SNLBr(X) =
|X|∑
i=1

{
0 if ||xi|| ≤ r
r otherwise
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r
Br

C

Figure 13: A convex polygon C intersecting a ball Br. In the above diagram, we have length((∂Br)∩C) = `1 +`2 +`3 = `.
The area of the hatched region, which is equal to /̀2πr ·πr2 = `r/2, is clearly a lower bound on the area Ap = Area(C∩Br)
of the shaded region.

Br

x{h

Figure 14: The setup for our proof of Theorem 15.
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and look at the related problem of minimizing φSNLBr(X) + FW(X,C), or equivalently

φr|X \Br|+ FW(X,C \Br) .

We also note now that length((∂Br)∩C) ≤ 4h (again, see Figure 14), and therefore, applying Lemma 13 with A′ = A(1−p)
and `′ = 4h, we find that

FW(X,C) ≥

(√
16h2 + 4A(1− p)π(k′ + 1)− 4h

)2 (
2
√

16h2 + 4A(1− p)π(k′ + 1) + 4h
)

24π2(k′ + 1)2

and, using the fact that r ≥ Ap/2h, we find that for any point set X,

φSN(X) + FW(X,C) ≥ φk
′
· Ap2h +

(√
16h2 + 4A(1− p)π(k′ + 1)− 4h

)2 (
2
√

16h2 + 4A(1− p)π(k′ + 1) + 4h
)

24π2(k′ + 1)2 .

We can again remove the dependency of the right-hand side on X by taking a minimum over all k′ :

φSN(X)+FW(X,C) ≥ min
k′≥0

φk′ · Ap2h +

(√
16h2 + 4A(1− p)π(k′ + 1)− 4h

)2 (
2
√

16h2 + 4A(1− p)π(k′ + 1) + 4h
)

24π2(k′ + 1)2

 .

We then set p = 1/4 using the same reasoning as in Remark 14; plugging this value in and differentiating, we find that
the optimal value of k′ that minimizes the right-hand side of the above is

k
′

= max
{

0 , 31/3A1/3

π1/3 · h
2/3

φ2/3 −
8 · 32/3

3π2/3A1/3 ·
h4/3

φ1/3 − 1
}

which completes the proof.

D Proof of Theorem 17
Proof. Assume without loss of generality that �C is aligned with the coordinate axes and that x̄ is the origin. Let || · ||↔
denote the “horizontal norm”, i.e. if x = (x1, x2) ∈ R2, then ||x||↔ = |x1|, and note that clearly ||x||↔ ≤ ||x||. Let Br
denote a “ball” of radius r about the origin x̄ taken under the horizontal norm, so that Br is simply the “slab” between
two vertical lines at a distance of 2r apart from each other. Once again, we consider the lower bound for SN(X) defined
by

SNLBr(X) =
|X|∑
i=1

{
0 if ||xi||↔ ≤ r
r otherwise

for some radius r, and we look at the related problem of minimizing φ SNLBr(X) + FW(X,C), or equivalently

φr|X \Br|+ FW(X,C \Br) .

We also note now that length((∂Br) ∩ C) ≤ length((∂Br) ∩�C) = 2h so that Ap ≤ 2hr or equivalently r ≥ Ap/2h, where
p denotes the fraction of area of C that is contained in Br. Following the same line of reasoning as in the proof of Lemma
13, it is easy to see that

FW(X,C \Br) ≥
A2(1− p)2

4h(k′ + 1)

where k′ = |X \Br|. This is because, if we take the Fermat-Weber value of the points X under the horizontal norm (and
we assume as before that Br contains infinitely many points from X), then we again see that the Fermat-Weber value
FW(X,R) is minimal – over all possible regions R having area A′ = A(1 − p) – when R consists of k′ horizontal “balls”
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Figure 15: The worst-case regions C∗ in a given box B, for increasing values of A.

of radius ε (i.e. horizontal slabs of width 2ε) plus a neighborhood of radius ε about Br (i.e. a horizontal slab of width
2(r + ε)), where ε is chosen such that these k′ balls and the neighborhood have area A′ , i.e. ε = A(1−p)/2h(k

′
+1). The

Fermat-Weber value of such a region R, under the horizontal norm, is precisely

(k
′
+ 1)ε2h = A2(1− p)2

4h(k′ + 1)

as desired.
We now consider the problem of choosing k′ to minimize the sum of these lower bounds, i.e.

φSNLBr(X) + FW(X,C) ≥ φk
′
· Ap2h + A2(1− p)2

4h(k′ + 1) ,

which completes the proof because the above expression is minimized precisely at

k
′

= max
{√

A(1− p)√
2pφ

− 1 , 0
}
.

E Proof of Theorem 19
Definition 28. A region C is said to be star convex at the point p if the line segment from p to any point x ∈ C is itself
contained in C. Similarly, the star convex hull of a region S at the point p is the smallest star-convex region at the point
p that contains S (i.e. the union of all segments between points x ∈ S and p).

Lemma 29. Let B be a box of dimensions w×h centered at the origin. The region C∗ that solves the infinite-dimensional
optimization problem

minimize
C

FW (C) s.t. (33)

C ⊆ B

Area (C) = A

C 3 (0, 0)
C is star convex at (0, 0)

is the star convex hull of B\D, where D is an appropriately chosen disk centered at the origin, as indicated in Figure 15.
Furthermore for fixed w and h, the function Φ (A) = FW (C∗) (i.e. the maximal value of (33)) is monotonically increasing
and concave.

Proof sketch. This follows from a standard argument where we consider the integer (or linear) program obtained by
discretizing problem (33) using polar coordinates. See Figure 16. Concavity of Φ (A) follows by observing that we build
our optimal solution by adding sectors containing points that are strictly closer than the points in the sector that preceded
them.
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Figure 16: In the discretization above, our variables are set up in such a way that the star convexity constraint is equivalent
to setting zi(j+1) ≤ zij for all j. Since we are finding an upper bound of the Fermat-Weber value of a star-convex object in
the given box, our objective is to maximize

∑
i,j dijzij subject to the constraints that

∑
i,j aijzij = A, zi(j+1) ≤ zij ∀i, j,

and zij ≥ 0 ∀i, j, where dij denotes the distance from the origin to cell ij and aij denotes the area of cell ij. By the nature
of the constraints it is clear that we may assume that z∗i(j+1) = z∗ij at optimality since the distance from cell ij to the
origin increases with j. The diagram above suggests a linear programming formulation, where the lighter regions indicate
fractional solutions.
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Figure 17: The area of the shaded region is wh− h
2
√
w2 − h2.

In order to obtain an upper bound on the output of Algorithm 2, we consider the infinite-dimensional optimization
problem of choosing the worst-case convex region C that solves the problem

minimize
C

FW (C) s.t.

C ⊆ B

Area (C) = A

C 3 (0, 0)
C is convex.

By relaxing the convexity constraint with star convexity about the origin, the problem becomes equivalent to problem
(33); we can use it to determine an upper bound on FW(C).

Following Lemma 29 we see that the worst-case star-convex region C∗ takes the form shown in Figure 15. If A ≥
wh− h

2
√
w2 − h2, then the optimal solution consists of two components (rather than 4) as shown in Figure 17. The bound

given in Theorem 19 is precisely the Fermat-Weber value
˜
C∗
||x|| dA obtained by analytic integration. We can prove

Remark 20 by taking the Fermat-Weber values of C∗ under the `1 and `∞ norms instead (which have a much simpler
closed form) and observing that ¨

C∗
||x||1 dA ∼

2
3Aw −

1
12w

2h− 1
3 ·

A2

h

and ¨
C∗
||x||∞ dA ∼ 2

3Aw −
1
12w

2h− 1
3 ·

A2

h

from which (30) holds by the squeeze theorem.

F Proof of Claim 22
To prove Claim 22 it is sufficient to show that the following lemma holds:

Lemma 30. Suppose that R̃ ⊆ �C is an intermediate rectangle obtained throughout Algorithm 1, which is further
subdivided into R̃′ and R̃′′ ; if AR(R̃) ≤ 3, then AR(R̃′) ≤ 3 and AR(R̃′′) ≤ 3.

Proof. Assume that AR(R̃) ≤ 3 and assume without loss of generality that width(R̃) ≥ height(R̃), so that height(R̃′) =
height(R̃). Since R̃ is always divided into proportions as close as 1/2 as possible, we have

width(R̃)/3 ≤ width(R̃
′
) ≤ 2 width(R̃)/3
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and, dividing by height(R̃), we find that

width(R̃)
3 height(R̃)

≤ width(R̃′)
height(R̃′)

= width(R̃′)
height(R̃)

≤ 2 width(R̃)
3 height(R̃)

≤ 2

so that width(R̃′)/ height(R̃′) ≤ 2. Taking the reciprocal of this expression and observing that 3 ≥ 3 height(R̃)/width(R̃)
since width(R̃) ≥ height(R̃), we have

3 ≥ 3 height(R̃)
width(R̃)

≥ height(R̃′)
width(R̃′)

= height(R̃)
width(R̃′)

≥ 3 height(R̃)
2 width(R̃)

so that 3 ≥ height(R̃′)/width(R̃′). This same argument clearly applies to R̃′′ as well, which completes the proof.
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