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The EOQ formula

Given fixed costs K, demand rate a, and holding cost h, the optimal order quantity
Q∗ is equal to

Q∗ =

√
2aK
h

;

one obtains this by minimizing the cost per unit time, which is

aK
Q

+ ac+
hQ
2
,

and gives an optimal cost of

aK
Q

+ ac+
hQ
2

∣∣∣∣
Q=

√
2aK/h

=
√
2aKh+ ac
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An “EOQ formula” for TSP

Consider n points distributed uniformly in the unit square S :
Let m be an even integer, and suppose that we “zig-zag” across S m times,
which has length ≤ m+ 2
Each point is at most 1

2m away from this path, thus we can round trip to each
point with cost ≤ 1

m
The cost of this tour is at most

m+ 2+
n
m

=⇒ OPT = 2
√
n+ 2
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Beardwood-Halton-Hammersley Theorem (uniform case)

Theorem

Let {Xi} be a sequence of independent uniform samples on a compact region R ⊂ R2

with area 1. Then with probability one,

lim
N→∞

TSP(X1, . . . ,XN)√
N

= βTSP

where TSP(X1, . . . ,XN) denotes the length of a TSP tour of points X1, . . . ,XN and βTSP is
a constant between 0.6250 and 0.9204.

This says that we can approximate the length of a tour as βTSP
√
N
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Beardwood-Halton-Hammersley Theorem

Theorem

Let {Xi} be a sequence of i.i.d. samples from an absolutely continuous probability density
functionf(·) on a compact region R ⊂ R2. Then with probability one,

lim
N→∞

TSP(X1, . . . ,XN)√
N

= βTSP

∫∫
R

√
f(x) dA

where TSP(X1, . . . ,XN) denotes the length of a TSP tour of points X1, . . . ,XN and βTSP is
a constant between 0.6250 and 0.9204.

This says that we can approximate the length of a tour as βTSP
√
N
∫∫

R

√
f(x) dA

We also see that the uniform distribution maximizes βTSP
∫∫

R

√
f(x) dA over all

distributions f(·), i.e. “clustering is good”
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Outline

The generalized TSP and delivery services

Package delivery with drones
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The GTSP: Motivating example

Question
What happens to the carbon footprint of a city when its inhabitants start shopping
online?
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Intuition

Several things happen at once:
Fewer trips by locals

More work for delivery trucks, but on an economy of scale due to infrastructure
The key issue: transportation that used to be local now becomes global
Is this always good? Do households have an economy of scale of their own?
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Standard model
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Standard model

Shopping can be part of a wider combined trip and involve only a minor
detour. We assume that where a shopper undertakes trip chaining, the shopping
component of the trip makes up a quarter of the overall total mileage.

–A. C. McKinnon and A. Woodburn

Generally, social network members will not participate or choose the burden
of pickup if they have to go to a pickup point solely for the purpose of making a
pickup for another person. Pickup trips for social network actors can be regarded
as a chain event and is a determining variable. We assumed a 100% trip chain
to additional mileage for pickup in both PLS and SPLS – in other words, the entire
detour distance for pickup is attributed to the package. By contrast, previous
research has applied a 0% trip chain effect for pickup.

–K. Suh, T. Smith, and M. Linhoff
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A simple model

City has area 1 and population N people

Each person has n errands to do daily (bank, groceries, etc.)
For each errand, there are k places to do these things

Each person’s daily route consists of a generalized TSP tour of the sets of
points X1, . . . ,Xn
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The generalized TSP
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Here n = 6 and k = 4
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Warehouse application

Is it more efficient to stock the same good in multiple locations in a warehouse?
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The generalized TSP

What can we say about the GTSP? How long is it?

There are two limiting cases that are interesting, either n → ∞ or k → ∞
Our “gold standard” would be the BHH Theorem

John Gunnar Carlsson, USC ISE GTSP and trip chaining January 7, 2016 13 / 40



The generalized TSP, limiting case 1

Theorem
Let X1, . . . ,Xn denote n sets of points, each having cardinality k, and suppose that all nk
points are distributed independently and uniformly at random in a region R having area 1.
Assume that k ≥ 1 is fixed. Then the expected length of a generalized TSP tour of
X1, . . . ,Xn satisfies

EGTSP(X1, . . . ,Xn) ∈ O(
√

n/k)

EGTSP(X1, . . . ,Xn) ∈ Ω(
√

n/k)

as n → ∞.
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Upper bound proof sketch

The path zig-zags m times, thus the length is m+ 2; here m = 8
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Upper bound proof sketch

Expected detour to visit a point is

1/(m−1)

k+ 1
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Upper bound proof sketch

Total expected distance is

m+ 2︸ ︷︷ ︸
original path

+ n ·
1/(m−1)

k+ 1︸ ︷︷ ︸
diversions

=⇒ m∗ ≈
√

n
k+ 1

=⇒ Total length ∝
√

n
k
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Lower bound lemma

Discretize everything, and deal with a lattice:

Theorem

Let L ⊂ Z2 denote an m×m square integer lattice in the plane, let n ≥ 2 be an integer,
and let ℓ > 0. Let P denote the set of all paths of the form {x1, . . . , xn}, with xi ∈ L for
each i, and whose length does not exceed ℓ. Then

|P| ≤ m2 ·
(
ℓ+ n− 1
n− 1

)
·
(

8ℓ
n− 1

)n−1

.
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The generalized TSP, limiting case 2

Theorem
Let X1, . . . ,Xn denote n sets of points, each having cardinality k, and suppose that all nk
points are distributed independently and uniformly at random in a region R having area 1.
Assume that n ≥ 2 is fixed. Then the expected length of a generalized TSP tour of
X1, . . . ,Xn satisfies

EGTSP(X1, . . . ,Xn) ∈ O
(√

n
kn/(n−1) · (n

2 log k+ log n)
1

2(n−1)

)
EGTSP(X1, . . . ,Xn) ∈ Ω

(√
n

kn/(n−1)

)
as k → ∞.

This appears more relevant to us because we usually have k ≫ n; numerical
simulations suggest

EGTSP(X1, . . . ,Xn) ≈ α
√

n/kn/(n−1) = 0.29
√

n/kn/(n−1)
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A simple example

City has area 1 and population N people
Each person has n errands to do daily (bank, groceries, etc.):

A luddite performs all of their tasks by themselves and drives to each of the n
locations
An early adopter visits n− 1 locations and uses a delivery service for the
remaining task

There are pN early adopters in the city and (1− p)N luddites
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Emissions due to luddites

Each luddite drives to n different locations, with k choices of each, thus their
contribution is:

ψ(1− p)Nα
√

n/kn/(n−1)

where ψ is the CO2/mile of their cars (we’ll use ψ = 350 grams CO2
mile )

Each early adopter drives to n− 1 different locations, with k choices of each,
and there is also a delivery truck that visits all early adopters with a TSP, thus
their contribution is

ϕβ2
√

pN︸ ︷︷ ︸
delivery truck

+ψpNα
√

(n− 1)/k(n−1)/(n−2)

where ϕ is the CO2/mile of a delivery truck (we’ll use ϕ = 1303 grams CO2
mile )

The overall carbon footprint is approximated by the sum of these terms:

ψ(1− p)Nα
√

n/kn/(n−1) + ϕβ2
√

pN+ ψpNα
√
(n− 1)/k(n−1)/(n−2)
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Carbon footprint

Los Angeles-Long Beach-Anaheim, CA Metro Area
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Critical thresholds

p∗

Region k N n = 3 n = 4 n = 5 n = 6 n = 7
Los Angeles CA 3358 13052921 > 1 > 1 > 1 > 1 > 1
Salt Lake City, UT 192 1123712 > 1 > 1 > 1 0.98 0.96
Tulsa, OK 136 951880 > 1 0.98 0.81 0.76 0.75
Albuquerque, NM 119 901700 > 1 0.86 0.72 0.68 0.68
El Paso, TX 138 830735 > 1 > 1 0.95 0.89 0.88
Colorado Springs, CO 83 668353 > 1 0.72 0.62 0.60 0.60
Boise City, ID 73 637896 0.98 0.64 0.55 0.54 0.54
Provo-Orem, UT 50 550845 0.64 0.44 0.40 0.39 0.40
Green Bay, WI 43 311098 0.90 0.64 0.59 0.58 0.60
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A model “correction”

Each person’s tour is not quite a GTSP: they have to start at their house
Let’s study GTSP({x0},X1, . . . ,Xn):

Theorem
Let X1, . . . ,Xn denote n sets of points, each having cardinality k, and suppose that all nk
points are distributed independently and uniformly at random in a region R having area 1.
Assume that n ≥ 1 is fixed. Then the expected length of a generalized TSP tour of
{x0},X1, . . . ,Xn satisfies

EGTSP({x0},X1, . . . ,Xn) ∈ O(
√

n/k ·
√

log k)

EGTSP({x0},X1, . . . ,Xn) ∈ Ω
(√

n/k
)

as k → ∞.

Numerical simulations suggest

EGTSP({x0},X1, . . . ,Xn) ≈ α
′√

n/k = 0.47
√

n/k
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Revised critical thresholds

p∗

Region k N n = 2 n = 3 n = 4 n = 5 n = 6
Los Angeles, CA 3358 13052921 0.10 0.14 0.17 0.20 0.23
Salt Lake City, UT 192 1123712 0.07 0.09 0.11 0.14 0.16
Tulsa, OK 136 951880 0.06 0.08 0.10 0.11 0.13
Albuquerque, NM 119 901700 0.06 0.07 0.09 0.11 0.12
El Paso, TX 138 830735 0.07 0.09 0.11 0.13 0.15
Colorado Springs, CO 83 668353 0.05 0.07 0.08 0.10 0.12
Boise City, ID 73 637896 0.05 0.06 0.08 0.09 0.11
Provo-Orem, UT 50 550845 0.04 0.05 0.06 0.07 0.09
Green Bay, WI 43 311098 0.06 0.08 0.09 0.11 0.13
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Drones

Many of the benefits and shortcomings of drone-based package delivery are obvious:
Very cheap per-mile cost, can operate without human intervention, unaffected
by road traffic
Extremely low carrying capacity and short travelling radius
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The “horsefly”

Developed by AMP Electric Vehicles and University of Cincinnati
Drone picks up a package from the truck, which continues on its route, and
after a successful delivery, the UAV returns to the truck to pick up the next
package
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The “horsefly routing problem”

x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

p4

p6

p1

p3

p5

p2
x6 x4

x1

x3x5

x2

minimize
x1,...,xn,σ∈Sn

n∑
i=1

max
{

1
ϕ0

∥xσ(i) − xσ(i+1)∥ ,
1
ϕ1

(
∥xσ(i) − pσ(i)∥+ ∥pσ(i) − xσ(i+1)∥

)}
p1, . . . , pn are customers; x1, . . . , xn are “launch sites”; ϕ0, ϕ1 are the speeds of
the truck and drone
Harder than TSP because we have to select launch sites
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A lower bound

x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

Exchange the summation and the max{·, ·}:

minimize
x1,...,xn,σ∈Sn

max

{
1
ϕ0

n∑
i=1

∥xσ(i) − xσ(i+1)∥ ,
2
ϕ1

n∑
i=1

∥xi − pi∥

}
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A lower bound

x6 x4

x1
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x2

p4

p6

p1

p3

p5

p2

x6 x4

x1

x3
x5

x2

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

Take the variable over all loops L, not the launch sites:

minimize
L

max

{
1
ϕ0

length(L) , 2
ϕ1

n∑
i=1

d(pi,L)

}
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A lower bound

Assume the customers follow a continuous density f:

minimize
L∈Loop(R)

max
{

1
ϕ0

length(L) , 2n
ϕ1

∫∫
R
f(x)d(x,L)dx

}
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A lower bound

Theorem

OPT(ℓ) ∼ 1
4ℓ

(∫∫
R

√
f(x) dx

)2
as ℓ→ ∞.
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A lower bound

The lower bound is

max
{

1
ϕ0

length(L∗) ,
2n
ϕ1

∫∫
R
f(x)d(x,L∗)dx

}
∼

√
n

2ϕ0ϕ1
·
∫∫

R

√
f(x) dx

as n → ∞

John Gunnar Carlsson, USC ISE GTSP and trip chaining January 7, 2016 31 / 40



An upper bound

p4

p6

p1

p3

p5

p2

x'x6

x'x4

x'x1

x'x3

x'x5

x'x2

Just replace max{·, ·} with a sum:

minimize
x1,...,xn,σ∈Sn

1
ϕ0

n∑
i=1

∥xσ(i) − xσ(i+1)∥+
2
ϕ1

n∑
i=1

∥xi − pi∥
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An upper bound

The upper bound is

1
ϕ0

n∑
i=1

∥xσ(i) − xσ(i+1)∥+
2
ϕ1

n∑
i=1

∥xi − pi∥ ∼

√
2n
ϕ0ϕ1

·
∫∫

R

√
f(x) dx

as n → ∞
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Comparison

Our upper and lower bounds are√
2n
ϕ0ϕ1

·
∫∫

R

√
f(x) dx

and √
n

2ϕ0ϕ1
·
∫∫

R

√
f(x) dx

which differ from each other by a factor of 2; thus we write

Time to perform service ≈ β′
√

n
ϕ0ϕ1

·
∫∫

R

√
f(x) dx

for some constant β′ such that 1/
√
2 ≤ β′ ≤

√
2
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How much improvement?

The BHH theorem says that if we only use a truck, then the service time will be
β

√
n

ϕ0
·
∫∫

R

√
f(x) dx

The improvement is therefore

Service time without drones
Service time with drones

≈
β

√
n

ϕ0
·
∫∫

R

√
f(x) dx

β′
√

n
ϕ0ϕ1

·
∫∫

R

√
f(x) dx

= α

√
ϕ1

ϕ0

with α = β/β′ between 0.5037 and 1.0075
If we have k drones then it’s

Service time without drones
Service time with drones

≈
β

√
n

ϕ0
·
∫∫

R

√
f(x) dx

β′
√

n
kϕ0ϕ1

·
∫∫

R

√
f(x) dx

= α

√
kϕ1

ϕ0
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Computational experiments, n = 500 points in the unit
square

k
1 2 3 5

ϕ1

1.5 1.02 0.88 0.84 0.80
2 1.00 0.93 0.86 0.78
3 0.95 0.89 0.85 0.74
5 1.02 0.92 0.83 0.80

John Gunnar Carlsson, USC ISE GTSP and trip chaining January 7, 2016 36 / 40



Computational experiments, Pasadena road network
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Computational experiments, Pasadena road network
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Thank you!

http://www-bcf.usc.edu/∼jcarlsso/
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