
A bottleneck matching problem with edge-crossing constraints

John Gunnar Carlsson∗, Benjamin Armbruster†, Haritha Bellam‡, and Rahul Saladi§

July 23, 2015

Abstract

Motivated by a crane assignment problem, we consider a Euclidean bipartite matching problem
with edge-crossing constraints. Specifically, given n red points and n blue points in the plane, we want
to construct a perfect matching between red and blue points that minimizes the length of the longest
edge, while imposing a constraint that no two edges may cross each other. We show that the problem
cannot be approximately solved within a factor less than 1.277 in polynomial time unless P = NP. We
give simple dynamic programming algorithms that solve our problem in two special cases, namely (1)
the case where the red and blue points form the vertices of a convex polygon and (2) the case where
the red points are collinear and the blue points lie to one side of the line through the red points.

1 Introduction
Our problem can be motivated by a problem in port operations. Consider an equal number of cranes
and containers in the plane. Each crane i must be assigned to a container j. However, crane i can only
be assigned to containers within a distance R from it and no two cranes may cross each other. This is
a Euclidean bipartite matching problem: given a collection of n red points {r1, . . . , rn} (the cranes) and
a collection of n blue points {b1, . . . , bn} (the containers), our goal is to find a crossing-free matching
between red-blue pairs. We call such a matching a Euclidean non-crossing bipartite matching (ENCBM)
and denote the size of the matching as the length of the longest edge, i.e. the bottleneck size. Thus
our decision problem is to determine whether an ENCBM of size at most R exists, and our optimization
problem is to find an ENCBM of minimal size. This optimization problem always has a feasible solution
because a minimum-weight Euclidean matching (i.e., a matching that minimizes the total length of the
edges) is always crossing-free [1]. In fact, it is easy to see that the minimum Euclidean matching is a
factor n approximation algorithm to our problem, as shown in Figure 1.

Previous work The problem of finding a crossing-free configuration of a graph in the plane is well-
studied. The paper [5] considers the problem of determining whether a crossing-free spanning tree, perfect
matching, or two-factor exists in a planar embedding of a graph under various restrictions on the segments
that connect points. Most closely related to our result is their proof that the problem of finding a (non-
bipartite) crossing-free perfect matching in a set of points on the lattice Z × Z is NP-hard when we
restrict ourselves to only edges of constant length d ∈ Z. The paper [7] shows that reconstructing a set
of n orthogonal line segments in the plane from their set of endpoints can be done in O (n logn) time
if the segments are allowed to cross, and if the segments are not allowed to cross, then the problem is
NP-hard. The paper [3] shows that, if we are given r red points in the plane and b blue points in the
∗Department of Industrial and Systems Engineering, University of Southern California. J. G. C. gratefully acknowledges

DARPA Young Faculty Award N66001-12-1-4218, NSF grant CMMI-1234585, and ONR grant N000141210719.
†Department of Industrial Engineering and Management Science, Northwestern University.
‡Department of Computer Science & Engineering, University of Minnesota.
§Department of Computer Science & Engineering, University of Minnesota.

1



(a) Arrangement of points (b) ENCBM of minimal size (c) Minimum-weight Euclidean match-
ing

Figure 1: A tight example showing the factor n approximation of our problem given by the minimum-
weight Euclidean matching: 1b has a maximum edge length of 1 while 1c has a maximum edge length of
(n− 2) (1 + ε).

plane, then there exists a crossing-free matching of points of the same color that matches at least 83.33%
of the points and can be found in O ((r + b) log (r + b)) time. Very recently, the paper [2] gives a factor
2
√

10 approximation algorithm for the non-bipartite version of our problem. Unfortunately, as explained
in Remark 2 and Figure 5 thereof, it does not appear that this approach lends itself to our bipartite
problem.

Detection of crossing-free subgraphs is a useful problem in several domains. The paper [9] considers
the problem of scheduling a set of cranes to cover a set of jobs when a non-crossing constraint (among
other spatial considerations) is imposed. The authors assume that the cranes and containers are located
in two parallel columns. The paper [10] extends this; proves that the scheduling problem is NP-hard;
and gives a branch-and-bound algorithm for solving it. Crossing-free configurations are relevant in VLSI
applications where the number of crossings in a matching corresponds to the number of layers required
in the layout of the circuit design [4].

New results This paper presents three new results about the problem of finding a minimum-cost
ENCBM: first, we show that it is NP-hard and cannot be approximately solved within a factor less than
1.277 in polynomial time unless P = NP. Second, we give an algorithm that finds an optimal ENCBM in
O(n3) time for the special case where the the points {r1, . . . , rn} and {b1, . . . , bn} form the vertices of a
convex polygon. Third, we give an algorithm that finds an optimal ENCBM in O(n4) time for the special
case where the points {r1, . . . , rn} lie on a line and the points {b1, . . . , bn} all lie to one side of that line.

2 Hardness
In this section we show that the decision problem “does there exist a non-crossing perfect matching of
a given red-blue configuration with all edge lengths at most R?” reduces to the planar 3-satisfiability
problem (planar 3-SAT), which is known to be NP-hard [6]. The paper [7] also uses a reduction to
planar 3-SAT on a problem dealing with non-crossing orthogonal edges linking points and no constraints
on distances. Our proof uses a similar reduction although we require a few new ideas to tie everything
together. Our main result here is given in Theorem 1, which we will state after defining the relevant
structures in the transformation.

Let us define an instance of planar 3-SAT with variables X := {x1, . . . , xm}, and clauses C :=
{c1, . . . , cn}. We denote negation with a tilde, e.g., x̃1. As in normal 3-SAT, each clause is a logical
disjunction of three variables or their negations, e.g., c1 := x1 ∨ x5 ∨ x̃7. We now define a graph whose
vertices are the variables and clauses, X ∪ C, and whose edges connect any variable and the clauses it
appears in, E := {(xi, cj)|xi ∈ cj or x̃i ∈ cj}. In planar 3-SAT, this graph, (X ∪ C,E) is planar. (The
definition of planar 3-SAT in [6] has some additional edges between the vertices in X. That this larger
graph is planar obviously implies that our smaller graph, (X ∪ C,E), is planar.)

Our reduction will produce a set of red and blue points V such that an ENCBM of size at most R
exists if and only if our planar 3-SAT instance, (X ∪ C,E) has a solution. For any set of red and blue

2



Figure 2: A collection of red and blue points V1 corresponding to the 3-SAT variable x1.

points, P , we define G(P ) as the graph formed by constructing all edges between red and blue points
with length at most R. Thus an ENCBM of size at most R exists on a set P if and only if G(P ) has
a perfect matching. We will replace any variable xi with a large collection of red and blue points Vi

arranged in a loop `i := G(Vi) with the points a distance R away from each other and alternating in
color as in Figure 2. (For now, we omit the discussion of exactly how many points are needed.) This
configuration clearly has two possible perfect matchings: one with red points matched to blue points in
the clockwise direction and one in the counterclockwise direction. We decide arbitrarily that matching
red points to blue in the clockwise direction corresponds to setting variable xi true. We treat each edge
in the planar 3-SAT between a variable, xi, and a clause cj , (xi, cj) ∈ E, like a variable whose value is xi

or x̃i if xi or x̃i appears in cj , respectively. As with a variable, we thus represent an edge in the planar
3-SAT by a collection of red and blue points Vij arranged in a loop `ij := G(Vij) with the points a distance
R away from each other and alternating in color. Again, the orientation of the perfect matching on `ij
corresponds to the truth-value of the edge. To enforce this connection we intersect the loops `i and `ij as
in Figure 3.

We now describe how loop `ij will intersect the loop `i in such a way that the matching on `i will
determine the matching on `ij . At each intersection of `ij and `i, G(Vij ∪ Vi) has two additional edges
connecting red and blue points on `i to points of the opposite color on `ij as shown in Figure 4. This
is problematic because the matching on `i does not affect the matching on `ij as shown in Figure 5.
Fortunately, we can resolve this issue by inserting two additional red points and two additional blue
points at each intersection (see Figure 6), and therefore we can assume from now on that the orientations
of all loops `ij are imposed by the orientation of `i. The key property that we exploit here is that the
two intersections occur at edges with opposite orientation; this allows us to force the orientation of `ij
to match the orientation of `i. Figure 7 shows a single loop `1, corresponding to a variable x1, and its
intersection with four loops `11, . . . , `14, each of which in turn intersects one of four clauses c1, c2, c3, c4.

Let us examine clause cj and assume without loss of generality that cj is connected by three edges to
x1, x2, and x3 in the instance of planar 3-SAT, i.e. that cj = x1 ∨ x2 ∨ x3 (or, with only a slight abuse
of notation, cj = `1j ∨ `2j ∨ `3j). Such an assumption is made without loss of generality because we can
easily handle the case where some of the entries xi are negated by positioning the loops relative to the
loop `i in an appropriate way as shown in Figure 7, in which we represent each clause cj as a rectangle �j

that intersects `ij . The construction of �j is shown in Figure 8. Each loop `1j , `2j , `3j enters �j on the
bottom side. Let Σj denote a union of three alternating red-blue loops in �j that cross each `ij . Finally,
let Πj denote an alternating red-blue loop in �j that intersects each of the three loops in Σj . Whenever
two loops intersect in this construction, we “fix” the intersection using two additional red points and two

3



Figure 3: A collection of loops representing the connections between variable x1 and its associated clauses
c1, c2, and c3.

Figure 4: Each intersection of `ij and `i, creates two additional edges in G(Vij ∪ Vi) between the two
loops.

4



(a) (b)

Figure 5: While fixing the same matching on `i, we can construct two distinct perfect matchings of the
loop `ij . This is undesirable because we want the matching on `ij to be induced by the matching on `i,
and we show how to ameliorate this issue in Figure 6 by inserting four more points into the configuration.

additional blue points as described above.
It is now easy to verify that a non-crossing matching of the points in �j exists if and only if one of

`1j , `2j , or `3j is true, as shown in Figures 8, 9, and 10. We have now almost completed the proof of our
main theorem:

Theorem 1. Let {r1, . . . , rn} denote a set of n red points in the plane, let {b1, . . . , bn} denote a set of n
blue points in the plane, and let R > 0 be a given positive number. Unless P = NP, the decision problem

“Does there exist a non-crossing perfect bipartite matching between red and blue points, all of
whose edges have length at most R?”

cannot be solved in running time polynomial in n.

Proof. To complete the proof, we merely have to show that, given an instance of planar 3-SAT, the the
number of red and blue points n that are required for our reduction depends on the number of variables
v and the number of clauses c in a polynomial fashion. A well-known theorem of Schnyder [8] says that
any planar graph with k vertices has an embedding on the k−2×k−2 grid. We thus embed our instance
of planar 3-SAT on the (c+ v − 2)× (c+ v − 2) grid. We then place the loops `i and `ij and boxes, �j ,
in the rough locations of the corresponding vertices and edges of the 3-SAT graph on the grid. Each �j

contains a constant number of red and blue points and thus has a diameter O(R). Since the edges in the
grid have length less than (c+v−2)

√
2 the loops `ij have O((c+v)/R) nodes. The loops `i corresponding

to variables are connected to at most v edges and thus contain O(v) red and blue points and has diameter
O(vR). To ensure that loops `i and boxes �j have diameter (say) 1/2, we choose R of O(1/v). Thus a
loop such as `ij , of which there are 3n, has O(v(c + v)) nodes. Therefore, the total number of red and
blue points is O((c+ v)cv).

The following two corollaries are also evident:

Corollary 2. Let {r1, . . . , rm} denote a set of m red points in the plane, let {b1, . . . , bn} denote a set
of n blue points in the plane, and let R > 0 be a given positive number. Then the problem of finding a
maximum non-crossing matching between red and blue points such that all edges have length at most R
cannot be solved in running time polynomial in n.

5



ℓ
ij

ℓ
i

R/
2

(a) (b)

(c) (d)

Figure 6: In (a), we show an intersection between two loops `i and `ij . In (b), we insert two new red
points and two new blue points strategically so as to restrict the possible matchings on `i and `ij . Since
the two newly inserted red points have only one permissible (blue) neighbor each, they must be connected
to that neighbor in a perfect matching. The non-crossing constraint eliminates the dotted edges, which in
turn implies that – as shown in (c) and (d) – the matching on `i will always force a particular matching
on `ij .

6



(a)

(b) (c)

Figure 7: An arrangement of loops corresponding to a variable x1 and four clauses c1, c2, c3, c4 containing
it. Notice that `11 must have the same matching orientation as `1 but c2, c3, and c4 have opposing
orientations to `1. This corresponds to the case where c1 uses x1 and c2, c3, and c4 use x̃1.

7



x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

Figure 8: The contents of rectangle �j , which corresponds to clause cj = `1j ∨ `2j ∨ `3j . As shown in the
middle diagram, setting `1j , `2j , and `3j false ensures that no perfect matching can exist in loop Πj . This
is because the required matching on Σj prevents a perfect matching from occurring in the shaded ellipse
shown. On the other hand, setting the three variables true allows a perfect matching to exist as shown
in the third diagram.

8



x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

Figure 9: The perfect matchings in �j corresponding to the cases where one of `1j , `2j , and `3j is true.

9



x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

x1 x2 x3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ℓ
1j

ℓ
2j

ℓ
3j

 j

 j

Figure 10: The perfect matchings in �j corresponding to the cases where two of `1j , `2j , and `3j are true.

10



Proof. The maximum matching problem is a generalization of the perfect matching problem that we have
already discussed and is therefore at least as difficult.

Corollary 3. Let {r1, . . . , rn} and {b1, . . . , bn} be as before, and consider the problem of finding the
minimal R such that there exists a non-crossing perfect bipartite matching between red and blue points
consisting of edges whose length is at most R. Then unless P = NP, the optimization problem of mini-
mizing R cannot be solved approximately within a factor less than 1.277 in polynomial running time.

Proof. We do the following: given an instance of planar 3-SAT, we will build an instance of ENCBM
such that a matching of size R exists if and only if a matching of size less than 1.277R exists. In our
previous construction, this is already the case for nodes that are not near a loop intersection (since their
next nearest neighbors are approximately a distance 3R away already). Thus, it will suffice to describe a
construction of an intersection such that our condition holds.

Precisely this construction is shown in Figure 11, which completes the proof.

3 An algorithm for the convex case
In this section we consider the special case when all points {r1, . . . , rn} and {b1, . . . , bn} form the vertices
of a convex polygon. We give an algorithm that finds an ENCBM of minimal size in O

(
n3) time. Our

algorithm actually generalizes to certain other cases as well, which we describe at the end of this section.
Let {x1, . . . , x2n} denote the red and blue vertices of this polygon in counter-clockwise order with an
arbitrary first vertex x1. Connect all pairs of vertices with an edge (xi, xj) if xi and xj are different
colors, and assign this edge a weight wij = ‖xi − xj‖. Two edges (xi, xj) and (xs, xt) with i < j and
s < t are non-crossing if and only if one interval (i.e. [i, i + 1, . . . , , j] or [s, s + 1, . . . , t]) is contained
within the other, or if the intervals are entirely disjoint; equivalently, the edges are crossing if and only if
i ≤ s ≤ j ≤ t or s ≤ i ≤ t ≤ j.

For each pair xs, xt with s < t, we define the cost V (s, t) to be the size (i.e. the length of the longest
edge) of the ENCBM of points xs, . . . , xt, with V (s, t) =∞ if such a matching does not exist. It is obvious
that V (s, t) <∞ if and only if the set {xs, . . . , xt} contains the same number of red points and blue points.
Assuming that this is the case, the bottleneck ENCBM of {xs, . . . , xt} either uses the edge (xs, xt), or it
does not (note that (xs, xt) may not even be a valid edge because xs and xt could be the same color).
If the bottleneck ENCBM uses edge (xs, xt), then its cost is the maximum of wst and V (s+ 1, t− 1). If
edge (xs, xt) is not used, then there must be some index i ∈ {s+ 1, . . . , t− 2} such that xs is paired with
xi and xi+1 is paired with xt (with all remaining interior vertices xj paired off with one another in some
valid way). In other words, we have

V (s, t) = min
{

max{wst, V (s+ 1, t− 1)} , min
i∈{s+1,...,t−2}

max{V (s, i), V (i+ 1, t)}
}
.

We initialize V (·, ·) by setting V (i, i+1) = wi,i+1 for all indices i such that xi and xi+1 are different colors.
In order to compute arbitrary V (s, t), we must know the values V (s+ 1, t− 1) and the values V (s, i) and
V (i + 1, t) for all i ∈ {s + 1, . . . , t − 2}. Thus, we can build all values of V (·, ·) by enumerating through
the pairs (s, t) in order of their width, t− s. Our goal is of course to compute V (1, 2n). Each calculation
of V (s, t) can be computed in O(n) running time due to the enumeration over all i, and therefore we can
compute all possible V (s, t) – and therefore a minimum-cost ENCBM – in O(n3) running time.

In the algorithm above, we do not explicitly use the fact that edge weights are Euclidean; the procedure
as described can be used to find a non-crossing perfect matching of any graph whose vertices form the
vertices of a convex polygon (provided such a matching exists). For example, we might instead constrain
ourselves to consider only edges that subtend a particular angle. The same result holds for points on
the boundary of a simply connected polygon, if we impose the constraint that edges may not leave the
polygon.

11



(a) Original configuration from figure 6, labelled. (b) Revised configuration, with corresponding labels

(c)

Figure 11: In (11a), we show the original configuration for intersections as described previously in this
section. In (11b) we show an alternative layout, so that a matching of size R exists if and only if a
matching of size 1.277R also exists. The exact positioning of the various points is shown in detail in
(11c). The main idea is to position r1 and b′ (and r2 and b′′) as close as possible while still maintaining
the property that edge b1 − r2 and edge b2 − r1 are prevented.

12



bj = (uj,vj)

ri = (wi,0)

Figure 12: The setup for the semi-collinear case of our problem.

4 An algorithm for the semi-collinear case
In this section we consider the special case when the points {r1, . . . , rn} lie on a line and the blue points
{b1, . . . , bn} all lie on one side of that line. We assume without loss of generality that the line in question
is the horizontal axis so that each point ri takes the form ri = (wi, 0), with wi < wi+1 for all i, and that
each blue point takes the form bj = (uj , vj) with vj > 0; this setup is shown in Figure 12. We give an
algorithm that finds an ENCBM of minimal size in running time O(n4). For expositional purposes, we
will make a technical assumption that the vertical coordinates vi are all distinct and that all points are
in general position, with the obvious exception of the collinear red points.

We begin by constructing the graph G = ({r1, . . . , rn} ∪ {b1, . . . , bn}, E) in which we have an edge
between every pair ri, bj with weight wij = ‖ri − bj‖. Consider any triple (ri, rj , bk), with i < j. We can
construct a “rightward slab” Rk

ij by intersecting the two open half-spaces {(x1, x2) ∈ R2 : x2 > 0} and
{(x1, x2) ∈ R2 : x2 < vk} with the open region lying strictly to the right of the oriented line −−→ribk, as shown
in Figure 13. We can uniquely define an index pright(i, j, k) to be the index of the blue point b∗ contained
in Rk

ij such that the region obtained by intersecting Rk
ij with the open region lying strictly to the left of

the oriented line −−→rjb
∗ contains exactly j − i− 1 blue points (of course, such a point is not guaranteed to

exist, but if one does, it must be unique). This now defines an open “rightward trapezoid” T right
ijk , which is

also shown in Figure 13. Note that we can also perform an analogous procedure starting with a “leftward
slab” L k

ij that is obtained by intersecting the same two open half-spaces {(x1, x2) ∈ R2 : x2 > 0} and
{(x1, x2) ∈ R2 : x2 < vk} with the open region lying strictly to the left of the oriented line −−→rjbk. This
would then also define an index pleft(i, j, k) to be the index of the blue point b∗ such that the region
obtained by intersecting L k

ij with the open region lying strictly to the right of the oriented line −−→rib
∗

contains exactly j − i− 1 blue points, thereby specifying a “leftward trapezoid” T left
ijk .

We have thus shown that, given three points (ri, rj , bk) with i < j, we can construct a unique rightward
trapezoid whose closure contains j−i+1 points of each color (if such a trapezoid exists). The triple (i, j, k)
uniquely defines the index pright(i, j, k) as well as another index, which we will write as qright(i, j, k), which
is the index of the highest blue point in the interior of T right

ijk (which must lie below bk by our construction).
Let V (i, j, k) denote the size of the optimal ENCBM of all of the points in T right

ijk , subject to the constraint
that ri and bk are matched together, as are rj and bp, where we write p = pright(i, j, k) for brevity. Define
V (i, j, k) = ∞ if no such trapezoid T right

ijk exists. If T right
ijk does exist, then V (i, j, k) is the maximum

of wik, wjp, and the size of the optimal ENCBM of the remaining points, namely {ri+1, . . . , rj−1} and
{b1, . . . , bn} ∩ T right

ijk .
Let W (i, j, k) denote the analogous size of the optimal ENCBM for T left

ijk (in which case we would
constrain that rj and bk be paired together, and so on). We now show that V (i, j, k) andW (i, j, k) can be
described in a recursive fashion: assuming that T right

ijk does indeed exist, letM denote its optimal ENCBM
(with the additional constraint that ri and bk be matched together, as well as rj and bp), and consider
the highest blue point, whose index is qright(i, j, k), which we abbreviate as q. Let ` ∈ {i + 1, . . . , j − 1}
denote the index of its (red) partner underM. The following statements must be true by inspection (we
will continue to abbreviate p = pright(i, j, k) as before):

13



ri rj

bk

ri rj

bk

b*

Figure 13: The “rightward slab” Rk
ij and the “rightward trapezoid” T right

ijk .

• If bq is above bp, then the optimal ENCBM for T right
ijk (with ri matched with bk and rj matched with

bp) is equivalent to the optimal ENCBM for T right
i`k (with ri matched with bk and r` matched with

bq) together with the optimal ENCBM for T right
`jq (with r` matched with bq and rj matched with bp).

Note that both of these two matchings have r` and bq matched together, by construction.

• If bp is above bq, then the optimal ENCBM for T right
ijk (with ri matched with bk and rj matched with

bp) is equivalent to the optimal ENCBM for T right
i`k (with ri matched with bk and r` matched with

bq) together with the optimal ENCBM for T left
`jp (with r` matched with bq and rj matched with bp).

These two matchings also both have r` and bq matched together, by construction.

These two scenarios are shown in Figure 14. Note that, for fixed (i, j, k), we can construct an index set
I(i, j, k) ⊂ {i + 1, . . . , j − 1} of all red indices ` that could possibly be partnered with bq; this is simply
the set of all ` ∈ {i + 1, . . . , j − 1} such that that pright(i, `, k) = q (of course, if T right

ijk does not exist,
then I(i, j, k) = ∅ and V (i, j, k) = ∞). Expressed algebraically, the preceding statements are equivalent
to writing

V (i, j, k) =


∞ if T right

ijk does not exist
min`∈I(i,j,k) max{V (i, `, k) , V (`, j, qright(i, j, k))} if bqright(i,j,k) is above bpright(i,j,k)
min`∈I(i,j,k) max{V (i, `, k) , W (`, j, pright(i, j, k))} if bqright(i,j,k) is below bpright(i,j,k)

and equivalently

W (i, j, k) =


∞ if T left

ijk does not exist
min`∈J (i,j,k) max{W (`, j, k) , W (i, `, qleft(i, j, k))} if bqleft(i,j,k) is above bpleft(i,j,k)
min`∈J (i,j,k) max{W (`, j, k) , V (i, `, pleft(i, j, k))} if bqleft(i,j,k) is below bpleft(i,j,k)

where J (i, j, k) is the analogous index set to I(i, j, k). We initialize V (·, ·, ·) by computing V (i, i+1, k) for
all i and k (and similarly for W (·, ·, ·)); this is straightforward because V (i, i+ 1, k) = max{wik, wi+1,p},
with p = pright(i, i + 1, k), and with V (i, i + 1, k) = ∞ if no such p (and therefore no such trapezoid)
exists. This clearly suffices to compute all values of V (·, ·, ·) because any V (i, j, k) is expressible in terms
of strictly smaller intervals [i, i + 1, . . . , `] and [`, ` + 1, . . . , j]. For any triple (i, j, k), we can compute

14



ri rj

bk

bp

bq

ri rj

bk

bp

bq

ri rj

bk

bpbq

Figure 14: A rightward trapezoid T right
ijk and the two scenarios relating bp and bq.

15



(a)

(b)

Figure 15: A minimum-weight Euclidean matching (15a) and a bottleneck ENCBM (15b).

pright(i, j, k) (and equivalently pleft(i, j, k)) or determine that no such point exists in O(n) running time,
and thereby determine if T right

ijk or T left
ijk exists: to see this, we note that it is necessary to search through

blue points based on the angle of the line that joints them to red point rj . Thus, as a pre-processing
step, for each red point rj , we must sort the blue points bi based on the angle of line −−→rjbi (which would
require running time O(n2 logn) in total). For each triple (i, j, k), we can identify the blue points that lie
in the “rightward slab” Rk

ij in O(n) running time, and then find pright(i, j, k) by selecting the (j − i)-th
element of these points (sorted by the angle they make with rj). It is obvious that we can also compute
qright(i, j, k) in O(n) running time because it is simply the highest point in the trapezoid T right

ijk . Thus, we
conclude that each term V (i, j, k) and W (i, j, k) can be computed in O(n) running time.

In order to solve our problem, we find it necessary to augment the graph G of allowable edges by
inserting points r0 = (−M, 0) and rn+1 = (M, 0) and points b0 = (−M,R) and bn+1 = (M,R), where
M � maxi |wi| is a large number and R = maxj{vj}+ε is slightly larger than the maximum height of our
blue points. It is obvious that the minimum-cost ENCBM is the same as the minimum-cost ENCBM of
the trapezoid T right

0,n+1,0, subject to the constraint that r0 is paired with b0 and that rn+1 is paired with bn+1,
precisely as defined earlier. We require O(n) ·O(n3) = O(n4) iterations in total to compute V (0, n+1, 0),
and therefore to find the ENCBM of minimum size. See Figure 15 for an example of such a matching. As
in Section 3, the algorithm we have just described does not explicitly use the fact that edge weights are
Euclidean; the procedure as described can be used to find a non-crossing perfect matching of any graph
whose vertices are configured as described herein.

16



References
[1] Putnam, 1979. Problem A4.

[2] A.Karim Abu-Affash, Paz Carmi, MatthewJ. Katz, and Yohai Trabelsi. Bottleneck non-crossing
matching in the plane. In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012,
volume 7501 of Lecture Notes in Computer Science, pages 36–47. Springer Berlin Heidelberg, 2012.

[3] Adrian Dumitrescu and William Steiger. On a matching problem in the plane. In Workshop on
Algorithms and Data Structures, 1999 (WADS 9́9), and in Discrete Mathematics, pages 1–3, 2000.

[4] Guy Even, Sudipto Guha, and Baruch Schieber. Improved approximations of crossings in graph
drawings and VLSI layout areas. SIAM J. Comput., 32(1):231–252, 2003.

[5] Klaus Jansen and Gerhard J. Woeginger. The complexity of detecting crossingfree configurations in
the plane. BIT Numerical Mathematics, 33:580–595, 1993. 10.1007/BF01990536.

[6] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.

[7] Franz Rendl and Gerhard Woeginger. Reconstructing sets of orthogonal line segments in the plane.
Discrete Mathematics, 119(1-3):167 – 174, 1993.

[8] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, SODA ’90, pages 138–148, Philadelphia, PA, USA, 1990.
Society for Industrial and Applied Mathematics.

[9] Yi Zhu and Andrew Lim. Crane scheduling with spatial constraints: Mathematical model and solving
approaches. NAVAL RESEARCH LOGISTICS, 51:386–406, 2004.

[10] Yi Zhu and Andrew Lim. Crane scheduling with non-crossing constraint. Journal of the Operational
Research Society, 57:1464–1471(8), December 2006.

17


